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ABSTRACT 
 
BACKGROUND 
Previous studies have suggested that practicing functional tasks bilaterally instead of unilaterally 
may improve paretic limb performance after stroke.   
OBJECTIVE 
The purposes of this study were to determine whether the bilateral movement condition alters 
paretic limb performance of a functional task in people with post-stroke hemiparesis, and to 
identify specifically which parameters of performance may be affected.   
METHODS 
In this single-session study, we examined immediate effects of the bilateral vs. unilateral 
movement condition on performance of a reach-grasp-lift-release task at preferred-speed in 16 
people with mild to moderate post-stroke hemiparesis and in 12 healthy controls.  Performance 
was quantified using motion analysis variables, including durations of the reach and grasp 
phases, reach path straightness, maximum thumb-index finger aperture, efficiency of finger 
movement, peak grip force, and timing of release.   
RESULTS 
We found no evidence of immediate improvement in paretic-limb performance in the bilateral 
condition.  In both groups, release timing occurred later when participants moved bilaterally 
instead of unilaterally, possibly representing a divided-attention effect.  Other variables did not 
differ across conditions. 
CONCLUSIONS 
Our findings suggest little immediate impact of the bilateral condition on motor performance of a 
reach-grasp-lift-release task at preferred speed, in people with mild to moderate hemiparesis. 
 
 
 
 
KEYWORDS  motor control, hemiparesis, kinematic, reach, grasp, bilateral 
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INTRODUCTION 

Advances in restorative neuroscience have revealed immense potential for use-dependent 

neural adaptation after stroke and have renewed the search for training methods that optimize 

recovery.  For people with hemiparesis, although task-specific repetitive practice is clearly a key 

stimulus to promote motor learning, the choices of what to practice and how to practice remain 

challenging and are poorly guided by evidence.  Current standards of care for post-stroke 

rehabilitation include sensorimotor training,1 but optimal methods to implement such training 

remain debatable, and the effects of altering specific characteristics of task performance are 

largely unknown.   

Most therapeutic activities that constitute traditional post-stroke rehabilitation involve the 

use of the paretic arm by itself, or the use of both arms in a complementary fashion, either 

symmetrically or, more often, asymmetrically.2  Constraint-induced movement therapy 

emphasizes unilateral task performance by the paretic limb and intentionally limits participation 

by the non-paretic limb, in order to minimize learned non-use.3, 4  In contrast, several bilateral 

training paradigms have been developed5-9, each emphasizing repetitive movement practice 

using both upper limbs simultaneously, and involving the non-paretic limb for the purpose of 

facilitating paretic-limb performance.   

One form of bilateral training involves repetitive, whole-arm practice of functional tasks 

that include reaching, grasping, moving or manipulating, and releasing objects.  Tasks are 

practiced in a simultaneous symmetrical or reciprocal manner, such that movements of the two 

upper limbs occur separately and mirror each other.  This differs from typical bilateral upper 

limb use in daily life, which often involves asymmetry and distinct, yet complementary, 

functional contributions by the two sides. 
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Interest in bilateral functional task training began more than a decade ago, based on a 

case series of twelve people with post-stroke hemiparesis.6, 10  After several sessions of 

practicing multijoint upper extremity tasks with only the paretic upper extremity, participants 

began practicing the same tasks using both upper extremities simultaneously and symmetrically.  

Raters quantified motor impairment by visually analyzing video recordings of task performance 

and rating various movement characteristics, each on a five-point scale.  The observational scale 

included assessments of “joint ranges at the point of reaching the target, straightness and 

smoothness of the trajectory, accuracy of targeting, synchrony of limb parts, quality of grasp and 

presence of extraneous movements”.6  After switching from unilateral to bilateral training, each 

participant showed improved movement quality by the end of the first session, as well as an 

increased rate of improvement over multiple training sessions.   

Since those initial findings were reported, three studies of bilateral functional task 

training have shown gains on the Fugl-Meyer Upper Extremity Test,11-13 and two have shown 

improved paretic-limb kinematics during the reaching phase of task performance.12, 13  Several 

other studies, however, have shown either no gains following bilateral functional task training,14, 

15 or no differences in outcomes across unilateral vs. bilateral training groups.16-18  Results of two 

studies suggest that bilateral training may improve proximal joint motion more than unilateral 

training does, and therefore may be more beneficial for certain individuals.11, 19  Overall, 

outcome studies of bilateral functional task training have produced mixed results.   

Within-session comparisons of unilateral versus bilateral task performance have 

identified reaching velocity as an aspect of movement quality that may be most likely to benefit 

from bilateral training.  In three studies of reaching movements (without grasping), paretic arm 

peak velocity was greater in the bilateral movement condition, in people with mild or moderate 
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post-stroke hemiparesis.20-22  Cunningham et al.23 reported that three of six people with chronic 

mild hemiparesis showed fewer discontinuous reach trajectories in bilateral movement trials 

compared to those performed unilaterally.  Messier et al.,24 however, showed no improvement in 

shoulder or elbow joint excursion during bilateral reaching, and the bilateral condition was 

instead associated with increased compensatory trunk flexion.   A more complete 

characterization of differences between bilateral and unilateral task performance is needed to 

determine whether effects are limited to the reaching phase, or if grasping performance may also 

benefit from the bilateral condition. 

The purposes of this study were to determine whether the bilateral movement condition 

itself, in the absence of training, alters paretic limb performance of a functional task in people 

with post-stroke hemiparesis.  Further, we sought to identify specifically which parameters of 

performance may be affected.  We hypothesized that upper extremity movements performed 

bilaterally would be associated with faster and more direct reaching, more efficient finger 

movement, increased separation of the thumb and index finger, faster grasp formation and 

release, and grip force closer to that of healthy controls, compared to movements performed 

unilaterally.  Using three dimensional motion analysis methods, we assessed timing, movement, 

and grip force during a reach-grasp-lift-release task that was chosen to represent movements 

commonly performed in daily life, in rehabilitation, and in outcome studies of bilateral 

functional task training.  Two grip types were included, and a group of healthy adults provided 

control data for comparison. 

 

METHODS 

Participants 
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 Sixteen people with hemiparesis due to stroke were recruited from the St. Louis 

metropolitan area via the Brain Recovery Core Database and the Cognitive Rehabilitation 

Research Group Stroke Registry at Washington University, and from local support groups for 

people with stroke.  Potential participants were included if they 1) had a diagnosis of ischemic or 

hemorrhagic stroke by a stroke neurologist, 2) had persistent hemiparesis, as evidenced by upper 

extremity Medical Research Council muscle test scores 25 that were at least one muscle grade 

lower on the paretic side compared to the non-paretic side, 3) were able to reach, grasp and lift a 

vertical cylinder (3.4 cm diameter, 420 grams) using palmar and 3-finger grip types, as necessary 

to complete the study procedures, and 4) had the ability to follow 2-step commands.  We 

excluded people who 1) had severe aphasia as indicated by a score of 2 or 3 on the Best 

Language item of the National Institutes of Health Stroke Scale (NIHSS) 26, 2) had severe 

hemispatial neglect, as indicated by a score of 2 on the Extinction and Inattention item on the 

NIHSS, 3) had musculoskeletal or other medical conditions besides stroke that limited either 

upper extremity, or 4) were unable to give informed consent. 

Twelve healthy adults also participated, primarily to provide reference data needed to 

interpret results in the hemiparetic group.  Volunteers who had no known neurological disease 

and no disability or injury affecting their upper extremity on either side were recruited from the 

Volunteer for Health Research Participant Registry at Washington University.  To evenly 

represent both genders across the age range, we recruited one male and one female within each 

decade between 30 and 89 years of age.  This study was approved by the Washington University 

Human Research Protection Office, and all participants gave their informed consent prior to 

beginning the study. 
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Clinical Assessments 

Clinical tests were used to describe the participants with post-stroke hemiparesis (Table 

1).  We assessed upper extremity function using the Action Research Arm Test (ARAT) on the 

affected side27-29 and the Activities of Daily Living and Hand Function domains of the Stroke 

Impact Scale, version 3.0.30, 31  Maximum grip strength was measured on each side using a Jamar 

grip dynamometer in its second position.32, 33  Maximum pinch strength was measured on each 

side with a Jamar hydraulic pinch gauge positioned between the thumb and the lateral side of the 

index finger’s middle phalanx.34, 35  Sensation on the palmar surface of the distal index finger 

was evaluated using Semmes-Weinstein monofilaments.36  Spasticity of the elbow flexors was 

assessed on the affected side using the Modified Ashworth Scale.37  When possible, medical 

records were reviewed to identify lesion locations. 

 

Task and Movement Conditions 

We investigated immediate effects of the bilateral movement condition on performance, 

by comparing across unilateral versus bilateral conditions within a single session.  Thus, no 

effects of training were evaluated.  Upper extremity movement and grip force were measured 

during reach-grasp-lift-release movements in bilateral and unilateral conditions using palmar and 

3-finger grip types.  In order to represent the bilateral functional task training paradigm, the task 

included all movement phases (reach, grasp, lift and release) and was performed simultaneously 

and symmetrically, at the participant’s self-selected, comfortable speed.  Palmar and 3-finger 

grip types were chosen because they have been well characterized as two discrete patterns of 

prehension with different levels of accuracy and precision, because neural control of the two grip 

types may differ, and because they represent a range of actions observed in daily life.38-41  We 
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tested the paretic upper extremity of participants with hemiparesis, and one randomly selected 

side for control participants.   

 

Apparatus 

The target object that was grasped by the tested side (Figure 1a) consisted of a custom-

fabricated vertical cylinder (3.4 cm diameter, 11.3 cm height) attached to a rectangular base 

(13.5 cm by 6 cm) that was designed to hold a Tekscan I-scan electronic interface (Tekscan, Inc. 

South Boston, MA).  The cylindrical portion of the object was covered with a Tekscan pressure 

sensor (11.2 x 11.2 cm, 1936 sensels, spatial resolution 15.5 sensels/cm2).  Combined weight of 

the object and electronics was 420 grams.  An identical object without the pressure sensor was 

grasped by the non-tested side during bilateral movement trials.   

Measurement of grip force is a novel use of pressure sensor technology.  This method 

was chosen instead of a more typical strain gauge system because it does not require that 

participants place their hand or fingers on specific locations, and instead allows for more natural 

grasping performance.  A disadvantage of the pressure sensor system is that it only measures grip 

forces (normal forces) and is unable to measure load forces (tangential or shear forces).   For use 

in this study, the advantage of capturing natural movements outweighed the disadvantage of 

limiting our force analysis to grip (i.e. normal) forces. 

 

Experimental Procedures 

Participants were seated in a chair with back support for all data collection (Figure 1).  To 

prepare for motion capture using an electromagnetic tracking system (The MotionMonitor, 

Innovative Sports Training, Chicago, IL), nine sensors were attached to the trunk and upper 
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extremity, as follows:  1) trunk: midline below the sternal notch, 2) upper arm: proximal to the 

lateral epicondyle, bisecting the upper arm mass, 3) forearm: midpoint between the radial and 

ulnar styloids on the dorsum of the forearm, 4) hand: midpoint of the third metacarpal on the 

dorsum of the hand, and 5 through 9) thumb and fingers: on the nail of each digit.  One 

additional sensor was attached to the object, at the base of the cylindrical portion. 

A table was placed with its closest edge across the participant’s mid-thighs and the height 

was adjusted to be as low as possible without contacting the thighs, in order to allow clearance of 

the table edge while reaching.  The object was placed on the table at a standardized distance from 

the participant (90% of the length of the arm from shoulder to wrist).  In the frontal plane, the 

object was aligned with the mid-clavicle.  For bilateral trials, these criteria also determined 

placement of the non-instrumented object placed on the opposite side. 

 

<<  Insert Figure 1 approximately here  >> 

 

Four trial types were collected in random order, each characterized by the unilateral or 

bilateral movement condition and by the type of grip (i.e. palmar unilateral, palmar bilateral, 3-

finger unilateral, and 3-finger bilateral).  Prior to each trial, the participant was instructed to rest 

both hands in their lap with thumb and fingers together, wait for the word ‘go’, then grasp and 

lift the object(s), hold the object(s) above the table for about 5 seconds until the examiner said 

‘done’, then put the object(s) down and return to the starting position.  Further verbal instructions 

and demonstrations were also provided regarding grip type and the bilateral or unilateral 

movement condition.  Before bilateral trials, participants were asked to perform the task with 

both arms at the same time.  In order to capture natural performance, however, no instructions 
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were provided regarding speed, or where vision and/or attention should be focused.  Throughout 

each trial, three-dimensional movements of the tested upper extremity and the target object were 

recorded at 50 Hz, and pressure on the target object was recorded at 100 Hz.  Three trials of each 

type were recorded consecutively, with approximately 10 seconds of rest between trials.   

 

Analysis 

Pressure data were converted to grams of force, using Tekscan software to multiply 

recorded pressure by the sensor’s spatial area.  After low-pass filtering of kinematic data at 6 Hz 

using a second-order Butterworth filter, sensor position data were extracted using 

MotionMonitor software (Innovative Sports Training, Chicago, IL).  Subsequent analysis was 

then completed using custom software written in MATLAB (The MathWorks, Inc., Natick, 

MA). 

Durations of movement phases were determined based on hand velocity, force on the 

object, and object position, as follows (Figure 1B).  The reach phase began when velocity of the 

hand sensor first exceeded 5 mm/s, and ended when force on the object first exceeded 5 grams.  

Pre-lift delay began at the end of the reach, and ended when the vertical position of the object 

increased by 3 mm from its initial value.  Release timing was calculated as the difference 

between the time when the object returned to within 3 mm of its initial vertical position, and the 

time when force on the object returned to within 5 grams of its baseline value.  In some cases, 

force returned to baseline prior to the object reaching a final stable position.  In these cases, the 

release timing variable was negative, indicating release of the object before it was placed 

securely on the table.  In other cases, the object reached a stable position before force returned to 

baseline, yielding a positive value for the release timing variable.  Note that finger aperture was 
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not used to indicate release because, as seen in the aperture trace at the top of Figure 1B, the 

majority of finger opening occurred after force was removed from the object. 

Other variables of interest included reach path ratio, peak aperture, aperture path ratio, 

and peak grip force.  Reach path ratio was defined as the length of the actual path of the forearm 

sensor (just proximal to wrist joint) during the reach phase, divided by the length of a straight 

line path.  A reach path ratio close to one indicates a straight, direct reach, and a value greater 

than one indicates greater curvature of the reach path.  Peak aperture was the maximum three-

dimensional distance between sensors on the thumbnail and the index fingernail during the reach 

phase.  Aperture path ratio quantified the smoothness/efficiency of thumb and index finger 

movement during the reach phase, and was calculated as follows (modified from Lang et al.42, 

43):   

( ) ( )reach of endat  aperture - aperturePeak reach of beginningat  aperture - aperturePeak 

phasereach   theduring aperturein  changes all of  valuesabsolute  theof Sum
  RatioPath  Aperture

+
=  

An aperture path ratio equal to one indicates smooth and direct separation of the thumb and 

index finger to the maximum aperture value, followed by smooth and direct closing onto the 

object.  Higher values indicate abnormal, inefficient opening and closing of the thumb and index 

fingers, typically seen when participants make multiple attempts to open their hand and then 

close it on the object.  Peak grip force was defined as the maximum force applied to the object.  

Reliability of kinematic reaching variables has been shown to be adequate in healthy individuals 

and people with post-stroke hemiparesis.44, 45  In a recent evaluation of a reach-to-grasp task 

resembling the task used in the current study, Patterson et al.46 reported excellent reliability for 

reach duration, reach path ratio, and peak aperture (r > 0.75) in a group of people with 

hemiparesis after stroke.   
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Variables were calculated separately for each trial.   Each participant’s performance in 

each movement condition was represented by the mean of three trials.  Kolmogorov-Smirnov 

tests were used to determine whether data were normally distributed.  Since all data met the 

normality assumption (p > 0.05), parametric statistics were used.  For each variable, we 

determined effects of movement condition (unilateral vs. bilateral), grip type (3-finger vs. 

palmar), and group (control vs. hemiparetic) using mixed-effects analysis of variance, where 

movement condition and grip type were within-subjects factors, and group was a between-

subjects factor.  Statistica software was used for normality testing and analysis of variance 

(Version 6.1 Statsoft Inc., Tulsa, OK).  The criterion for significance was set at p < 0.05 and the 

software accounted for unequal numbers in each group.   

Statistical power was analyzed for the unilateral vs. bilateral comparisons in the 

hemiparetic group.  Observed effect sizes were calculated using Hedges’ g, which is equal to the 

mean difference between conditions divided by the pooled unbiased standard deviation.  For 

each variable, the sample size that would have been needed to achieve statistical significance 

was estimated using G*Power3 software,47 a paired t test design, observed effect sizes, and 

assumptions that power = 0.80 and 2-tailed alpha = 0.05.  Influences of participant characteristics 

on unilateral vs. bilateral differences were evaluated graphically for each motion analysis 

variable in the hemiparetic group.  Statistical analyses of such effects were precluded by the 

small sample size. 

 

RESULTS 

Characteristics of the 16 participants with hemiparesis are provided in Table 1.  Time 

since stroke ranged from two weeks to nine years, and was less than four months in all except 
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three participants.  Severity of sensorimotor impairment and functional limitation ranged from 

mild to moderate, as shown by the strength measures and scores on the ARAT and SIS 

assessments.  Lesion locations also varied, including three cortical, seven subcortical, four that 

were both cortical and subcortical, and two unknown.   

 

<<  Insert Table 1 approximately here >> 

 

Twelve healthy adults participated, including six males and six females between 32 and 

81 years of age (mean 53.0, SD 15.8 years).  Ten were right handed and two were left handed, by 

self report.  Random selection of the side to be tested resulted in seven rights and five lefts.  The 

dominant side was tested in seven participants (six right-handed, one left-handed).  Group 

differences were not significant with respect to age (t-test, p = 0.30), gender (Mann-Whitney U, 

p = 0.77), hand dominance (Mann-Whitney U, p = 0.62), or dominant/non-dominant status of the 

tested side (Mann-Whitney U, p = 0.85). 

 

Unilateral vs. bilateral effects 

Results for each of the 7 variables are presented in Table 2.  The primary comparison of 

interest for this study (unilateral vs. bilateral performance), was tested via the main effect of 

condition and the condition by group interaction effect.  Contrary to our hypothesis, none of the 

variables showed improved motor performance in the bilateral condition, in either group.  This 

finding is illustrated graphically in Figure 2 A-G.  One variable, release timing, was significantly 

different in the unilateral vs. bilateral conditions (Figure 2C).  Participants in both groups 

released the object later, with respect to when the object contacted the table, when moving 
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bilaterally instead of unilaterally (main effect of movement condition, F(1,26) = 13.1, p < 0.05, g = 

0.74).  For another variable, reach duration, a significant condition by group interaction was 

found (F(1,26) = 5.7, p < 0.05).  Post-hoc testing, however, failed to find a difference between the 

unilateral and bilateral conditions for either group (p = 0.17 for the hemiparetic group, p = 0.57 

for the control group).  No main effects of condition or condition by group interaction effects 

were found for the other variables.   

 

<<  Insert Table 2 and Figure 2 approximately here  >> 

 

Observed effect sizes for unilateral vs. bilateral comparisons in the hemiparetic group are 

presented in Table 3.  The only large effects (g ≥ 0.5) were for release timing, which occurred 

later during bilateral compared to unilateral trials, in both grip types.  Effect size was medium 

(0.3 ≤ g ≤ 0.5) for reach path ratio in palmar grip trials, which tended to be lower in the bilateral 

condition although the mean difference did not reach significance.  The remaining effect sizes 

were small (0.1 ≤ g ≤ 0.3) or minimal (g < 0.1).  For all variables except release timing, a 

substantially larger sample would be required in order for the observed effects to reach statistical 

significance (Table 3).  Graphs of lesion location, time since stroke, and paretic limb ARAT 

score versus the unilateral/bilateral difference in each variable showed no effects of participant 

characteristics.  

 

<<  Insert Table 3 approximately here >> 

 

Effects of group and grip type 
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Significant effects of group and grip type are indicated in Table 2.  As expected, reach 

duration and reach path ratio were greater in the hemiparetic group compared to the controls, 

across unilateral/bilateral conditions and grip types (main effect of group on reach duration F(1,26) 

= 23.3, p < 0.05, g = 1.36; main effect of group on reach path ratio F(1,26) = 9.0, p < 0.05, g = 

1.00).  In the hemiparetic group only, pre-lift delay was greater for the 3-finger grip compared to 

the palmar grip, across conditions (group by grip type interaction F(1,26) = 6.8, p < 0.05, post-hoc 

p < 0.05 for 3-finger vs. palmar in hemiparetic group only, g = 0.91).  Reach duration was 

greater for the 3-finger grip compared to the palmar grip, across conditions and groups (main 

effect of grip type F(1,26) = 8.9, p < 0.05, g = 0.60).  Peak aperture and peak grip force were 

greater for the palmar grip compared to 3-finger grip, across conditions and groups (main effect 

of grip type on peak aperture F(1,26) = 56.1, p < 0.05, g = 1.38; main effect of grip type on peak 

grip force F(1,26) = 29.6, p < 0.05, g = 0.97).     

 

 

 

DISCUSSION 

 In this single-session study, we found no evidence of an immediate improvement in 

paretic-limb performance of a reach-grasp-lift-release task when participants with mild-to-

moderate hemiparesis moved bilaterally instead of unilaterally.  The only significant difference 

across the unilateral vs. bilateral conditions was for release timing, which occurred later in the 

bilateral condition.  Post-hoc power analysis showed that the observed effects for most variables 

were small and would not have reached statistical significance unless the sample size was much 

larger.  Large, rapid improvements in paretic limb motor performance, observed visually in the 
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initial case studies of bilateral functional task training,6, 10 were not confirmed in this study using 

three-dimensional motion analysis methods.   

Several possible explanations merit exploration.   First, the reach-grasp-lift-release task 

that was chosen for this study may not have adequately engaged the neural mechanisms involved 

in interlimb coupling.  For example, temporal and spatial symmetry are likely to be enhanced 

during fast, cyclical bilateral movements that require cooperation of the two limbs.48  Consistent 

with study purposes, we chose the reach-grasp-lift-release task in order to represent all phases of 

movements commonly performed in daily life and rehabilitation.  Further, we chose to have 

participants perform the task at their preferred speed and in a parallel fashion (both sides 

simultaneously but separately), in order to match the methods employed in outcome studies of 

bilateral functional task training.6, 11-14, 17  The lack of significant differences in our study suggest 

that, while the bilateral movement condition can influence reaching movements performed under 

specific contexts, it may have little impact on the functional reach-grasp-lift-release movement 

studied here. 

A second possibility is that benefits of the bilateral movement condition may be limited 

to reaching performance, with little impact distally.  In our study, reach paths tended to be 

straighter in the bilateral condition in the hemiparetic group, although the difference did not 

reach significance.  We did not see an increase in reach velocity in the bilateral condition, which 

others have shown,20-22 however that may have been due to differences in speed-related 

instructions.  In each of the previous studies, reaching movements were performed as fast as 

possible, and in our study participants moved at their natural preferred speed.  We extended the 

investigation of bilateral effects to measures of grasping performance (e.g. pre-lift delay, 

aperture path ratio, peak aperture, peak grip force), and found no benefit of the bilateral 
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condition on those variables.  Our results, combined with previous findings, suggest that the 

bilateral condition may primarily affect the reaching phase of task performance, and perhaps 

only in certain movement contexts (e.g. during fast, cyclical motions).   

A third possibility is that bilateral training effects emerge over the course of many 

repetitions within a session and thus are not detectable unless bilateral practice trials precede 

assessment.  Certain forms of experience-dependent neural adaptation (e.g. alterations in cortical 

excitability, strengthening of pre-existing latent synaptic connections) can occur on a relatively 

short time scale, but require repeated movement practice.49  Since our study was designed to 

investigate immediate effects of the bilateral condition itself, and did not explore training effects, 

we are unable to determine whether multiple repetitions of bilateral reach-grasp-lift-release 

would have improved paretic limb performance in the bilateral condition by the end of one or 

more practice sessions.  The single-session design of this study limits its implications for 

rehabilitation.  Nevertheless, the substantial single-session improvements in paretic limb 

movement quality that were observed visually in the initial case studies of bilateral training6, 10 

were not confirmed in this study using highly objective methods.  Our findings add support to 

the results of recent clinical trials, which showed equivalent paretic-limb improvements 

regardless of whether functional task training was performed bilaterally or unilaterally. 16, 17 

Across both groups and both grip types, timing of the release relative to object contact 

with the table occurred later when the task was performed bilaterally.  This may represent an 

effect of divided attention, as participants may have alternated their gaze between the two objects 

as both were returned to the table and released at the same time.  Similar unilateral/bilateral 

differences in the two groups suggest a normal contextual effect on movement, rather than a 

stroke-related impairment.  Nevertheless, slow, difficult grip release is a common problem 
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experienced by many people with stroke, and this finding suggests that the bilateral movement 

condition may further impede performance. 

 Expected effects of grip type were also observed in this study.  In both groups, 

movements using palmar grip were characterized by shorter reach durations, increased peak 

apertures, and increased peak grip force, as compared to movements using 3-finger grip.  These 

differences are consistent with previous reports and with the fundamental differences between 

grip types used for power vs. precision (ie. palmar vs. 3-finger).38, 40, 41, 50-52  The only grip effect 

that differed across groups was for pre-lift delay.  In the hemiparetic group only, pre-lift delay 

was longer during 3-finger grips compared to palmar grips.  This may reflect difficulty with 

dexterity and finger individuation, which are common impairments post-stroke. 

 

CONCLUSION 

In this single-session study, we found no evidence that the bilateral movement condition 

improves paretic limb performance of a reach-grasp-lift-release task at preferred speed.  Thus, 

we cannot infer which characteristics of motor performance may be most likely to change after 

bilateral training of similar tasks.  Combined with previous reports showing improved kinematics 

when fast reaching movements are performed bilaterally instead of unilaterally, our findings 

suggest context-specific changes in the bilateral movement condition.  Movements that engage 

the neural mechanisms involved in bilateral coupling (i.e. fast, cyclical proximal limb motions) 

may be most likely to benefit, while slower, discrete tasks and distal motions may be unaffected.  

These observations further suggest that bilateral training paradigms may differ in important ways 

and that evidence related to each should be weighed separately.   
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Figure Captions 

 

Fig. 1  Assessment of motor performance.  A) Illustration of the experimental set-up and a 

participant performing the reach-grasp-lift-release task with a palmar grip in unilateral (upper 

row), and bilateral (lower row) conditions.  B) Example data from one trial.  Vertical dashed 

lines demonstrate division of the task into movement phases, as described in the ‘Analysis’ 

section.   

 

Fig. 2  Comparisons of reach-grasp-lift-release task performance when moving unilaterally 

versus bilaterally. Values are means ± 1 standard error.  The only variable that differed across the 

unilateral versus bilateral conditions was release timing (panel C).  Participants in both groups 

released the object later when moving bilaterally instead of unilaterally.  



Tables 
 
Table 1  Characteristics of participants with hemiparesis 
 
Age (years)   58 ± 11  (38 – 88) 
Gender   9 Male, 7 Female 
Tested side   10 Dominant 

  6 Non-dominant 
  8 Right 
  8 Left 

Type of stroke   14 Ischemic  
    2 Hemorrhagic 

Years since stroke   1.2 ± 2.7  (0.04 – 9.2) 
Grip strength (paretic side in kg)   21.8 ± 8.9  (10.0 – 36.0) 
Grip strength 
(paretic side as % of non-paretic side) 

  67 ± 27%  (34 – 113) 

Pinch strength (paretic side in kg)   5.2 ± 2.3  (0 – 8) 
Pinch strength on paretic side  
(paretic side as % of non-paretic side) 

  65 ± 27%  (0 – 114) 

Sensation a 
 

  2.83  n = 7 
  3.61  n = 5 
  4.31  n = 2 
  6.65  n = 2 

Spasticity b    0  n = 8 
  1  n = 7 
  2  n = 1 

Action Research Arm Test on paretic side c   41 ± 9  (24 – 53) 
Stroke Impact Scale d   
Activities in a Typical Day Subscale 

  62 ± 15  (43 – 88) 

Stroke Impact Scale d    
Hand Function Subscale 

  49 ± 22  (0 – 85) 

Mean ± 1 standard deviation  (range) 
a  Size of the smallest Semmes Weinstein monofilament sensed in 3 of 5 trials on the anterior distal index finger on 

the paretic side 
b  Modified Ashworth Scale score for the elbow flexors on the paretic side 
c  Range of possible scores is 0 to 57, 57 = normal  
d  Range of  possible scores is  0 to 100, 100 = normal 
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Table 2  Effects of unilateral vs. bilateral movement condition, group, and grip type  

Mean ± 1 standard error   
a Main effect of unilateral vs. bilateral condition, p < 0.05 
b Condition x group interaction effect, p < 0.05 
c Main effect of group, p < 0.05 
d Main effect of grip, p < 0.05 
e Grip x group interaction effect, p < 0.05 
 
 
 
 
 
Table 3  Post-hoc power analysis for comparisons of unilateral vs. bilateral conditions in 
participants with hemiparesis 
 

 Palmar 3-Finger 
 Observed 

Effect Size a 
Estimated 

N b 
Observed 

Effect Size a 
Estimated 

N b 
Reach Duration 0.05 >1000 0.28 101 
Pre-Lift Delay 0.12 569 0.15 348 
Release timing 0.80 15 0.88 13 
Reach Path Ratio 0.33 73 0.13 456 
Peak Aperture 0.12 521 0.00 na c 
Aperture Path Ratio 0.21 183 0.06 >1000 
Peak Grip Force 0.12 569 0.02 >1000 

a  Hedges’ g 
b  Estimated sample size required for observed effect to reach statistical significance at p = 0.05 
c  not applicable, since effect size was 0 

 
Group Unilateral 

Palmar 
Bilateral 
Palmar 

Unilateral 
3-Finger 

Bilateral 
3-Finger 

Reach Duration (msec)  b c d Hemiparesis 1291 ± 80 1272 ± 79 1570 ± 106 1435 ± 89 
Control 787 ± 92 774 ± 91 785 ± 122 906 ± 103 

Pre-Lift Delay (msec)  e  Hemiparesis 688 ± 69 657 ± 78 853 ± 66 908 ± 86 
Control 582 ± 79 627 ± 90 547 ± 76 634 ± 99 

Release timing (msec) a Hemiparesis 81 ± 87 349 ± 83 32 ± 77 312 ± 78 
Control -73 ± 103 107 ± 98 17 ± 91 65 ± 92 

Reach Path Ratio c Hemiparesis 1.38 ± 0.04 1.33 ± 0.04 1.37 ± 0.03 1.35 ± 0.04 
Control 1.22 ± 0.04 1.22 ± 0.05 1.17 ± 0.04 1.23 ± 0.05 

Peak Aperture (mm) d Hemiparesis 122 ± 5 119 ± 5 103 ± 5 103 ± 5 
Control 119 ± 6 120 ± 6 97 ± 6 94 ± 6 

Aperture Path Ratio  Hemiparesis 1.22 ± 0.06 1.17 ± 0.04 1.39 ± 0.06 1.42 ± 0.13 
Control 1.12 ± 0.07 1.10 ± 0.05 1.12 ± 0.08 1.21 ± 0.16 

Peak Grip Force (grams) d Hemiparesis 3625 ± 549 3400 ± 707 1824 ± 234 1798 ± 237 
Control 4007 ± 634 4175 ± 816 1140 ± 270 1036 ± 274 
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Figures 
  

 
 
Fig. 1  Assessment of motor performance.  a) Illustration of the experimental set-up and a 
participant performing the reach-grasp-lift-release task with a palmar grip in unilateral (upper 
row), and bilateral (lower row) conditions.  b) Example data from one trial.  Vertical dashed lines 
demonstrate division of the task into movement phases, as described in the ‘Analysis’ section.  
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Fig. 2  Comparisons of reach-grasp-lift-release task performance when moving unilaterally 
versus bilaterally. Values are means ± 1 standard error.  The only variable that differed across the 
unilateral versus bilateral conditions was release timing (panel c).  Participants in both groups 
released the object later when moving bilaterally instead of unilaterally.  Refer to results section 
for effects of group and grip type. 
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