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RESEARCH ARTICLE Open Access

Invariance and plasticity in the Drosophila
melanogaster metabolomic network in response
to temperature
Ramkumar Hariharan1,2, Jessica M Hoffman3, Ariel S Thomas3,4, Quinlyn A Soltow5,6,7, Dean P Jones5,6

and Daniel E L Promislow1,8*

Abstract

Background: Metabolomic responses to extreme thermal stress have recently been investigated in Drosophila
melanogaster. However, a network level understanding of metabolomic responses to longer and less drastic
temperature changes, which more closely reflect variation in natural ambient temperatures experienced during
development and adulthood, is currently lacking. Here we use high-resolution, non-targeted metabolomics to
dissect metabolomic changes in D. melanogaster elicited by moderately cool (18°C) or warm (27°C) developmental
and adult temperature exposures.

Results: We find that temperature at which larvae are reared has a dramatic effect on metabolomic network
structure measured in adults. Using network analysis, we are able to identify modules that are highly differentially
expressed in response to changing developmental temperature, as well as modules whose correlation structure is
strongly preserved across temperature.

Conclusions: Our results suggest that the effect of temperature on the metabolome provides an easily studied and
powerful model for understanding the forces that influence invariance and plasticity in biological networks.

Keywords: Drosophila melanogaster, Temperature, Metabolomics, Networks, Differential coexpression

Background
Temperature has profound effects on cellular and organis-
mal biochemistry [1], with enzymes functioning best at
specific temperatures [2]. The effects of temperature on
physiology and fitness have been particularly well-studied
in the fruit fly, Drosophila melanogaster, which can survive
transient exposures to a wide range of temperatures,
from −10°C to 40°C [3]. Early studies found a strong nega-
tive correlation between survival rate and chronic exposure
to high temperatures, while showing that transient ex-
posure to extreme temperatures could increase survival
(so-called ‘heat hardening’) [4-6]. Molecular studies have
shown that this effect is due, in part, to both heat- and
cold-shock inducing the expression of heat shock proteins

(HSPs), which help cells to counteract the deleterious ef-
fect of thermal shock through multiple mechanisms [7-10].
Over the past several years, researchers have begun to

dissect the underlying molecular mechanisms of tem-
perature responses beyond HSPs, with numerous studies
in D. melanogaster looking at the effect of temperature on
the transcriptome, the proteome [11-15] and the metabo-
lome [4,9,16].
The value of studying metabolomic changes in re-

sponse to temperature shifts in D. melanogaster has
been demonstrated by numerous studies. For example, it
has recently been shown that long-term cold acclimation
and heat hardening alters the metabolomic profile of D.
melanogaster larvae [4,9]. Other studies have sought to
identify temperature-associated metabolomic signatures
of inbreeding in D. melanogaster [4,17]. These metabolo-
mic studies have led to a better understanding of the
global effects of the temperature stress response in D.
melanogaster, moving beyond earlier studies that focused
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on just a very small number of metabolites in the D.
melanogaster temperature stress-response [18].
Here we extend these analyses in three ways. First, we

take advantage of recent advances in high-resolution mass
spectrometry [19-21]. This approach allows us to greatly
increase the number of metabolites and metabolic path-
ways that we can assay for effects of temperature.
Second, we incorporate recent developments in differen-

tial network analysis [22,23]. Numerous gene expression
studies have shown that in some cases, perturbations can
have limited effects on the magnitude of transcripts while
causing substantial changes in the correlations between
transcripts (e.g., [24]). More recently, researchers have
brought this approach to the study of metabolomic networks
[25-27]. In light of these results, here we explore not only
the structure of the metabolomic network [28], but more
specifically, how temperature changes the structure of spe-
cific modules within the larger metabolomic network. In
particular, we are able to identify modules whose structure
is highly constant in response to temperature, as well as
modules that change their structure dramatically in re-
sponse to temperature. Our focus on modules that main-
tain correlation structure, or alter that structure, in
response to temperature, can pave the way to a better un-
derstanding of the mechanisms underlying robustness and
plasticity of networks in response to environmental
changes [29]. To our knowledge, this study is the first to
identify temperature-dependent constant and plastic mod-
ules in the metabolome, and suggests novel approaches to
better understand how poikilothermic organisms might
adapt to a changing environment. Moreover, the ap-
proaches we use here could lead to important insights into
network evolution and the role that network structure
plays in the ability of organisms to cope with stressors in
general [30].
Finally, by studying the effect of developmental and

adult temperature on high-resolution, untargeted metabo-
lomic profiles, we identify novel associations between rear-
ing conditions and metabolites and metabolic pathways.

Results
Our dataset consisted of data from technical duplicates for
95 samples across four Drosophila Genome Reference
Panel (DGRP) genotypes [31]. These included 48 male and
47 female samples, with 24 samples per genotype except
for DGRP 25189 which contributed only 23 samples to
our analysis. After applying quality control procedures (see
Methods), our dataset included 4359 features from a C18
column, and 2961 features from an AE column. We were
able to assign putative matches to 1141 metabolites from
the C18 column and 926 metabolites from the AE column.
We thus had data for a total of 7,320 features with 2027
putatively identified features from both columns, noting
that some features overlap between the two columns.

Pathway enrichment analysis using mummichog
For this analysis, we investigated the effects of develop-
mental temperature and adult temperature on male and
female flies separately.

Developmental temperature effects
For developmental temperature treatment, after control-
ling for adult temperature and genotype, in adult males we
observed 170 and 213 significantly differentially expressed
metabolites in the C18 and AE columns, respectively
(3.8% and 7.1% of all features). In female samples, we ob-
served 336 and 295 differentially expressed metabolites in
the C18 and AE columns, respectively (7.7% and 9.9% of
all features). Using mummichog [32], we found that me-
tabolites that changed significantly in response to develop-
mental temperature were enriched for six metabolic
pathways in male flies, and for seven pathways in female
flies (Tables 1 and 2). Two of these pathways, glycogen
degradation and trehalose biosynthesis, were found to be
affected in both sexes. Specifically, we found higher levels
of numerous polysaccharides (maltose, maltotriose, malto-
tetraose, and trehalose 6-phosphate) in flies raised at lower
developmental temperature (Figure 1).

Adult temperature effects
For adult temperature treatment, in males we observed 64
and 67 differentially expressed metabolites in the C18 and
AE columns, respectively (1.4% and 2.8% of all features), and
in females, 27 and 56 differentially expressed metabolites in
the C18 and AE columns, respectively (0.6% and 1.8% of all
features). We found that in male flies, adult temperature af-
fected metabolic pathways involved in degradation of purine
nucleosides (Table 3). Increased adult temperature in female
flies was associated with down-regulation of pathways
mediating arginine, 4-hydroxyproline degradation, and NAD
biosynthesis.

Warm and cool temperature effects
We further limited the analysis to flies that had experi-
enced the same temperature (either 18°C or 27°C) at
both developmental and adult stages. Using the linear
model shown in Equation 1, and carried out separate
analyses for male and female flies. We identified 96
(C18) and 66 (AE) metabolites in males and 142 (C18)
and 78 (AE) metabolites in females whose concentra-
tions were significantly changed by this temperature
treatment. Mummichog analysis pointed to temperature-
dependent changes in three pathways (Tables 4 and 5).

Genotype effects
We were also interested in identifying metabolites whose
intensities were affected significantly by genotype, i.e.,
metabolites whose levels differ among genotypes. In
males, we identified 354 (C18) and 297 (AE) metabolites,
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while in females we detected 355 (C18) and 364 (AE)
metabolites that exhibited significant differential abun-
dance. Significantly enriched metabolic pathways in
these sets of metabolites were identified using mummi-
chog (Additional file 1). Seven and five metabolomic
pathways were detected as being significantly affected by
genotype in female and male flies respectively.
By contrast, we found very few metabolites whose

temperature response was genotype-dependent. Specific-
ally, we detected less than six metabolites each from the
interaction analysis between different factors (genotype,
developmental temperature, and adult temperature).

DiffCoEx analysis
Among metabolites whose concentrations were not affected
by temperature, we found many pairs that showed changes
in correlation coefficients between temperature treatments
(Figure 2). To systematically investigate the correlation
effects, we carried out a metabolome-wide analysis of differ-
entially co-expressed metabolites. Using the R package Diff-
CoEx [22] for differential network analysis, in male flies,
comparing the two developmental temperatures, we detected
12 differentially co-expressed modules from a network of
1363 metabolites (Figure 3a). For the female fly metabolome,
we identified 11 such network modules from a total of
814 metabolites (Figure 3b). After permutation tests for

significant differences (Methods) in correlation structure be-
tween temperature, ten of the 12 male modules and seven of
the 11 female modules showed statistically significant change
in response to developmental temperature (Additional file 2).
Using a slightly modified approach with DiffCoEx, we

identified nine male modules and seven female modules
whose structure was markedly preserved (‘Similarity matri-
ces’) between the developmental temperature conditions
(Figures 3c, d and 4 and Additional file 3).
For illustrative purposes, we visualized representative

DiffCoEx and Similarity matrix modules in Cytoscape
[33], choosing the smallest of the detected modules for
each sex. Comparison of the magenta module (Figure 3a
and Additional file 4) from the male fly metabolome re-
veals that this module becomes much more tightly cor-
related when developmental temperature changes from
18°C to 27°C. In contrast, a visual comparison of the red
module (Figure 3b and Additional file 5) for female sam-
ples suggests that this module loses a large proportion of
its correlations when developmental temperature becomes
warmer. Cytoscape based network visualizations for the
most striking of the Similarity matrix modules for the
male and female metabolomes are shown in Figure 4.
For each DiffCoEx and Similarity matrix modules, we

used mummichog to test for metabolic pathway enrich-
ment. We found significant enrichment in six out of 12

Table 1 Metabolic pathways altered by developmental temperature in males

Pathway (a) Overlap size (b) Pathway size (c) Overlap features (id) (d)

Dopamine degradation 4 10 PAP,3-5-ADP,CPD-782, Adenosyl-homo-Cys

Glycogen degradation I/ Trehalose biosynthesis 3 9 Trehalose-6P, Trehalose

Salvage pathways of adenine, hypoxanthine, and their nucleosides 4 15 AMP, Deoxyadenosine, Xanthine, Adenine

Acyl carrier protein metabolism 2 3 PAP,3-5-ADP

Selenocysteine biosynthesis II (archaea and eukaryotes) 2 4 AMP, Ser

Metabolic pathways (a) identified as enriched in the set of metabolites affected by developmental temperature in adult male flies. The number of metabolites in
the input list that overlapped (b) with the reference list of all metabolites after quality control (c), along with the identification of these metabolites (d) is shown.

Table 2 Metabolic pathways altered by developmental temperature in females

Pathway (a) Overlap
size (b)

Pathway
size (c)

Overlap features (id) (d)

Glycogen degradation I 8 9 GLC-1-P, Alpha-Glucose, Maltotetraose, GLC, Maltotriose, GLC-6-P,
Maltose, Alpha-GLC-6-P

Lactose/Melibiose degradation III 4 4 Lactose, Melibiose, Galactose, GLC

Trehalose biosynthesis I 3 4 Trehalose-6P, Trehalose, Alpha-GLC-6-P

tRNA charging pathway 6 19 Val, Pro, Thr, Phe, Arg, Trp

Salvage pathways of adenine, hypoxanthine, and
their nucleosides

7 15 Xanthine, Adenine, Inosine, Deoxyadenosine, Deoxyinosine, AMP,
Hypoxanthine

Zymosterol biosynthesis 5 10 Zymosterol,CPD-4702,CPD-4581,CPD-4575,NADP,44-Dimethyl-
Choleta-812-24-Trienol

Sphingosine and sphingosine-1-phosphate
metabolism

4 8 CPD3DJ-11366, NADP, Sphingosine, Palmitaldehyde

Metabolic pathways (a) identified as enriched in the set of metabolites affected by developmental temperature in adult female flies. The number of metabolites in
the input list that overlapped (b) with the reference list of all metabolites after quality control (c), along with the identification of these metabolites (d) is shown.
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DiffCoEx modules in the male fly data, and in three out of
11 DiffCoEx modules in the female fly data (Additional file
6 and Additional file 7). Several novel pathways not de-
tected by differential expression analysis were detected as
significant in the network analysis, including glycolysis,
lipoate biosynthesis and N-acetyl-glucosamine degradation.
We did not detect any enriched metabolic pathways among
the preserved models.

Discussion
In this study, we have carried out two levels of analysis.
The first level of analysis allowed us to identify main

effects of temperature on metabolite levels. The second
level of analysis, focused on the metabolomic network,
enabled us to ask questions about network invariance
and plasticity.
We investigated metabolomic thermal responses to

moderate temperatures (27°C and 18°C). In contrast to
earlier studies that have focused on the effects of stressful
or extreme temperatures on the fly metabolome, here we
focus on longer term exposure to temperatures that are
considered to be relatively benign for this organism [34].
Thermal responses have been extensively investigated in
D. melanogaster, mostly looking at the effects of stressful

Figure 1 Effect of temperature on sample metabolite intensities for males (top) and females (bottom). Metabolite intensities are plotted
for each of the four metabolites. All four metabolites had FDR-adjusted p values below 0.01.

Table 3 Metabolic pathways altered by adult temperature in males and females

Pathway (a) Overlap size (b) Pathway size (c) Overlap features (id) (d)

*Degradation of purine ribonucleosides 3 10 Adenosine, Guanosine, Adenine

4-hydroxyproline degradation I 3 6 GLT, L-4-hydroxy-proline, NAD

Arginine degradation I (arginase pathway) 3 7 L- glutamate_gamma-semialdehyde, GLT, NAD

NAD biosynthesis from 2-amino-3-carboxymuconate semialdehyde 3 8 Deamido-NAD, GLT, NAD

Metabolic pathways (a) identified as enriched in the set of metabolites affected by adult temperature in adult male (first row, and identified by an asterisk), and
female flies. The number of metabolites in the input list that overlapped (b) with the reference list of all metabolites after quality control (c), along with the
identification of these metabolites (d) is shown.
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temperatures during both development and adulthood on
fly physiology [7,35-37]. The metabolomic effects of heat-
shock, rapid cold hardening, long-term cold acclimation,
and of benign and stressful temperatures on inbreeding,
have all been previously studied in D. melanogaster
[4,9,17]. In addition to these metabolomic studies, mo-
lecular mechanisms of many thermal responses in the fly
have been investigated at the level of the transcriptome,
and more recently, the proteome [11-15,38]. One benefit
of focusing on less extreme temperatures is that we can
gain insight into ways that the metabolome responds to
natural variation in temperature specifically, rather than
response to stress.

Main effects of temperature on the metabolome
Several metabolic pathways are known to be affected by
temperature in D. melanogaster, and our analysis looking
at main effects of temperature recapitulated many of
these earlier findings while extending them in new
directions.
From previous studies we know that brief exposures to

stressful temperatures, including cold stress, can cause
accumulations of polysaccharides in D. melanogaster
[9,17]. Mechanisms by which maltose and trehalose pro-
tect cells during stressful conditions have been described
previously [17]. Stressful temperatures can also cause ac-
cumulations of proline in flies [9].
Cold acclimation in D. melanogaster is also known to

be associated with significant metabolic changes involv-
ing sugars (sucrose, fructose, and trehalose), polyamines
and a few metabolic intermediates [16]. While that study
used targeted metabolomics, results from our untargeted
metabolomics approach also point to altered trehalose
biosynthesis in both male and female flies reared at a
lower developmental temperature. Our results suggests
that these pathways play a role not only in the response
to acute, potentially lethal stressors, but also to the range

of temperatures a fly is likely to encounter from day to
day.
A recent study implicated dopamine in modulating behav-

ioral response to temperature changes in D. melanogaster
[39]. We also observed changes in dopamine metabolism
with thermal responses in D. melanogaster. The agreement
between our study and the earlier study supports a role for
dopamine in thermal responses in the fly, which warrants
deeper investigation in future studies. Specifically, future
work should examine the effect of up- or down-regulation
of dopamine [40] on temperature-dependent fitness.
Earlier studies have observed that cold acclimation can

alter the glycerophospholipid composition of biomem-
branes [9,38]. In line with these earlier findings, our results
suggest that membrane sphingolipid metabolism might be
important in how flies respond to changes in developmen-
tal temperature. Taken together with earlier studies, it
seems likely that temperature has a major effect on cell
membrane biochemistry. Interestingly, the role of sphingo-
sine might go beyond membrane structure, as it is also in-
volved in diverse signaling processes [41,42].
We also observed a significant effect of developmental

temperature on zymosterol metabolism. While zymosterol
is a key intermediate in cholesterol [41], it is likely that
zymosterol in flies was bioaccumulated from yeast in fly
media [43]. This suggests that in D. melanogaster, develop-
mental temperature modulates bioaccumulation of zymos-
terol from fly media, a hypothesis one could test by adding
zymosterol to yeast-free holidic fly medium [44].
In contrast to developmental temperature, the effect of

adult temperature on the metabolome was more modest
(Table 3). This might be because adult flies were not ex-
posed to the different temperatures for the same duration
nor over different developmental stages, and developing
fly larvae might be biochemically more malleable than
adults. In our comparison of lifetime temperature expos-
ure (combining samples with the same developmental and
adult temperature), we observed changes in several

Table 4 Metabolic pathways altered by developmental and adult temperature in males

Pathway (a) Overlap size (b) Pathway size (c) Overlap features (id) (d)

Serotonin and melatonin biosynthesis 4 8 Trp, N-acetyl-serotonin, S-adenosylmethionine, N-acetyl-5-Methoxy-tryptamine

Metabolic pathways (a) identified as enriched in the set of metabolites affected by developmental and adult temperature in male Drosophila. For this analysis, we
pooled together metabolomics data from flies exposed to cold (18°C) developmental and adult temperatures, and compared them with data from flies exposed
to hot (27°C) developmental and adult temperatures. The number of metabolites in the input list that overlapped (b) with the reference list of all metabolites after
quality control (c), along with the identification of these metabolites (d) is shown.

Table 5 Metabolic pathways altered by developmental and adult temperature in females

Pathway (a) Overlap size (b) Pathway size (c) Overlap features (id) (d)

Arginine degradation VI (arginase 2 pathway) 3 7 L-glutamate_gamma-semialdehyde, Pro, Arg

Salvage pathways of guanine, xanthine, and their nucleosides 3 9 Deoxyguanosine, GMP, Guanine

Metabolic pathways (a) identified as enriched in the set of metabolites affected by developmental and adult temperature in female Drosophila. For this analysis,
we pooled together metabolomics data from flies exposed to cold (18°C) developmental and adult temperatures, and compared it with data from flies exposed to
hot (27°C) developmental and adult temperatures. The number of metabolites in the input list that overlapped (b) with the reference list of all metabolites after
quality control (c), along with the identification of these metabolites (d) is shown.
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metabolic pathways (Tables 4 and 5), at least one of
which is of potentially interesting biological relevance.
Spermine is a polyamine formed from spermidine and
has been shown previously to mediate stress resistance
in Drosophila [45].
These findings come with an important caveat. As with

all metazoan species, the fruit fly metabolome has yet to
be fully curated. We do not know how many metabolites
are in the fly, and of those we have measured, most have
unknown identities. Mummichog uses a metabolic path-
ways and network-based approach to find enriched path-
ways and annotate metabolites [32]. For the majority of
metabolites in the enriched pathways calculated by
mummichog, we were able to find independent confirm-
ation of their identities by mining the METLIN database
using their m/z values (Additional file 8) [46]. While valid-
ation of all putative matches is an important goal, it is be-
yond the scope of this current study, but highlights the
need for a curated fly metabolome.
The fact that we confirm previous findings allows us to

place greater confidence in our non-targeted, high-
throughput analysis, as well as in the novel biological in-
sights gained from our study. We report developmental
temperature effects on several pathways not previously as-
sociated with temperature response. These include salvage
pathways of adenine, hypoxanthine and their nucleosides,
and acyl carrier protein metabolism. These findings sug-
gest novel hypotheses for temperature adaptation that one

could test through knock-down of fly genes coding for en-
zymes used in these pathways.

Effect of genotype
We were primarily interested in investigating the effects of
developmental and adult temperature in the fly metabo-
lome. While we found strong effects of temperature on
the metabolome, genotype proved to affect an even greater
number of metabolites than temperature. Interestingly,
most of the pathways affected by genotype do not
overlap with those modified by temperature. To our sur-
prise, very few metabolites showed significant genotype-
by-temperature interactions. Thus, our data suggest that
the effect of temperature on the metabolome is consistent
across genotypes. The lack of genotype-by-temperature ef-
fects might be due, in part, to the fact that we only in-
cluded four genotypes in this study. Studies on a broader
array of genotypes are needed to rule out the effect of
genotype on temperature effects both on absolute metab-
olite levels and metabolite network structure.

Effect of temperature on network structure
To go beyond the identification of main effects, we per-
formed a second level of analysis, examining the effect of
temperature on the structure of metabolite co-expression
networks and carrying out detailed analysis on such net-
works in response to temperature.

Figure 2 Correlation and main effects for a pair of metabolites from male (a) and female (b) fly metabolomics data. Top panel:
Correlation between two metabolites at 18°C (left) and 27°C (right). Lines are least-squares regression. Bottom panel: Effect of temperature on each
of these two metabolites.
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Figure 3 Differentially co-expressed (a and b) and preserved (c and d) metabolite modules of metabolites in males (a and c) and females
(b and d) in response to developmental temperature. The heat maps consist of an N x N grid of N metabolites, and each pixel represents the
correlation coefficient across samples between any two metabolites (red is positive, blue is negative). The metabolites are ordered such that groups of
highly correlated metabolites (modules) are clustered together. The top left represents correlations between pairs of metabolites at developmental
temperature of 18°C., and the bottom right at 27°C. To identify modules that change or are preserved significantly between the two conditions, we
used the R package DiffCoEx (see Methods). Modules of metabolites are depicted as black squares along the central diagonal, and also as colored
boxes on the bottom and on the left. A correlation color scale is shown on the right, with red corresponding to r = 1, and blue to r = −1.

Figure 4 Preserved module in female fly metabolome. Architecture of the brown module, a highly preserved module in the female fly
metabolome between 18°C (left) and 27°C (right). Nodes represent metabolites and edges represent correlations between the node pairs. Only
correlation values of r≥ 0.7 (red) or r ≤ −0.7 (blue) are shown. The location and relative order of each node in the module are the same across
the two temperature conditions.
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Differential co-expression analysis of metabolomic data
is relatively novel [28,47], and until now has not been used
to identify pathways associated with environmental per-
turbations. Our analysis has allowed us to develop novel
hypotheses for metabolite modules that respond to
temperature. Our network analysis identified both highly
invariant as well as highly plastic metabolite modules. Our
discovery of metabolite modules that were significantly
preserved across the two temperature conditions suggests
that there are not just individual metabolites, but large
modules whose coordinate function is invariant in the face
of at least mild temperature changes.
Importantly, we do not know whether the invariant cor-

relation structure among modules is an adaptation that fa-
cilitates homeostasis, if the correlations are neutral, or if,
in fact, the failure of those correlations to change in the
face of different temperatures is actually maladaptive [48].
To distinguish between these hypotheses, one would need
to compare temperature-dependent fitness in groups in
which the correlation structure was broken, either through
dietary or genetic manipulation of two or more metabo-
lites simultaneously, or by comparing genotypes (such as
the DGRP [28]) in which levels of two or more metabolites
deviate to a greater or lesser extent from that predicted
from these correlations.
While the preserved modules found in this study cannot

directly answer questions about network robustness, they
can serve as a foundation for carrying out further experi-
mental and computational studies to glean deeper insights
into network robustness in response to temperature
changes.

Conclusions
In summary, our results demonstrate that high reso-
lution metabolomic profiles coupled with differential
co-expression network analysis provides a powerful tool to
understand the molecular response to shifts in temperature.
Transcriptomic studies have used different methods to
detect and quantify differentially co-expressed genes in
a wide variety of settings, from cancer tissues [24,49], to
Alzheimer’s disease [50], to cardiovascular disease [51]. Here
we show that network correlation analysis developed for gene
expression data [23] can successfully be extended to analyze
metabolomic data to address important biological questions.
Others have already noted that the metabolome offers

a powerful intermediate step to link genetic and environ-
mental variation to downstream phenotypes [52]. This
study illustrates how network approaches can further in-
crease that explanatory power, suggesting novel hypoth-
eses to be tested in future. Of course, we still have far to
go—only a fraction of all metabolites are known, even in
humans. As metabolomics catches up with genomic and
proteomic technology, network analysis is likely to tell
us much about organismal function.

Methods
Fly stocks
All experiments were carried out using four genetically dis-
tinct and well characterized inbred strains (FlyBase 25180,
25184, 25189, and 25198) that are part of the Drosophila
Genetic Reference Panel (DGRP) [31]. Fly stocks were
maintained in glass vials at 24°C on a 12/12 light–dark
cycle at approximately 50% humidity. Flies were cultured
on standard yeast-molasses-agar-cornmeal medium with
propionic acid added as an anti-fungal agent.

Temperature treatments
For each strain, eight fresh vials were created, with ten
males and ten females in each. After 48 hours of copula-
tion and egg laying at 24°C, adults were discarded. The
vials containing eggs were placed at either 18°C or 27°C
until eclosion. Virgin collections for adult flies at develop-
mental temperatures 27°C and 18°C were initiated at 10
and 19 days, respectively, following incubation at that
temperature. Virgins were collected from each develop-
mental temperature, and then distributed equally between
the 18°C and 27°C incubators. This resulted in four
temperature treatment groups: 18°C → 18°C, 18°C → 27°C,
27°C → 18°C, 27°C → 27°C. Adult flies were kept at this
temperature for four to five days before being frozen in li-
quid nitrogen, and stored at −80°C.

Metabolomic analysis
Sample preparation and analysis were carried out as de-
scribed previously [53]. Briefly, acetonitrile extracts from
frozen samples of three adult whole body D. melanogaster
were analyzed in a dual column chromatography-mass spec-
trometry (LC-MS) platform. In this DC/LC-MS platform,
the C18 (or ‘reverse phase chromatography’) column retains
and separates chemicals with partial hydrophobic character,
and the Anion Exchange (AE) column retains and separates
negatively charged analytes. Fractionated samples, after elec-
trospray ionization, were detected using a Fourier-transform
mass spectrometer. Data were extracted as non-annotated
mass/charge (m/z) features, column retention time, and ion
intensity. Fly standards were also run alongside investi-
gational samples. Specifically, we made a pooled reference
sample and stored a large number of aliquots at −80°C to
allow comparison of analytic behavior over long periods of
time. The pooled reference samples were for the purposes
of quality control (i.e., to ensure relative consistency among
identical samples within days) and for quality assurance (i.e.,
to ensure consistent results between days). They did not
contribute data to downstream statistical analysis.

Data analysis
Quality control
Since the column chemistries are different, we analyzed
data from the C18 and AE columns, separately. First, we
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applied various quality control procedures to the data,
following [49]. We included only those metabolites with
a signal-to-noise ratio of at least 14. We then log-
transformed the data and removed any analytes missing
from more than 5% of male or more than 5% of female
samples. After this, between 0.28% (AE) and 0.31%
(C18) of all cells consisted of missing values (i.e., missing
fewer than 1 in 300 m/z values in each case). To impute
these missing values, we used the ‘EMimpute array’
method in the LSimpute algorithm [54].

Statistical analysis
Statistical analyses were carried out using the statistical
package R (R Development Core team 2008) and Micro-
soft Excel 2013.
After technical replicates were averaged and collapsed,

we had metabolite measurements from 95 samples.
Samples from male and female flies were analyzed se-
parately. Apart from sex, there were three known, inde-
pendent variables in our study, including developmental
temperature (L), adult temperature (A), and genotype (G).
We tested for the effects of these three variables using a
linear model treating all three factors as fixed effects, and
including all pairwise interactions:

yi ¼ μþLþ Aþ G þ LxAþ LxG þ AxG þ � ð1Þ

where yi is the intensity of metabolite i, μ is the mean,
and ∊ is the error.
To identify differentially expressed metabolites for each

factor in equation 1, we used a conservative false discovery
rate (FDR) threshold of 0.01 [55]. To investigate the effect
of genotype on temperature treatment and its interactions,
we carried out a likelihood ratio test [53].

Metabolic pathway enrichment and metabolite annotation
We sought to identify metabolic pathways that were
enriched within the sets of differentially expressed metab-
olites. To do this, we used the program mummichog,
which provides putative annotation for metabolites based
on mass-charge ratios and carries out statistical tests for
enrichment [32]. Mummichog provides adjusted P-values,
correcting for the fact that different m/z features can map
to a single metabolite and single m/z values can map to
different metabolites [32]. Mummichog uses BioCyc (bio-
cyc.org) as a source for metabolite ontologies where some
of the fly metabolic pathways in BioCyc are based on ex-
perimental evidence while others are inferred. We chose
an adjusted P-value cutoff of 0.01 to identify enriched
metabolic pathways from Mummichog output.

DiffCoEx analysis
We used the DiffCoEx algorithm to identify sets of metab-
olites or modules whose correlation structure changed

significantly across experimental conditions [22]. DiffCoEx
runs on the Weighted Gene Correlation Network Analysis
(WGCNA) platform, which is an R-based software pack-
age designed for network analysis [23]. To calculate the
significance of the co-expression differences within and
between modules, we used permutation testing. Each
dataset was permuted 1000 times for each temperature
condition. The dispersion value (d) for each module and
for each pair of modules were calculated. P-values were
calculated as the proportion of permuted dispersion values
greater than or equal to the original d. As before, we used
mummichog to identify metabolic pathways that were
enriched within specific modules. We also used a slight
modification of DiffCoEx to detect significantly preserved
modules in both male and female fly metabolomes. To do
this, we modified the DiffCoEx algorithm to calculate a
Similarity Matrix S instead of a dissimilarity matrix.
Modules whose correlation structure changes between
conditions were defined by hierarchical clustering on a dif-
ference matrix, D, where D = |(A −A')/2|β/2, where A and
A’ are the adjacency matrixes under two conditions and β
is the soft-thresholding parameter (from WGCNA [23]),
set to β = 5 in all of our analyses. β is a positive integer
and serves to transform the correlations so that weights of
large correlation differences are given more emphasis
compared to smaller differences which are less meaning-
ful. Higher values of β increase statistical stringency by
placing lower emphasis on smaller correlation differences.
To identify modules with constant structure across treat-
ments, we calculated a similarity matrix, S = (1 −D) * |A|
* |A'|. By this definition, pairs of metabolites whose corre-
lations are similar and high (i.e., rij,18 ≈ rij,27→ 1, where rij,t
is the correlation coefficient between two metabolites i
and j at temperature t), are weighted more heavily than
pairs of metabolites whose correlations are similar but
non-significant (i.e., rij,18 ≈ rij,27→ 0). At the limit where
rij,18 = rij,27, Sij = r2.
To visualize representative modules, we used Cytoscape

[33]. Metabolites were defined as nodes, and the correl-
ation between any two metabolites was treated as a
weighted edge in Cytoscape.
For a detailed description of DiffCoEx parameters used

in this study, see Additional file 9.

Additional files

Additional file 1: List of metabolites in each of four D.
melanogaster genotypes that were significantly affected by
developmental temperature.

Additional file 2: Permutation testing to assess significance of within
and module-to-module co-expression changes associated with
developmental temperature treatment in male (top) and female
(bottom) metabolomes. Dispersion values are calculated for each module,
and also across all module pairs. This figure allows us to assign P-values for
within-module, and module-to-module changes in co-expression. Dark grey
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color represents statistically significant P-values, whereas lighter shades
represent numerically higher values for P. Dividing values given in the shaded
blocks by 1000 directly gives the P value for that comparison based on 1000
permutations. For details of the procedure, see [22].

Additional file 3: Preserved module (red) in male fly metabolome.
Architecture of a significantly preserved module in the male fly
metabolome across two conditions of developmental temperature, 18°C
(left) and 27°C (right). Edges are colored as in Figure 3. Both location and
relative order of each node in the module are the same across the two
temperature conditions.

Additional file 4: Changes in co-expression between metabolite
pairs in specific network modules in male fly metabolome. Top
panel: Within module changes in co-expression in the magenta module
across two conditions of larval temperature, 18°C (left) and 27°C (right).
Edges are colored as in Figure 3. The location and relative order of each
node in the module are the same across the two temperature conditions.
Bottom panel: Changes in correlation among a subset of annotated
metabolites from the magenta module. Mass to charge values
(mz values) are shown inside the nodes. Annotated mz’s are 96.5143
(oxalosuccinate), 137.0957 (estradiol-17-beta), 113.1067 (spermine),
447.3451 (3-dehydroteasterone), 111.0799 (histamine), 281.0539
(thymidine), and 119.0346 (D, L- malic semialdehyde).

Additional file 5: Changes in co-expression between metabolite pairs
in specific network modules in female fly metabolome. Top panel:
Within module changes in co-expression in the red module across two
conditions of larval temperature, 18°C (left) and 27°C (right). Edges are
colored as in Figure 3. Both location, and relative order of each node in the
module are the same across the two temperature conditions. Bottom panel:
Changes in correlation among a subset of annotated metabolites from the
magenta module. Mass to charge values (mz values) are shown inside the
nodes. Annotated mz’s are 423.0885 (adenosyl- homocysteine), 365.1036
(lactose/maltose/melibiose/sucrose), 527.1572 (maltotriose), 381.0771
(lactose/maltose/melibiose/sucrose), 181.0713 (glucose/galactose), 505.1738
(maltotriose), and 667.2271 (maltotetraose).

Additional file 6: Metabolic pathways (b), enriched in differentially
co-expressed modules (a) in male Drosophila. These modules were
identified by the DiffCoEx algorithm [22], as significantly altered in
response to developmental temperature exposures. The number of
metabolites in the input list that overlapped (b) with the reference list of
all metabolites after quality control (c), along with the identification of
these metabolites (d) is shown.

Additional file 7: Metabolic pathways (b), enriched in differentially
co-expressed modules (a) in female Drosophila. These modules were
identified by the DiffCoEx algorithm [22], as significantly altered in
response to developmental temperature exposures. The number of
metabolites in the input list that overlapped (b) with the reference list of
all metabolites after quality control (c), along with the id of these
metabolites (d) is shown.

Additional file 8: Mass-to-charge ratios of metabolites in the
enriched pathways detected by mummichog and status of their
identity confirmation using the METLIN database.

Additional file 9: Details of the DIFFCOEX algorithm used to
identify both differentially co-expressed and significantly preserved
modules in this study.
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