
Washington University School of Medicine
Digital Commons@Becker

Open Access Publications

2015

Scratching the surface – tobacco-induced bacterial
biofilms
Justin A. Hutcherson
University of Louisville

David A. Scott
University of Louisville

Juhi Bagaitkar
Washington University School of Medicine in St. Louis

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open
Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.

Recommended Citation
Hutcherson, Justin A.; Scott, David A.; and Bagaitkar, Juhi, ,"Scratching the surface – tobacco-induced bacterial biofilms." Tobacco
Induced Diseases.13,. 1. (2015).
http://digitalcommons.wustl.edu/open_access_pubs/3705

http://digitalcommons.wustl.edu?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F3705&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F3705&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F3705&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:engeszer@wustl.edu


REVIEW Open Access

Scratching the surface – tobacco-induced
bacterial biofilms
Justin A Hutcherson1, David A Scott2* and Juhi Bagaitkar3

Abstract

Individual environmental factors, such as iron, temperature and oxygen, are known to have a profound effect on
bacterial phenotype. Therefore, it is surprising so little known is about the influence of chemically complex cigarette
smoke on bacterial physiology. Recent evidence has demonstrated that tobacco smoke and components alter the
bacterial surface and promote biofilm formation in several important human pathogens, including Staphylococcus
aureus, Streptococcus mutans, Klebsiella pneumonia, Porphyromonas gingivalis and Pseudomonas aeruginosa. The
mechanisms underlying this phenomenon and the relevance to increased susceptibility to infectious disease in
smokers and to treatment are reviewed.

Keywords: Bacteria, Biofilms, Cigarette smoking, Infectious diseases, Outer membrane, Tobacco

Introduction
The numbers of smokers and, subsequently, tobacco-
induced deaths continues to rise globally. In addition to
cancers, chronic lung disease and cardiovascular compli-
cations, cigarette use is a major risk factor for multiple
bacterial infections. These include biofilm-associated
diseases, such as community-acquired pneumonia, otitis
media, vaginosis and chronic periodontitis [1]. While
there has been considerable focus on the mechanisms by
which smoking dysregulates the immune system [2,3],
little information is available as to how smoking influ-
ences the actual bacteria that cause disease. It is clear,
however, that many bacteria exhibit a high degree of tol-
erance to cigarette smoke and smoke components [4-9],
while it has been known for some considerable time that
tobacco components can even promote the growth of
some pathogenic bacteria, such as Haemophilus influen-
zae [10]. This review summarizes the available literature
on tobacco smoke augmentation of biofilm formation by
several important human pathogens. While it is apparent
that we are only scratching the surface, mechanistically,
potential explanations for smoke-induced biofilm en-
hancement are discussed.

Methods
Search strategy
Pubmed was investigated on 5 May 2014 and again on
manuscript revision according to the following search
strategies. [#1 (tobacco OR cigar* OR smok* OR nico-
tine) AND biofilm]; [#1 AND #2 (bacter*) AND colo-
niz*]; [#1 AND #2 AND membrane]; [#1 AND #2 AND
ultrastructure]; [#1 AND #2 AND LPS]; [#1 AND #2
AND fimbria*]; [#1 AND #2 AND flagella]; [#1 AND #2
AND lipoteichoic]; [#1 AND #2 AND adhesion]; [#1
AND #2 AND adhesin]; and [#1 AND #2 AND peptido-
glycan]. Data identified as generated by the tobacco in-
dustry was excluded a priori.

Results and discussion
Biofilm formation and bacterial survival
Biofilms are dense, surface-attached communities of
bacteria or fungal species enclosed within a microbial-
derived matrix that facilitates colonization and survival.
The chemical composition, complexity and microbial di-
versity of a biofilm can vary relative to its environment.
However the dynamics of biofilm formation can be gen-
eralized into three interlinked stages.
Attachment of planktonic bacteria to abiotic or biotic

surfaces comprises the first stage of biofilm formation. At-
tachment occurs after detection of optimal nutrient or
host-derived metabolite concentrations, pH, temperature
and other favorable environmental signals [11]. Microbe-
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derived adhesive proteins and adhesive organelles, like
fimbriae and pili, facilitate attachment of planktonic bac-
teria to the tissue or abiotic surface. The expression pro-
files of genes involved in bacterial motility, extracellular
matrix formation, quorum sensing, chemotaxis and post-
transcriptional regulatory circuits converge to promote
colonization and establishment of biofilms [12,13]. Signifi-
cant human pathogens, including Pseudomonas aerugi-
nosa, Vibrio cholerae and Escherichia coli, all undergo
extensive morphological and transcriptional changes to at-
tach and colonize the host [12].
Following initial attachment, secondary species may bind

to these early colonizers, increasing biofilm complexity.
During the second stage of biofilm formation, cellular repli-
cation, synergistic intra- and inter-species interactions pro-
mote microcolony formation and the deposition of an
extracellular matrix. Microcolonies grow as a direct conse-
quence of bacterial replication and aggregation [14]. The
extracellular matrix consists of exopolysaccharies, extracel-
lular DNA, RNA, matrix-associated proteins and adhesins
synthesized by the colonizing bacteria which promotes cell-
to-cell adhesion and further stabilizes biofilm architecture.
There may be several niches or microenvironments gener-
ated within a biofilm due, for example, to nutrient, oxygen
and pH gradients. These gradients create selective pressure
and can also enhance the pathogenic potential of an
organism. The extracellular matrix also presents a diffu-
sion barrier for most antimicrobial peptides and antimicro-
bial compounds.
Biofilms have been estimated to account for 65% or

more of all microbial infections in humans [15]. This
has critical implications to disease prevention as such
microbial communities provide several advantages to the
bacteria, such as (i) enhanced evolution through the
sharing of genetic material, including antibiotic resist-
ance and other virulence factor genes; (ii) protection
from antibiotics; (iii) shielding from critical components
of the immune response, including the complement/
antibody system and phagocytosis; and (iv) the potential
to further colonize the host upon shedding from the bio-
film [15-18]. Given their high degree of resistance to
current anti-microbial compounds, biofilms play a sig-
nificant role in the pathogenesis of many chronic human
infections, such as cystic fibrosis, bacterial endocarditis
and periodontal diseases [19]. Furthermore, biofilms can
prolong inflammation and delay resolution in chronic
wound infections [20]. Several recent reviews of infec-
tious biofilms are available [15,18,21-24].

Tobacco smoke promotes biofilm formation
Simple environmental stimuli, including temperature, pH
and the availability of iron, have a major influence on the
bacterial transcriptome and influence biofilm formation
in, for example, Pseudomonas aeruginosa, Klebsiella

pneumonia, Porphyromonas gingivalis, and the melioidosis
pathogen, Burkholderia pseudomallei [25-28]. It is perhaps
not surprising, then, that cigarette smoke, which contains
thousands of chemicals, can exert a profound influence on
bacterial physiology and biofilm formation.
The evidence that tobacco promotes bacterial biofilms

in multiple pathogenic bacteria is growing, as summa-
rized in Table 1 along with their associated diseases. The
most extensive study to date is by Goldstein-Daruech
et al. [29], who demonstrated that acute cigarette smoke
exposure significantly increased biofilm formation in
75% (12/16) of clinical isolates of various species from
smokers with chronic rhinosinusitis but in 0% (0 of 18)
of isolates from nonsmokers. Importantly, such en-
hanced biofilm formation was reversible on removal of
the cigarette smoke stimulus. An overall biofilm index
for smokers and non-smokers is reproduced from the
Goldstein-Daruech study in Figure 1.

Mechanisms of tobacco smoke-enhanced biofilm formation
We are only beginning to understand how tobacco
smoke may enhance microbial biofilms. However, it is
clear that the first step in biofilm formation is adher-
ence to a stratum, be that epithelial or endothelial cells;
extant colonized bacteria; or to a sugar or protein. To-
bacco smoke augments binding of Streptococcus pneumo-
nia to pulmonary epithelial cells by inducing eukaryotic
platelet-activating factor receptor (PAF-R) expression,
which interacts with phosphorylcholine on the bacterial
cell wall [37]. In P. gingivalis, the major fimbrial protein,
FimA, is upregulated, which aids adhesion by binding to
the glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
surface protein of the primary periodontal colonizer,
Streptococcus gordonii [31]. The predominant nicotine me-
tabolite, cotinine, has been reported to increase P. gingiva-
lis adhesion to epithelial cell monolayers [4]. Cigarette
smoke extract (CSE) also appears to promote adhesion of
Aggregatibacter actinomycetemcomitans, an oral biofilm
dweller associated with a localized, aggressive form of
periodontal disease, to epithelial cells [38].
Sortase A (cell surface protein P1) is employed by the

cariogenic agent, Streptococcus mutans, and other Gram-
positive bacteria, to facilitate the localization of specific,
LPXTGX-containing proteins to the microbial surface. One
such protein is the salivary agglutinin-binding, biofilm pro-
moting antigen I/II. It has recently been shown that the to-
bacco alkaloid, nicotine, upregulates the surface expression
of antigen I/II by S. mutans and, subsequently, enhances
biofilm formation [9]. The authors [9] suggest that this
nicotine-enhanced biofilm formation helps explain the in-
creased number of teeth with carious lesions found in
smokers compared to non-smokers [39]. Indeed, nicotine
has also been shown to enhance dual species S. mutans bio-
film formation with Streptococcus sanguinis [8].
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Cigarette smoke exposure also leads to increased biofilm
formation in the key human pathogen, Staphylococcus
aureus, which can cause, for example, skin infections,
pneumonia, endocarditis, and septic shock [32]. The
staphylococcal genes, accessory regulator A (sarA) and
required for biofilm formation (rbf ), which encode biofilm
enhancing proteins, and fibronectin binding protein A
(fnbA), whose gene product facilitates bacterial adhesion,
are upregulated by cigarette smoke. The accessory gene
regulator (agr) family of genes is involved in quorum

sensing which controls bacterial dispersal. agrC activity
is suppressed by cigarette smoke. Cigarette smoke-
enhanced biofilm formation in S. aureus is abrogated by
pre-treatment with the antioxidant, N-acetyl cysteine,
suggesting that smoke-induced S. aureus biofilm forma-
tion is oxidant-dependent [32].
Whole cigarette smoke exposure has been reported to

increase biofilm formation in other pathogens but, again,
there is little mechanistic insight. Several biofilm pro-
moting P. aeruginosa genes (pilF, flgK) are induced by
cigarette smoke, while the quorum sensing gene, rhlA, is
suppressed [30]. Cigarette smoke condensate has also
been shown to increase Streptococcus pneumoniae bio-
film formation associated with a reduced production of
pneumolysin, a key mediator of S. pneumoniae-induced
inflammation [34].

Tobacco smoke and oral biofilms
Presumably due to ubiquity of dental plaque, the high
prevalence of bacteria-induced oral diseases, and ease of
access to clinical samples, our knowledge of the influ-
ence of smoking on biofilms is broadest for those found
in periodontal tissues. Oral biofilms are complex and
colonize both supra- and sub-gingival regions of the oral
cavity and their composition can correlate with in-
creased severity of periodontal disease [40].
Chronic periodontitis is a tobacco-induced and/or ex-

acerbated disease [41]. Multiple studies have established
that smoking alters the bacterial composition of dental
plaque, with several important periodontal pathogens –
including Treponema denticola, Fusobacterium nuclea-
tum and P. gingivalis, over-represented in cigarette
users, relative to non-smokers [1,41-45]. Commensal

Table 1 Tobacco augments biofilm formation in multiple human pathogens

Bacterium (Gram) Disease Stimulus1 Study

Klebsiella pneumonia (−) Chronic rhinosinusitis isolate Whole smoke Goldstein-Daruech et al. 2011 [29]

Pseudomonas aeruginosa (−) Nosocomial infections; UTI; respiratory
infections including pneumonia

Whole smoke Antunes 2012 [30]

Goldstein-Daruech et al. 2011 [29]

Porphyromonas gingivalis (−) Chronic periodontitis CSE Bagaitkar et al. 2009, 2011 [1,31]2

Proteus vulgaris (−) Chronic rhinosinusitis isolate Whole smoke Goldstein-Daruech et al. 2011 [29]

Staphylococcus aureus (+) Nosocomial infections; endocarditis; osteomyelitis;
respiratory infections

CSE Kulkarni 2013 [32]

Goldstein-Daruech et al. 2011 [29]

Streptococcus pneumoniae (+) Pneumonia, bronchitis; endocarditis; meningitis CSC Cockeran et al. 2014 [33]

Mutepe et al. 2012 [34]

Goldstein-Daruech et al. 2011 [29]

Streptococcus mutans (+) Dental caries Nicotine, CSC Li 2014 [8]3

Huang et al. 2012 [35]

Baboni 2010 [36]
1See references for precise methods of whole smoke exposure, CSE (cigarette smoke extract) or CSC (cigarette smoke condensate) preparation and of
biofilm quantification.
Dual species biofilms with S. gordonii2 or S. sanguinis3.

Figure 1 Cigarette smoke enhances the biofilm index of
multiple paranasal sinus isolates. Eighteen pathogenic bacterial
strains were isolated from non-smokers and 16 from smokers with
sinonasal mucopurulence and evaluated for biofilm forming capacity
after three hour tobacco smoke exposure from five 1R5F reference
cigarettes or sham exposure. Data from all strains was then normalized
by creating a ratio of smoke to sham exposed biofilm formation. A
value of <1 demonstrates biofilm inhibition while a value of >1 reflects
biofilm induction. The biofilm index was significantly different between
the isolates from smokers and non-smokers (p < 0.001). Data is taken
from Goldstein-Daruech et al. [29].
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Figure 2 Cigarette smoke extract alters key P. gingivalis surface molecules and enhances biofilm formation. Representative transmission
electron microscope images of P. gingivalis grown in control medium (A) or CSE-conditioned medium (B) are shown. The black arrow indicates
the P. gingivalis capsule, which is greatly reduced in the presence of CSE. Images and data taken from Bagaitkar et al. [6]. (C, D) S. gordonii cells
(hexidium iodide-labeled, red) were placed on a saliva-coated coverglass in a flow cell. P. gingivalis cells (FITC conjugated anti-P. gingivalis IgG-labeled,
green) were passed through. P. gingivalis-S. gordonii microcolonies (yellow) were visualized by confocal microscopy. The number of dual species
microcolonies formed was significantly greater in the CSE-exposed cells compared to the controls (p < 0.01). Observation first published in [31] but data
previously unpublished in this form. (E) A model of cigarette smoke extract-induced alterations to the surface of the periodontal pathogen, P. gingivalis,
is presented. (1) Surface expression of the major fimbrial protein (FimA), but not the minor fimbrial antigen (Mfa1), is upregulated [6]. (2) At the same
time, the highly pro-inflammatory capsule is inhibited by CSE, increasing fimbrial protein bioavailability. (3) Multiple outer membrane proteins are
upregulated upon cigarette smoke exposure, including the highly antigenic RagB protein [6]. The biological significance of CSE-induced alterations to
the membrane proteome is currently under investigation. (4) While we have not examined P. gingivalis directly, the LPS profile in the saliva of smokers,
compared to that of non-smokers, exhibits altered 3-OH fatty acid content derived from overall oral microbiome [55].
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species, such as Streptococcus species may be in higher
abundance in non-smokers compared to smokers [44].
Interestingly, smokers who quit show a reversion to a
healthier biofilm composition after 6 months [46].
Increased prevalence of P. gingivalis, the laboratory

workhorse of periodontal pathogens, has been repeatedly
shown in smokers [47-50]. Furthermore, P. gingivalis is
found in significantly higher numbers in smokers than
non-smokers and infection is more persistent in smokers
compared to non-smokers [41,51]. With this in mind,
we have examined the mechanisms by which tobacco
smoke augments P. gingivalis biofilm formation. These
are summarized in Figure 2. CSE significantly influences
the expression of 6.8% of the P. gingivalis genome, as
determined by whole genome arrays, with several genes
in the P. gingivalis capsular operon significantly sup-
pressed [6]. Transmission electron microscopy con-
firmed that CSE exposure suppresses capsule formation
in P. gingivalis at the ultrastructural level (Figure 2A
and B). Nicotine alone has also been reported to influ-
ence extracellular polysaccharide production in S.
mutans and S. sanguinis, partly explaining enhanced in-
teractions between these two bacteria [8]. Furthermore,
CSE promotes P. gingivalis-Streptococcus gordonii dual
species biofilm formation [52], as shown in Figure 2C
and D. Surface expression of the major fimbrial protein
(FimA), but not the minor fimbrial antigen (Mfa1), is
upregulated by CSE [6]. This promotes interactions with
the early dental plaque colonizer, S. gordonii, enhancing
biofilm formation [31]. Indeed, FimA mutants do not form
biofilms [53]. Increased FimA production may also aid P.
gingivalis survival by suppressing the TLR-mediated in-
flammatory response to this pathogen [31]. As noted earl-
ier, the highly pro-inflammatory capsule is inhibited by
CSE, which increases fimbrial protein bioavailability. Mul-
tiple outer membrane proteins are upregulated upon
cigarette smoke exposure, including the highly antigenic
RagB protein [6]. The biological significance of CSE-
induced alterations to the membrane proteome is cur-
rently under investigation. P. gingivalis produces several
types of lipopolysaccharide (LPS) that comprise the exter-
nal leaflet of the Gram-negative outer membrane. The in-
flammatory potential of these LPS isoforms is highly
variable. Penta-acylated lipid A isoforms efficiently induce
inflammation upon engagement of TLR4 on innate im-
mune cells while tetra-acylated lipid A isoforms are antag-
onistic [54]. In addition to acylation, the length of lipid A
3-OH fatty acid chains also influences inflammatory cap-
acity. While we have not examined P. gingivalis individu-
ally, lipid A-derived 3-OH fatty acid profiles in the saliva
of smokers are altered, compared to that of non-smokers,
and are consistent with an oral biofilm of reduced inflam-
matory potential [55]. A model of CSE-induced alterations
to P. gingivalis physiology is presented in Figure 2E.

Conclusions
Since the discovery in 2010 that cigarette smoke extract
augments biofilm formation in the oral pathogen, P. gingi-
valis [52], it has become apparent that smoking promotes
bacterial adhesion and biofilm formation in several other
key pathogens, including S. mutans, S. aureus, P. aerugi-
nosa and S. pneumoniae. Enhanced bacterial evolution, in-
cluding the emergence of antibiotic resistance, protection
from antibiotics and other antimicrobials, immune re-
sponse shielding and the increased potential for secondary
colonization each have clear implications to disease treat-
ment for the present and the future. However, it is clear
that when it comes to understanding the underlying
mechanisms we are currently just “scratching the surface”.
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