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Behavioral/Cognitive

Spatial and Temporal Characteristics of Error-Related
Activity in the Human Brain

Maital Neta,1 X Francis M. Miezin,2,3,7 Steven M. Nelson,9 Joseph W. Dubis,2 Nico U.F. Dosenbach,2

Bradley L. Schlaggar,2,3,4,5 and Steven E. Petersen2,3,5,6,7,8

1Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, Departments of 2Neurology, 3Radiology, 4Pediatrics, 5Anatomy and
Neurobiology, and 6Neurosurgery, Washington University School of Medicine, Departments of 7Psychology and 8Biomedical Engineering, Washington
University, St Louis, Missouri 63110, and 9VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, Texas 76711

A number of studies have focused on the role of specific brain regions, such as the dorsal anterior cingulate cortex during trials on which
participants make errors, whereas others have implicated a host of more widely distributed regions in the human brain. Previous work
has proposed that there are multiple cognitive control networks, raising the question of whether error-related activity can be found in
each of these networks. Thus, to examine error-related activity broadly, we conducted a meta-analysis consisting of 12 tasks that included
both error and correct trials. These tasks varied by stimulus input (visual, auditory), response output (button press, speech), stimulus
category (words, pictures), and task type (e.g., recognition memory, mental rotation). We identified 41 brain regions that showed a
differential fMRI BOLD response to error and correct trials across a majority of tasks. These regions displayed three unique response
profiles: (1) fast, (2) prolonged, and (3) a delayed response to errors, as well as a more canonical response to correct trials. These regions
were found mostly in several control networks, each network predominantly displaying one response profile. The one exception to this
“one network, one response profile” observation is the frontoparietal network, which showed prolonged response profiles (all in the right
hemisphere), and fast profiles (all but one in the left hemisphere). We suggest that, in the place of a single localized error mechanism,
these findings point to a large-scale set of error-related regions across multiple systems that likely subserve different functions.

Key words: error; functional networks; meta-analysis; resting state; task control

Introduction
A pervasive component of human cognition is the potential for
errors of both omission and commission. Even when performing
simple tasks, a lapse in attention or accidental touch of a button
can result in an incorrect response. In the absence of explicit
feedback, errors are associated with a variety of processes, includ-
ing emotional reactions (Kiehl et al., 2000), and adjustments that
may improve performance, including heightened attention (Pos-
ner and Petersen, 1990; Orr and Weissman, 2009) and slower
subsequent responses (i.e., posterror slowing; Rabbitt, 1966). As
such, a deeper understanding of the neural processes that under-

lie error-related responses would contribute to findings in both
cognitive psychology and cognitive neuroscience.

Although several regions have been found to show error-
related activity (Hester et al., 2004; Tunik et al., 2005; Nelson et
al., 2010; Ullsperger et al., 2010; e.g., anterior insula, thalamus,
intraparietal sulcus, and inferior parietal lobule), much of the
work on error responses has focused on the dorsal anterior cin-
gulate (dACC), which often is shown to extend dorsally into the
medial superior frontal cortex. In particular, the dACC is thought
to be the source of the error-related negativity, an error-related
potential that is found across task contexts (Dehaene et al., 1994;
Holroyd et al., 1998; for review, see Holroyd and Coles, 2002). It
has been proposed that activity in dACC may reflect the need for
an adjustment in task performance (Ridderinkhof et al., 2004),
either via altered stimulus processing (Danielmeier et al., 2011),
and/or posterror slowing (King et al., 2010; Danielmeier and Ull-
sperger, 2011).

Reports of error-related blood oxygen level-dependent
(BOLD) activity, however, have emerged that implicate several
additional regions of interest. For example, numerous studies
have demonstrated that frontal and parietal regions (e.g., dorso-
lateral prefrontal cortex, precuneus), as well as selected subcorti-
cal and cerebellar regions (Dosenbach et al., 2007; Carp et al.,
2010; Wessel et al., 2012) show greater activity during errors than
correct trials across many different tasks. Relatedly, it has been
suggested that there are at least two cortical mechanisms (frontal
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and parieto-occipital) for errors, that may be modulated by task
demands (van Driel et al., 2012).

In the broader context of task control, our laboratory has
suggested a dual-network hypothesis, whereby two distinct con-
trol networks (i.e., frontoparietal and cingulo-opercular) inde-
pendently, and in parallel, receive performance feedback signals
(Dosenbach et al., 2007). Consistent with this model, we expect to
find error-related signals in both of these networks, and perhaps
other control-related networks (Petersen and Posner, 2012). Fur-
ther, we suspect that there will be a division of labor in processing
errors, where different regions may play different roles, tempo-
rally and functionally.

The goal of the present work was to define and characterize
neural responses to errors. First, we used a meta-analytic ap-
proach to identify regions throughout the brain that show differ-
ential BOLD activity between error and correct responses,
spanning task contexts. Second, we examined the time courses
for the error-related (and correct) responses in these regions to
determine their response profile on a trialwise basis. Finally, we
demonstrated that resting-state functional connectivity (RSFC)
informs these task-based findings, confirming distinction by
both functional network affiliation and time course profile.

Materials and Methods
Task conditions included in the cross-studies analysis
Data from a total of nine different mixed block/event-related and three
additional event-related experiments, conducted on 228 human subjects
(115 male) at Washington University were included in this analysis (Ta-
ble 1). All of the subjects were healthy adults between 18 and 35 years of

age. Written informed consent was obtained from each participant be-
fore the session, and all were compensated for their participation through
monetary payment. All procedures were approved by the Washington
University Committee for the Protection of Human Subjects. The only
criteria used for selecting tasks to include in the meta-analysis was that
they resulted in enough error trials to allow us to model responses to
error (omission and commission) and correct trials separately. Impor-
tantly, we tried to ensure that a broad set of task demands were repre-
sented by including tasks containing images, words, and word pairs. To
ensure some degree of variability in output-specific responses, we used
two tasks in which subjects indicated their responses by speaking aloud
instead of pressing a button. Similarly, for input-specific responses, two
of the tasks used only auditory stimuli, and an additional task used a
combination of auditory and visual stimuli. Subjects were also asked to
perform a variety of intermediate operations, such as different semantic
or phonological classifications, visual classifications, memory tasks,
naming, visual search, and reading. No error feedback was provided to
the subjects in any of these studies. Note: task no. 10 was an eCtva task,
which is an executive control of Bundensen’s theory of visual attention,
which deals with the selection between tasks in dual-task situations (Lo-
gan and Gordon, 2001).

Image acquisitions
All images were acquired in adherence to the same standard protocol. For
the first set of tasks (i.e., Living/Nonliving no. 1; Recognition Memory
no. 2; Semantic Judgment no. 3; Physical Judgment no. 4; Source Mem-
ory no. 9; eCtva no. 10; Auditory Abstract/Concrete no. 11; and Word
Generation no. 12), images were obtained with a Siemens MAGNETOM
Vision 1.5 tesla scanner. A T1-weighted sagittal MPRAGE structural im-
age was obtained (TE � 4 ms; MR frame � 9.7 ms; TI � 300 ms; flip
angle � 12°; 128 slices with 1.25 � 1 � 1 mm voxels; Mugler and Brooke-

Table 1. Twelve tasks used in the meta-analysis

Task
condition

1
Living/
nonliving

2
Recognition
memory

3*
Semantic
judgment

4*
Physical
judgment

5*
Abstract/
concrete

6*
Rhyme/
no rhyme

7*
Noun/
verb

8*
Mental
rotation

9
Source
memory

10
eCtva

11
Auditory:
abstract/
concrete

12
Word
Generation

Original
publication

Church, et al.
(2009)

N/A N/A N/A Neta, et al.
(2014)

Neta, et al.
(2014)

Dubis, et al.
(2014)

Dubis, et al.
(2014)

Donaldson,
et al.
(2010)

N/A N/A N/A

Stimuli Images Words Nouns Nouns Nouns Words Nouns/verbs Tetris-like
shapes

Words Words Nouns Nouns

Input
modality

Visual Visual Visual Visual Auditory Visual Visual Visual Visual Auditory/
visual

Auditory Visual

Output
modality

Button Button Button Button Button Button Button Button Button Button/
speech

Button Speech

No. of
subjects

24 (12 male) 20 (10 male) 19 (9 male) 14 (5 male) 34 (18 male) 34 (18 male) 30 (16 male) 30 (16 male) 26 (14 male) 30 (14 male) 24 (12 male) 21 (10 male)

TR (s) 2.5 2.36 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
No. of trials 152 480 200 200 250 250 180 180 300 400 192 125
Trial event

timing
(%)

37, 35, 28,
0, 0

51, 17, 16,
14, 2

58, 27, 11,
4, 0

58, 27, 11,
4, 0

30, 41, 25,
3, 0

30, 41, 25,
3, 0

35, 32, 33,
0, 0

35, 32, 33,
0, 0

75, 18, 5,
2, 0

31, 34, 32,
1, 1

35, 29, 35,
0, 0

0, 34, 33,
33, 0

Stimulus
ITI (s)
mean,
(range)

3.5 (1.2– 6.2) 3.0 (0.9 –7.9) 3.5 (2.0 –9.5) 3.5 (2.0 –9.5) 4.0 (1.8 – 6.8) 2.7 (0.5–5.5) 4.5 (2.0 –7.0) 4.5 (2.0 –7.0) 2.4 (1.7– 6.7) 4.2 (1.8 – 6.8) 4.3 (1.8 – 6.8) 7.2 (4.7–9.7)

Accuracy
rate

98 85 93 99 89 90 94 75 85 99 92 88

Stimulus
duration
(ms)

1300 1500 500 500 Varied 2000 500 500 750 Varied/700 Varied 300

Scanner 1.5T 1.5T 1.5T 1.5T 3T 3T 3T 3T 1.5T 1.5T 1.5T 1.5T
Design type Mixed block/

event-
related

Event-
related

Mixed block/
event-
related

Mixed block/
event-
related

Mixed block/
event-
related

Mixed block/
event-
related

Mixed block/
event-
related

Mixed block/
event-
related

Event-
related

Mixed block/
event-
related

Mixed block/
event-
related

Event-
related

*These tasks represent pairs of studies that were run on the same set of participants: 3 and 4, 5 and 6, 7 and 8.
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man, 1990). Functional imaging was performed using a BOLD contrast-
sensitive asymmetric spin-echo echoplanar sequence (T2* evolution
time � 50 ms; flip angle � 90°, in-plane resolution 3.75 � 3.75 mm).
Whole-brain EPI acquisitions (MR frames) of 16 contiguous, 8-mm-
thick axial slices were obtained parallel to the anterior–posterior com-
missure plane.

For the remaining tasks, (i.e., Abstract/Concrete no. 5; Rhyme/No
Rhyme no. 6; Noun/Verb no. 7, Mental Rotation no. 8) data were ac-
quired on a Siemens 3T TIM Trio scanner with a 12-channel Siemens
Matrix head coil. A T1-weighted MPRAGE structural image was ob-
tained (slice time echo � 3.08 ms, TR � 2.4 s, TI � 1000 ms, flip angle �
8°, 176 slices, 1 � 1 � 1 mm voxels). All functional runs were acquired
parallel to the anterior–posterior commissure plane using a BOLD
contrast-sensitive asymmetric spin-echo echoplanar sequence (TE � 27
ms; volume TR � 2.5 s, flip angle � 90°, in-plane resolution � 4 � 4
mm). Whole-brain coverage was obtained with 32 contiguous inter-
leaved 4 mm axial slices. An auto-align pulse sequence protocol provided
in the Siemens software was used to align the acquisition slices to the
anterior and posterior commissure plane and centered on the brain. A

T2-weighted turbo spin echo structural image
(TE � 84 ms, TR � 6.8 s, 32 slices with 1 � 1 �
4 mm voxels) was also obtained in the same
anatomical plane as the BOLD images to im-
prove alignment to the atlas.

For both sets of tasks, each subject was fitted
with a thermoplastic mask fastened to the head
coil using custom-made clamps to help stabi-
lize head position. Additionally, the first four
frames of the BOLD time series were skipped to
assure steady-state magnetization.

Imaging analysis
Preprocessing. The same preprocessing stream
was used for all the studies included in the anal-
ysis. Initial data processing to remove noise
and artifacts was performed using a series of
automated steps, including (1) temporal re-
alignment using sinc interpolation of all slices
to the temporal midpoint of the first slice, ac-
counting for differences in the acquisition time
of each individual slice, (2) correction for
movement within and across BOLD runs using
a rigid-body rotation and translation algo-
rithm (Snyder, 1996), and (3) whole brain in-
tensity normalization for each functional run
by multiplying the intensity value of all of the
voxels by a single factor to achieve a modal
value of 1000 across all of the image voxels to
allow comparisons across subjects (Ojemann
et al., 1997). Individual subject data were not
smoothed; smoothing was performed only on
group data. Functional data were then resa-
mpled into 3 mm isotropic voxels and trans-
formed into stereotaxic atlas space (Talairach
and Tournoux, 1988). Atlas registration in-
volved aligning each subject’s T1-weighted im-
age to a custom atlas-transformed (Lancaster
et al., 1995) target T1-weighted template using
a series of affine transforms (Michelon et al.,
2003; Fox et al., 2005).

Analysis using the GLM: unassumed shape.
Time course modeling was performed using
in-house software written in IDL (Research
Systems). A general linear model (GLM) was
used to model the BOLD response in each sub-
ject for each of the events in each of the tasks.
Included in the model were error trials (com-
bining omission and commission errors) and
correct trials (combining all conditions within
an experiment). We also included in the model

baseline and linear trend activity across each BOLD run. Additionally, for
the studies with a mixed-block/event-related design (Table 1), we mod-
eled the onset and offset of each block of trials, as well as the block as a
constant change (i.e., boxcar) in MR signal. For the initial unassumed
shape set of analyses, the shape of the BOLD response for each of the
transient signals (error, correct, onset, and offset) was not included in the
GLM but rather estimated from 10 time points included in the design
matrix for the GLM (Miezin et al., 2000). These 10 time points represent
the magnitude of the error and correct response waveforms at 10 succes-
sive frames (TRs). The first time point corresponds to the time at which
the stimulus is presented and all are obtained from the GLM estimates.
There is one time point per TR so for an experiment where TR � 2.5 s, the
waveforms are sampled for a total period of 25 s.

An accuracy � time repeated-measures ANOVA of fMRI BOLD re-
sponses was performed for each task. This analysis yielded a statistical
map highlighting brain regions in which the time courses for error trials
were significantly different from the time courses for correct trials, over
10 time points. In other words, we identified regions that showed differ-

Figure 1. A, A consensus map of regions that showed differential activity between error and correct trials, across 12 tasks. This
map is represented on the surface, and below that, on several slices of the volume. B, The consensus image was used to define ROIs
that showed differential activity to errors and correct trials in at least seven tasks (41 ROIs), shown on several slices of the volume.
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ential activity for error versus correct trials, over time, and not necessarily
focusing on those that showed error � correct activity. The resultant f
map was transformed to a Z-score map, thresholded at z � 2.5, and then
binarized such that all values above z � 2.5 were given a value of 1. This
somewhat low threshold of z � 2.5 was chosen to allow each task to
contribute regions to the consensus map; at a higher threshold, some
tasks showed almost no error-related activity. The binarized images for
each task were then combined to form a consensus image that showed the
number of tasks that had differential activity to errors (including both
omissions and commissions) than correct trials (Fig. 1A). Brain surface
visualizations were created using Caret software and the PALS surface
atlas (Van Essen et al., 2001; Van Essen, 2005).

ROI definition. The consensus image was used to define regions-of-
interest (ROIs). In other words, because we aimed to identify error-
related activity spanning multiple task contexts, we focused on regions
that showed differential activity between error and correct trials in the
majority of our tasks (i.e., more than half, or at least 7 tasks). Functional
ROI volumes were defined by growing spheres (10 mm diameter) around
peak voxels using algorithms developed by Abraham Snyder (Wheeler et
al., 2006). This procedure resulted in 41 ROIs (Fig. 1B). Table 2 shows a
list of the coordinates of each of these ROIs. Time courses were extracted
separately for error and correct trials in each ROI in each task, and then
averaged across all of the tasks.

Hierarchical cluster analysis. To identify regions with distinct response
profiles (i.e., distinct time courses of error-related activity), we used a
hierarchical clustering analysis (Cordes et al., 2002; Salvador et al., 2005;
Dosenbach et al., 2007) to classify the time course profiles in the 41 ROIs.
Two time courses, each consisting of 10 time points, were extracted from
each ROI (one time course for errors, and a second for correct trials) for
each task, and then averaged across all the tasks. The two time courses
were concatenated, resulting in a 1 � 20 vector of time points for each
ROI, the first 10 points representing responses in correct trials, the sec-
ond 10 points representing responses in error trials. A 41 � 20 matrix
containing each vector from the 41 predefined ROIs was then formed. In
other words, the clustering analysis was conducted on the time course of
activity for both error and correct trials.

From these values, a dendrogram (cluster tree) depicting region-by-
region relationships was constructed. The method used to build the den-
drogram was the commonly chosen unweighted paired group method
with arithmetic mean (UPGMA; Handl et al., 2005), which is included in
the Statistics and Bioinformatics Toolboxes available in MATLAB 7.2
(MathWorks). The UPGMA algorithm defines the distance between two
clusters as the mean distance of all possible pairs of data points between
the two clusters, and is thought to be the most unbiased of the major
choices. To objectively cut the dendrogram into distinct clusters, we used
an algorithm to report modularity for a structure that contains anywhere

Table 2. The list of regions that showed differential activity between errors and correct trials on at least seven of the tasks, organized by response profile and functional
network membership

Coordinates

Response profile Network assignmentROI x y z

R thalamus 9 �15 9 Fast Thalamus
R thalamus 10 �3 15 Fast Thalamus
L thalamus �9 �16 9 Fast Thalamus
R lingual 13 �68 11 Fast Visual
L calcarine �5 �78 7 Fast Visual
L anterior lingual �17 �60 �1 Fast Visual
L anterior insula/frontal operculum �31 15 12 Fast Cingulo-opercular
L anterior insula/frontal operculum (lateral) �39 13 5 Fast Cingulo-opercular
R anterior insula/frontal operculum 34 17 8 Fast Cingulo-opercular
R anterior insula/frontal operculum (lateral) 45 17 13 Fast Cingulo-opercular
Medial superior frontal �2 6 51 Fast Cingulo-opercular
Medial superior frontal (ventral) �1 17 44 Fast Frontoparietal/Cingulo-opercular
L anterior middle frontal �42 25 24 Fast Frontoparietal
R anterior middle frontal 42 17 30 Fast Frontoparietal
L middle frontal �47 6 34 Fast Frontoparietal
L Precentral �38 �2 37 Fast Frontoparietal
L inferior parietal lobule �42 �45 41 Fast Frontoparietal
L intraparietal sulcus �33 �56 40 Fast Frontoparietal
L inferior frontal �40 18 34 Fast Frontoparietal
L anterior prefrontal (ventral) �29 46 22 Prolonged Salience
Dorsal anterior cingulate 1 26 35 Prolonged Salience/Frontoparietal
R anterior prefrontal 24 49 28 Prolonged Salience
L anterior prefrontal �25 42 29 Prolonged Salience
R supramarginal 47 �48 35 Prolonged Frontoparietal
R posterior middle frontal 36 3 42 Prolonged Frontoparietal
R dorsolateral prefrontal 37 12 38 Prolonged Frontoparietal
R anterior middle frontal 30 49 18 Prolonged Parietal
R lateral parietal 38 �56 42 Prolonged Parietal
R inferior frontal 42 31 3 Prolonged Ventral attention
L cerebellum �27 �66 �31 Prolonged Cerebellum
L cerebellum �36 �62 �24 Prolonged Cerebellum
L cerebellum �37 �54 �37 Prolonged Cerebellum
R cerebellum 29 �60 �32 Prolonged Cerebellum
R cerebellum 25 �73 �32 Prolonged Cerebellum
R cerebellum 15 �69 �28 Prolonged Cerebellum
R posterior putamen 27 �14 8 Delayed Subcortical
R putamen 25 �5 1 Delayed Subcortical
L posterior putamen �27 �18 8 Delayed Subcortical
L putamen �28 �5 2 Delayed Subcortical
R inferior frontal 38 44 9 NA NA
Posterior dorsal frontal 0 �28 58 NA NA
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from 1 to 10 total clusters (Newman, 2006),
and we chose the structure that had the highest
Q coefficient (1.102), which included five clus-
ters. Two of these clusters contained only one
region each, but 39 of the 41 ROIs were split
into three clusters. To corroborate this distinc-
tion based on time courses, we also ran an ac-
curacy (error, correct) � time (10 frames)
ANOVA where the three clusters served as a
between region factor.

Analysis using the GLM: assumed shape. To
contextualize our findings with those that
might be derived using other methods, a sec-
ond GLM analysis was performed in which the
shape of the BOLD response was assumed to be
a double gamma waveform. As pointed out in
Cassidy and Solo (2012), this waveform is fre-
quently used in FSL and SPM to model BOLD
responses and consists of subtracting two
gamma functions from each other to generate a
resulting function with an undershoot. The
parameter values used in our analysis are iden-
tical to those specified in that paper. Addition-
ally, we included in our GLM design matrix a
second term equal to the derivative of the dou-
ble gamma waveform. This term will account
for some of the time delay in the BOLD re-
sponse relative to the assumed response. For
both waveforms, the amplitude of the wave-
form is estimated but only the magnitude of
the double-gamma waveform is used for the
subsequent statistical tests. These same param-
eters were used for all tasks.

A repeated-measures statistical analysis of
the estimated magnitude of the response for
the correct trials versus the error trials was per-
formed. All of the subsequent statistical proce-
dures were identical to the procedures used for
the unassumed shape GLM analysis.

Network analysis. We visualized the map of
error-related activity within the borders of the
predefined functional networks (Power et al.,
2011) to determine whether the activity is con-
strained to a single network or whether it
crosses network boundaries. Then, we in-
cluded the ROIs in a network analysis to deter-
mine whether the clustering based on response
profiles was reflected in functional correlations
at rest (e.g., are regions of a particular profile
more strongly correlated than those that cross
profiles). It is worth noting here that resting-
state functional connectivity is correlated with
known structural (Greicius et al., 2009), and
functional connectivity (Biswal et al., 1995;
Shmuel and Leopold, 2008). In this analysis, we
included only those ROIs that were placed into
one of the three large clusters in the dendro-
gram (i.e., 39 of the 41 ROIs). Edges, or the
connections between nodes, are defined based
on RSFC from a separate set of 120 normal
adults (Power et al., 2011 for information on
data acquisition). This RSFC data underwent
standard processing, including a “scrubbing”
procedure to minimize motion-related effects
(Power et al., 2012, 2013). To visualize the net-
work structure, we used a standard technique
called spring-embedding. Graphs were created
by using the Kamada-Kawai spring-embedding al-
gorithm implemented in the Social Network

Figure 2. For each region (sample here in dACC), we averaged separately the time course of activity for error and correct trials
across the 12 tasks. A, The time courses for each task. SE bars reflect variance across subjects within a task. B, The time course for the
average across all tasks. SE bars reflect variance across tasks.
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Figure 3. A, The dendrogram resulting from a hierarchical cluster analysis of the time courses averaged across all the tasks from 41 ROIs. The 39 regions represented in color were grouped into
four distinct clusters represented in different colors, each with a unique response profile. The two ROIs at the bottom did not fit well into any of the clusters, so they were removed from all further
analyses. B–E, Time courses are averaged across the regions in each cluster and shown in two graphs, one that shows both error and correct time courses, and one that shows the difference (error
minus correct). SE bars reflect variance across regions. Note: All SE bars have been plotted, but many of them are so small that they do not show up on this scale. B, The top 19 ROIs showed a fast
response profile, (C) the next 16 ROIs showed a prolonged response profile, and (D) the last four ROIs showed a response on correct trials that was followed by a delayed response for error trials. E,
The region at the bottom (black) showed a negative profile. Although this region did not cluster with any of the other response profiles, we show its time course here as a comparison.
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Image Animator (SoNIA) software package (Bender-deMoll and McFar-
land, 2006). Specifically, nodes were given a fixed-repulsive force and
placed randomly in a plane, and springs with force constants related to
the pairwise correlation coefficients were placed between all nodes. This
spring system was allowed to iteratively reposition nodes to reduce the
energy of the spring system, resulting in a final low-energy state, where
groups of nodes with high correlations are positioned near one another,
and those with weak or no connections are placed more distantly.

Results
A large number of regions show error-related activity across a
wide range of tasks
Based on a consensus image of accuracy � time effects across all
12 tasks, we identified brain regions in which the activity for error
trials was significantly different from the activity for correct trials
(Fig. 1A). Those regions that showed differential activity between
errors and correct trials (however, not necessarily showing er-
ror � correct activity) on at least seven of the 12 tasks were
isolated as ROIs, yielding 41 ROIs distributed across cortical,
subcortical, and cerebellar regions (Fig. 1B). Of the 41 ROIs, 37
showed greater activity for error than correct trials. Importantly,
despite the previous focus on the dorsal anterior cingulate, ante-
rior insula, inferior parietal lobule, and intraparietal sulcus in
processing errors, these 41 ROIs were not isolated to these regions
of cortex; rather, they were distributed across frontal, parietal,
and occipital cortex, as well as subcortical and cerebellar regions
(Table 2 shows a list of coordinates).

There are three distinct error response profiles
For each region, we averaged the respective time courses of activ-
ity for error and correct trials across the 12 tasks (Fig. 2 shows a
sample in the dACC region; A shows the time courses for each
individual task and B shows the average across tasks). In a hier-
archical cluster analysis of this averaged activity, 39 of 41 ROIs
were grouped into three distinct clusters (Fig. 3A), each with a
unique response profile. There were two ROIs that did not fit well
into any of the clusters (one in paracentral lobule that showed a
deactivation (Fig. 3E), and the other showed a profile that did not
resemble a HRF), so they were removed from all further analyses.

To distinguish the response profiles corresponding to each of the
three clusters, we averaged the concatenated time courses (i.e., 20
time points, 10 per time course for error and correct responses)
across the regions in each cluster. The first cluster, shown in purple,
comprised 19 ROIs. The average time course across the 19 ROIs
showed a “fast” response profile to errors, where the time course
showed a fast return to (near) baseline within three frames of reach-
ing its peak (i.e., fast regions; Fig. 3B). The next cluster, shown in
green, included 16 ROIs that showed a prolonged response profile
for errors, meaning there was a prolonged return to baseline, over
the course of twice as many frames as the fast profile (i.e., prolonged
regions; Fig. 3C). The last cluster, shown in red, comprised four ROIs
that showed a response to error trials with a delayed onset, which
showed a much earlier significant response on correct trials (i.e.,
delayed regions; Fig. 3D). The location of each of the 39 ROIs, as well
as the one ROI that showed a negative time course, is represented on
the surface of the brain in Figure 4. Finally, we corroborate this
response profile distinction by showing that there was a significant
accuracy � time � profile interaction (F(9,29) � 9.89, p � 0.001),
such that the profiles showed significantly different error-related re-
sponses beginning at time point 3 (i.e., fast is significantly different
from the other two), and all of the profiles were significantly different
from each other starting at time point 4, with the prolonged profile
continuing to show a significantly different response through time
point 9.

Due to the variability in accuracy across the 12 tasks, one might
think that only tasks with a greater error frequency show these ef-
fects. To address this, we conducted a median split analysis where we
separated the 12 tasks into two groups: those with the highest accu-
racy (tasks 1, 3, 4, 7, 10, and 11) and those with the lowest accuracy
(tasks 2, 5, 6, 8, 9, and 12), and compared the time courses in each
group. We ran an accuracy (error, correct) � time (10 frames) �
profile (fast, prolonged, delayed) � task group (high accuracy, low
accuracy) ANOVA. There was no significant effect of task group
(F(1,72) � 0.41, p � 0.5), and no significant accuracy � profile � task
group interaction (F(2,72) � 2.80, p � 0.05). However, because this
interaction was near trend, we examined post hocs and found an
effect for correct trials in fast regions (p � 0.001), where activity was
greater for low than high accuracy tasks (i.e., tasks with more errors
showed a greater response on correct trials than tasks with fewer
errors; Fig. 3B, right, dashed black line is greater than dashed blue
line). There was also a significant effect for error trials in prolonged
regions (p � 0.005), where activity was greater for high than low
accuracy tasks (i.e., tasks with fewer errors showed a greater response
on error trials than tasks with more errors; Fig. 3C, right, solid blue
line is greater than solid black).

Finally, we reran the accuracy � time � profile ANOVA that
corroborated the response profile distinction for each task group
separately. All main effects and interactions were significant (p �
.001) in each task group.

An analysis that assumes a hemodynamic response function
results in only a small portion of the regions defined without
assuming a shape
The analyses discussed above did not assume a shape in the linear
model for the BOLD response. We ran an additional analysis
assuming a canonical hemodynamic response shape with deriv-
atives and identified only 11 ROIs as related to errors (Table 3).
Almost all of these ROIs (10 of 11) were within 10 mm of one of
our original 41 ROIs (Table 4 shows the distance between the
unassumed and assumed ROIs up to a 20 mm cutoff). Interest-
ingly, 8 of 10 ROIs were closest to a region that showed a fast
response profile (which is most similar to the canonical response
shape), and only two ROIs (nos. 8 and 9) were closest to a region
showing a prolonged profile; ROI no. 4 is closest to a fast region in
the original set. None were within even 20 mm of a region that
showed a delayed profile. In fact, the delayed regions, which
showed substantially different response onset times for correct
versus error trials, appeared to show a correct � error response
when modeling an assumed canonical shape.

The consensus map of regions that showed differential activity
between error and correct trials on at least seven tasks is shown
for both the models with an unassumed and assumed shape in
Figure 5A. The figure shows that there was greater consensus
across tasks in the error-related activity when an unassumed
shape was used as opposed to when an assumed BOLD shape was
used (i.e., none of the regions reached a consensus of 12 tasks for
the assumed shape). To quantify the difference between the un-
assumed and assumed maps, we ran a fixed effects analysis of the
unassumed shape across 12 tasks, and the assumed shape across
12 tasks, and then made a difference map (i.e., unassumed–as-
sumed), as shown in Figure 5B.

Resting-state functional connectivity informs task-
based findings
Figure 6 shows the same consensus map that we showed in Figure
1A, but only showing activity from more than half (at least 7) of
the tasks. The overlaid boundaries demonstrate the functional
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networks of the brain, as defined by
resting-state data (Fig. 6B shows the map
of these functional networks that was
originally presented by Power et al.,
2011). This map shows that error-related
activity is not restricted to one, but ap-
pears to span a handful of different,
mostly control, networks. Further, error-
related activity most often does not fill any
particular network, but rather is restricted
to a specific subset of regions within each
network. Previous studies have shown
that resting state networks have over-
lapped with task-based distinctions,
which motivated a resting state network
distinction among the task-based error-
related regions found here. A network
analysis, using RSFC data and a standard
network science technique called spring-
embedding (see Materials and Methods),
was used to determine whether the clus-
tering based on response profiles was re-
flected in functional correlations at rest
(e.g., are regions of a particular profile
more strongly correlated than those that
cross profiles?), as well as their relations to
large-scale networks defined by Power et
al. (2011).

A spring-embedded graph of error-
related regions (Fig. 7A), is shown where
nodes are colored based on response profile (as in Fig. 3). The
spring-embedding reveals that the nodes that belong to the same
response profile are positioned near one another (Fig. 7A). This or-
ganization provides support for the segregation of the regions based
on response profile by showing that those regions, grouped together
during task performance, are also grouped at rest.

Several additional striking patterns are apparent. First, none
of the “delayed” nodes are directly connected to any of the “pro-
longed” nodes. Rather, the fast nodes appear to serve as links that
connect the nodes of the other, more extended profiles (Fig. 7C).
Second, and relatedly, none of the subcortical nodes are directly
connected to any of the cerebellar nodes (Fig. 7A). Rather, the
cortical nodes appear to serve as links that connect the subcortical
and cerebellar nodes. Further, the prolonged nodes are repre-
sented in both cortex and cerebellum, but not other subcortical
areas, whereas fast nodes are represented in both cortical and
subcortical areas, but not the cerebellum.

The same graph, coded by functional networks (Fig. 7B; see
color key) shows the same spring system, where nodes are colored
based on functional network. First, it is evident that, although a
great number of the error regions are represented in the cingulo-
opercular (purple) and frontoparietal (yellow) control systems,
as was predicted based on the dual-network hypothesis (Dosen-
bach et al., 2008), there are also a variety of regions in other
functional networks. Further, consistent with previous work
(Power et al., 2011), the spring-embedding reveals that the nodes
that belong to the same functional network are positioned near
one another. Two of the nodes were positioned on a border be-
tween two different networks, and so those nodes were assigned
two network colors (one is purple and yellow, the other is black
and yellow). Interestingly, those nodes are positioned in the
spring system in between their two corresponding networks.

Figure 7C shows the graph colored by network, with circles
around the regions of a particular profile (i.e., prolonged regions
circled in green, fast regions circled in purple, and delayed re-
gions circled in red), which should facilitate a comparison be-
tween the spring system colored by profile (Fig. 7A) and the one
colored by network (Fig. 7B). Several patterns emerge here. First,
with the exception of the frontoparietal network, each network
shows its own distinct response profile (e.g., cingulo-opercular
and visual nodes showed a fast profile, whereas cerebellum and
salience nodes showed a prolonged profile). In contrast, some of
the frontoparietal nodes showed a prolonged profile (all in the
right hemisphere), whereas others showed a fast profile (all but
one in the left hemisphere).

Second, the prolonged and fast profile groups are comprised
of multiple functional networks [Fig. 7A, prolonged regions
(green) are found in the cerebellum, the salience, ventral atten-
tion, frontoparietal and parietal networks, whereas fast regions

Figure 4. The location of each of the 39 ROIs, as well as the one ROI that showed a negative time course, as represented on the
surface of the brain. Shaded ROIs correspond to regions not on the viewed cortical surface but rather located on the opposite surface
or between the two surfaces. Purple ROIs show a fast profile, green ROIs show a prolonged profile, red ROIs show a delayed profile,
and the black ROI showed a negative time course.

Table 3. The list of regions that showed differential activity between errors and
correct trials on at least seven of the tasks, using an assumed shape

Coordinates

ROI no. ROI location x y z

1 L anterior insula/frontal operculum �35 18 8
2 R anterior insula/frontal operculum 35 23 4
3 L medial superior frontal (dorsal) �6 11 51
4 R anterior insula/frontal operculum (lateral) 46 22 3
5 R medial superior frontal (middle) 6 25 36
6 R medial superior frontal (dorsal) 6 18 44
7 L medial superior frontal (middle) �6 21 42
8 L medial superior frontal (ventral) �5 30 32
9 R dorsolateral prefrontal 42 7 40

10 L dorsolateral prefrontal �45 14 29
11 Caudate �12 7 8
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(purple) are found in the thalamus, and the cingulo-opercular,
frontoparietal, and visual networks]. In contrast, the delayed pro-
file is found in four ROIs, all of which are in the basal ganglia.

Discussion
To examine the organization of error-related responses in
healthy young adults, we conducted a meta-analysis of 12 differ-
ent fMRI tasks, spanning various categories of inputs, sensory
modalities, and outputs. This meta-analysis allowed us to identify
brain regions responding to errors across many task contexts, and
examine these responses in terms of their timescale and network
membership. Here, we summarize our main findings.

Error-related activity is spatially distributed
The findings reported here demonstrate that a substantial num-
ber of brain regions respond differentially when errors occur. In
addition to the widely recognized role of the dACC (Dehaene et
al., 1994; Holroyd et al., 2004; Ridderinkhof et al., 2004), we
found numerous error-related regions in frontal and parietal cor-
tex, as well as subcortical and cerebellar regions. Although previ-
ous work (Hester et al., 2004; Tunik et al., 2005; Dosenbach et al.,

2006; Nelson et al., 2010; Ullsperger et al., 2010), has suggested
that error-related activity occurs in regions beyond the dACC, we
believe that the current presentation represents a relatively com-
prehensive inventory of error-related regions.

In particular, consistent with the dual-network hypothesis
(Dosenbach et al., 2007), a majority of the error regions were
found in control networks, including the cingulo-opercular and
frontoparietal networks, although error-related activity was not
limited to these networks (Fig. 6). Interestingly, error-related ac-
tivity does not appear to fill completely any particular network
(Fig. 6), rather error-related regions comprise a subset of each
network. Moreover, regions within each network appear to be
organized based on functional correlations at rest, where regions
of a particular network (e.g., frontoparietal regions in yellow) are
“close together” in graph space (i.e., stronger functional relation-
ships; Fig. 7B). As will be discussed in more detail below, the
regions within a network tended to show one type of error re-
sponse (e.g., cingulo-opercular shows a fast profile, cerebellum
shows a prolonged profile; Fig. 7C).

However, one notable network (frontoparietal) contains both
fast and prolonged regions; a distinction that seems to be related
to hemisphere (i.e., frontoparietal regions in the left hemisphere
were mostly fast, whereas those in the right hemisphere were all
prolonged). The purpose of this lateralization, and why it is only
evident in the frontoparietal network, is unclear. However, pre-
vious work has suggested a laterality of some frontoparietal
control-related signals (Dosenbach et al., 2006), specifically a left
prefrontal cortex role in earlier processes, such as task setting, and
a right prefrontal cortex role in performance monitoring
throughout the task (Stuss, 2011). There are other potentially
related hemisphere effects (visuospatial neglect) that appear to be
consistently of the left hemifield (i.e., right hemisphere).

The notion that error-related activity spans different func-
tional networks is not entirely novel. Previous work has shown a
distinction between task control networks, and that both
cingulo-opercular and frontoparietal networks show error-
related control signals (Dosenbach et al., 2008; Power and Pe-
tersen, 2013). The current findings extend this work by showing
that the error-related regions extend beyond the control net-
works. We propose that the spatial distribution of error-related
regions suggests that there is not a singular functional error net-
work in the brain, related to task control or otherwise, that is
responsible for processing error-related information. Instead,
error-related activity is implemented by a set of subsystems that
are distributed across regions and networks.

Error-related regions are temporally distinct
One interesting aspect of the error regions identified here is that
they appear to process error-related information with different
temporal profiles suggesting that there are multiple timescales at
which error information is processed or used. Using hierarchical
clustering, we identified three distinct response profiles.

Nineteen regions showed a fast response errors, where the
time course returned to baseline a few frames after peaking (Fig.
3B). Comprising this cluster are both “bottom-up” sensory (vi-
sual) regions, and “top-down” control regions in cingulo-
opercular and frontoparietal networks. Our laboratory has
shown that the cingulo-opercular and frontoparietal brain networks
comprise task control mechanisms, including performance feedback in
response to errors (Dosenbach et al., 2006, 2007, for review, see
2008). The timing of the fast profile suggests that these signals act
to implement adaptive task control, contributing to successful
performance from one trial to the next (or a small number of

Table 4. Comparison of our 41 ROIs (without assuming a response shape) with the
11 ROIs identified using an assumed shape

Unassumed regions
Response
profile

Nearest assumed
shape ROI no. Distance (mm)x y z

9 �15 9 Fast
10 �3 15 Fast

�9 �16 9 Fast
13 �68 11 Fast

�5 �78 7 Fast
�17 �60 �1 Fast
�31 15 12 Fast 1 3.2
�39 13 5 Fast 1 8.8

34 17 8 Fast 2 4.7
45 17 13 Fast 4 4.4

�2 6 51 Fast 3 6.4
�1 17 44 Fast 5, 6, 7 7.9, 7.9, 7.7

�42 25 22 Fast 10 17.0
42 17 30 Fast

�47 6 34 Fast 10 5.8
�38 �2 37 Fast 10 14.0
�42 �45 41 Fast
�33 �56 40 Fast
�40 18 34 Fast 10 9.9
�29 46 22 Prolonged

1 26 35 Prolonged 8 8.2
24 49 28 Prolonged

�25 42 29 Prolonged
47 �48 35 Prolonged
36 3 42 Prolonged 9 2.5
30 49 18 Prolonged
37 12 38 Prolonged 9 11.8
38 �56 42 Prolonged
42 31 3 Prolonged 4 14.4

�27 �66 �31 Prolonged
�36 �62 �24 Prolonged
�37 54 �37 Prolonged

29 �60 �32 Prolonged
25 �73 �32 Prolonged
15 �69 �28 Prolonged
27 �14 8 Delayed
25 �5 �1 Delayed

�27 �18 8 Delayed
�28 �5 2 Delayed

38 44 9 NA
0 �28 58 NA
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trials). It is worth mentioning that,
though in the broader context of task con-
trol, the cingulo-opercular network shows
sustained activity supporting task mainte-
nance (Dosenbach et al., 2006, 2007), that
does not necessarily mean that another
type of control signal (errors) in those
regions must operate on a prolonged
timescale. Here, we show that the cingulo-
opercular network operates on a fast time-
scale in response to errors, despite its
sustained response throughout the task
block. Finally, given that goal-directed be-
havior requires an ability to recognize ap-
propriate responses and flexibly adjust
behavior in response to an error (Rid-
derinkhof et al., 2004), these responses are
potentially related to short-term behav-
ioral consequences including posterror
slowing (Rabbitt, 1966; Hester et al.,
2012).

Sixteen regions showed a prolonged
response profile. These time courses took
more than twice as long to return to base-
line compared with fast regions (Fig. 3C),
suggesting that these error responses rep-
resent a more long-term adjustment of
task parameters (i.e., implementing con-
trol across multiple trials). Comprising
this cluster are cerebellar regions, as well
as ventral attention and top-down control
regions in right frontoparietal and sa-
lience networks. With regard to the cere-
bellum, this profile is consistent with the
idea that the cerebellum is critical for iter-
ative learning strategies, where adaptation
is required for achieving successful per-
formance after a number of trials (Martin
et al., 1996a,b; Norris et al., 2011). Also,
previous work suggests a role for right
prefrontal cortex in performance moni-
toring throughout the task, in contrast to
earlier processes in left prefrontal cortex (Stuss, 2011). Many of
these prolonged regions have been overlooked in previous exam-
inations of error-related activity. Having now been identified,
future work could directly assess the functional role of these re-
gions in the context of errors in specific tasks.

Four regions in the putamen form the final cluster. In con-
trast to the other two clusters, this profile showed no apparent
difference in the peak magnitude for correct versus error re-
sponses. These regions showed early activity for correct trials
(perhaps related to reward signals of accurate performance),
followed by a peak for error trials that starts well beyond the
target trial (i.e., the onset of the error time course begins only
after 6 frames; Fig. 3D).

Support for these task-based profile distinctions is provided
by rest-based functional correlations that were naive to the task
effects. Regions of a particular profile (Fig. 7A, prolonged regions
in green) are close together in graph space (i.e., stronger func-
tional relationships), suggesting that they have some functional
relationship at rest. So, although the error regions, even within a
single response profile, are distributed across different networks
(Table 2), the resting connectivity data show that these distrib-

uted regions appear to have stronger functional relationships
within profile than across profiles (Fig. 7C). Next, there is an
extra layer of organization based on response profile: delayed
regions were strongly related to fast regions, which were strongly
related to prolonged (but delayed regions had very weak relation-
ships with prolonged). This suggests that delayed and prolonged
regions may function quite independently. Further, with one excep-
tion (frontoparietal), each functional network carries its own dis-
tinct profile (e.g., cingulo-opercular is fast, cerebellum is prolonged),
suggesting a relationship between error-related activity and resting-
state functional networks. Together, there appear to be many kinds
of relationships that organize this set of error regions.

Finally, there were temporal distinctions in error-related ac-
tivity between regions within constrained cortical areas. For ex-
ample, there was an anterior–posterior distinction in response
profiles in several areas (e.g., dACC, inferior frontal cortex),
where more anterior regions tended to be prolonged, and more
posterior regions tended to be fast. This is consistent with previ-
ous work (Paulesu et al., 1997; Bush et al., 2000; Picard and Strick,
2001; Chein et al., 2002; Nachev et al., 2005), including differ-
ences in temporal profiles (Cannestra et al., 2000), and those

Figure 5. A, A consensus map of regions that showed differential activity between error and correct trials on at least seven tasks.
The same map is shown for an unassumed shape and an assumed shape. B, We made a fixed effects statistical z-map of the 12 tasks
using an assumed shape, and another fixed effects z-map of the 12 tasks using an assumed shape. This map shows the Z-score
difference between those two (unassumed—assumed). There were no negative values (i.e., no voxels where values were greater
for assumed than unassumed shape).
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specifically relevant to error-related processing (Ullsperger and
von Cramon, 2001; Rushworth et al., 2004; Mars et al., 2005).

Modeling the response shape provides a more complete
representation of error-related activity
The temporal distinctions in error-related responses highlight
the importance of modeling time courses. We compared analyses
that used assumed versus unassumed response time courses, and
found that most of the “assumed” regions (10 of 11) were de-
tected by the unassumed analyses, but there were many “unas-
sumed” regions (27 of 41) that were not detected in the assumed
analysis. Most of the 27 regions that were overlooked by the as-
sumed analysis showed a prolonged or delayed response profile,
differing from the canonical hemodynamic response shape. In
other words, perhaps fMRI studies to date tended to find a spe-
cific subset of these error regions (e.g., dACC, anterior insula,
intraparietal sulcus, etc.) because they show a fast response pro-
file that more resembles the canonical response shape. Modeling
time courses contributes a more complete picture, allowing us
not only to identify a broader number of error-related regions,

but also to organize them based on the timescale of their response
(Gonzalez-Castillo et al., 2012 provides a demonstration of how
response shape varies across regions, and in a functionally and
anatomically meaningful way). Other methods (event-related
potentials, lesion studies) have provided evidence suggesting
temporal information in performance monitoring (Holroyd et
al., 2002; Swick and Turken, 2002; Ullsperger et al., 2002; Matha-
lon et al., 2003).

Limitations
There are pros and cons to this meta-analytic approach. Our pri-
mary goal was to reveal general features of error processing across
many task contexts (types of stimuli, task instructions, and types of
errors: omission and commission). Hence, future work is needed to
better elucidate the functional interpretations of these spatially and
temporally distinct error regions within specific task situations.

Further, we could not completely disentangle responses re-
lated to the error trial per se, and those related to downstream
effects of the error (e.g., posterror slowing). Thus, it could be that
some of the activity reported here is related to the subsequent
trial. New evidence suggests that these response profiles replicate
in slow event-related designs, which allows for complete separa-
tion of individual trials, suggesting they are not (completely) the
result of subsequent trial effects.

Next, some tasks resulted in very few errors (Table 1), causing
variability in error frequencies across tasks. Importantly, it was
not the case that only tasks with more errors showed significant
effects of accuracy. Indeed, we found a somewhat surprising ef-
fect where tasks with fewer errors showed greater error-related
activity in prolonged regions than tasks with more errors. This

4

Figure 6. A, The same consensus map as shown in Figure 1A, but with a higher cutoff
showing activity (yellow and orange regions) from at least seven tasks. The overlaid boundaries
demonstrate the functional networks of the brain, as defined by resting-state data (Power et al.,
2011). Error-related activity respects many functional network boundaries (see top left activity
in the lateral view of the left hemisphere). However, this activity also spans multiple functional
networks. The key below defines relevant functional networks. Two additional networks are
shown in the map, but not included in the key because we did not see peak error-related activity
here: light green is dorsal attention, and red is default. B, The map of functional networks
originally presented by Power et al. (2011).

Figure 7. Network analysis graphs using spring-embedding of the 39 ROIs in the three distinct response profiles. A–C, Edges, or the connections between the nodes, are defined based on RSFC
from a separate set of 120 normal adults. To visualize the network structure, we used a standard technique called spring-embedding, where nodes were repositioned such that high correlations are
positioned near one another, and those with weak or no connections are placed more distantly. A, Nodes are colored based on the three response profiles (i.e., fast, purple; prolonged, green; delayed,
red). Black boundaries are drawn corresponding to general location (cerebellum, cortical, and subcortical regions). Nodes that show the same response profile are highly correlated (i.e., positioned
close together). Moreover, delayed nodes are connected with fast, which are, in turn, connected with prolonged (but delayed and prolonged nodes are not directly connected). B, Nodes are colored
based on predefined functional network assignment (Power et al., 2011). Two nodes are assigned two colors, as they were positioned on the border between two networks (Table 2). The yellow and
black node was on the border between frontoparietal and salience networks, and the yellow and purple node was on the border between frontoparietal and cingulo-opercular networks. These colors
correspond with boundary colors represented in Figure 6. Nodes that belong to the same functional network are highly correlated (i.e., positioned close together). C, Nodes are colored based on
network assignment (as in B), with circles around the regions of a particular profile (i.e., prolonged regions circled in green, fast regions circled in purple, and delayed regions circled in red). This
emphasizes the point that there are multiple functional networks represented in each response profile group, but that, with the exception of the frontoparietal network (yellow nodes) each network
shows its own distinct response profile (e.g., cingulo-opercular, thalamus, and visual nodes showed only a fast profile, whereas cerebellum, parietal, salience, and ventral attention nodes showed
only a prolonged profile). In contrast, some of the frontoparietal nodes showed a prolonged profile (all in the right hemisphere), whereas others showed a fast profile (all but one were in the left
hemisphere).
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could be associated with greater novelty or error awareness in
tasks with fewer errors, but future study is needed to resolve these
findings.

Finally, there is some disagreement in the literature as to the
resting-state network definitions and nomenclature. For exam-
ple, our cingulo-opercular network has been referred to as the
salience network (Seeley et al., 2007). However, recently, there
has been movement toward a consensus across research groups
(Power et al., 2011; Yeo et al., 2011), suggesting that the salience
and cingulo-opercular networks are distinct. Our work has dis-
tinguished several control networks (i.e., salience, cingulo-
opercular, frontoparietal) that play somewhat separate roles in
the service of task control (Power and Petersen, 2013). The cur-
rent study identified error-related activity in each of these sepa-
rate networks. Having said that, we emphasize that, independent
of nomenclature, the present work highlights that error-related
activity is not constrained to a specialized functional network
purely dedicated to error-related processes.

Conclusions
Instead of a single localized error-processing system, we discov-
ered a subset of regions within each of the brain’s control net-
works that provide error-related information to the network.
Our findings point to a set of error components within many
different functional networks, or systems, and operating on dif-
ferent timescales.

Notes
Supplemental material for this article is available at http://www.nil.wustl.
edu/labs/petersen/Resources.html. New evidence suggests that the re-
sponse profiles described here replicate in slow event-related designs,
which allows for complete separation of individual trials, and thus, these
response profiles are not (completely) the result of subsequent trial ef-
fects. This material has not been peer reviewed.
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