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Optical aberrations limit resolution in biological tissues, and their influence is particularly large for
promising techniques such as light-sheet microscopy. In principle, image quality might be improved
by adaptive optics (AO), in which aberrations are corrected by using a deformable mirror (DM). To
implement AO in microscopy, one requires a method to measure wavefront aberrations, but the most
commonly used methods have limitations for samples lacking point-source emitters. Here we implement
an image-based wavefront-sensing technique, a variant of generalized phase-diverse imaging called
multiframe blind deconvolution, and exploit it to calibrate a DM in a light-sheet microscope. We describe
two methods of parameterizing the influence of the DM on aberrations: a traditional Zernike expansion
requiring 1040 parameters, and a direct physical model of the DM requiring just 8 or 110 parameters. By
randomizing voltages on all actuators, we show that the Zernike expansion successfully predicts wave-
fronts to an accuracy of approximately 30nm (rms) even for large aberrations. We thus show that image-
based wavefront sensing, which requires no additional optical equipment, allows a simple but powerful
method to calibrate a deformable optical element in a microscope setting. © 2010 Optical Society
of America

OCIS codes: 110.1080, 180.2520.

1. Introduction

Light is refracted by biological tissues. This inter-
action can be exploited to generate image contrast;
however, refractions also present a significant hin-
drance to image resolution deeper into tissue. The
interactions between light and tissue are convention-
ally discussed in terms of two extremes: “scattering”
typically describes the effects of small inhomogene-
ities in tissue, whereas the term “aberrations” most
commonly refers to refractions induced by bulk (aver-
age) properties of tissue [1]. One common source for
aberrations is the mismatch in index of refraction be-
tween the immersion fluid and the sample; for exam-
ple, water or saline has a refractive index near 1.33,
but tissue typically has a variable refractive index
ranging from 1.36 to 1.40 [2].

In a situation in which the tissue is face-on with
the objective (i.e., the tissue surface is orthogonal
to objective’s optical axis), this refractive index mis-
match leads primarily to two types of aberration, de-
focus and spherical aberration [3]. The defocus
aberration is often not even noticed (it is corrected
by changing the focus of the objective), but the spher-
ical aberration typically remains uncorrected and
serves as an impediment to imaging deeper into
the tissue. More problematic is the case where the
tissue is not perfectly flat and/or the tissue surface
is not orthogonal to the objective axis, because addi-
tional aberrations, which can be substantially larger,
are introduced into the images [4]. An extreme case
of such tilted imaging is found in a light-sheet-based
microscopic technique called objective coupled pla-
nar illumination microscopy (OCPI) [5].

In typical light-sheet microscopy (also sometimes
called planar illumination microscopy) a cylindrical
lens is used to create a sheet of light [5–8]. This sheet
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of light is placed at the focal plane of the objective, and
the tissue is placed in this overlap region. This
arrangement allows only the in-focus region of the
tissue to be illuminated and allows the entire
illuminated plane to be imaged simultaneously. Thus
light-sheet microscopy allows high-speed and low-
phototoxic imaging. To use such light-sheet micro-
scopy to image large samples (i.e., the surface of
themouse brain in vivo), one shouldminimize the dis-
tance in tissue traversed by the excitation light and
emitted light; consequently, the light sheet is tilted
with respect to the tissue surface, and the objective
is tilted correspondingly [Fig. 1(a)]. This tilted ima-
ging introduces sizable new optical aberrations, in-
cluding defocus, coma, and astigmatism. Previously
we showed that the defocus aberration can be cor-
rected by tilting the angle of the light sheet by a
few degrees [4]. We hypothesize that wavefront-
correcting techniques such as adaptive optics (AO)
can be used to correct the remaining aberrations.
AO has been used in a variety of settings, initially

by astronomers to correct the loss of resolution in
images taken from Earth-bound telescopes due to at-
mospheric turbulence [9]. In AO, a wavefront sensor
(typically a Shack–Hartmann wavefront sensor,
SHWFS) is used to measure the aberrations, and a
deformable mirror (DM) is used to correct the wave-
front to achieve diffraction-limited imaging. The re-
sulting improvement in image quality has made AO
an integral part of major new ground-based telescope
designs. Similar AO systems have also been used in
vision science, where the aberrations of the eye can
be measured and corrected [10].
The most crucial element of any AO system is the

wavefront sensor; here we focus on the associated
problem as it applies to wide-field microscopy. A tra-
ditional SHWFS is difficult to apply directly to most
applications in microscopy because tissue samples
typically lack point-source emitters [3]; generaliza-
tions to extended samples have been described [11],
and this might be a useful approach for microscopy,

but the need to sample the wavefront at high resolu-
tion means that aberrations can be measured only
over a region corresponding to a few tens of pixels.
Several alternative methods for wavefront sensing
have been developed. Coherence-gated techniques
[12,13] are applicable only for scattered light, and
these methods introduce some degree of complexity
into the apparatus. A more general and (in terms of
instrumentation) simpler approach is to use the
images themselves to estimate the wavefront aberra-
tion. Approaches that iteratively improve the sharp-
ness of an image have been found to be applicable in
microscopy [14,15]. But such methods require large
number of iterations and/or a large number of images
and thus place constraints on the speed and fluores-
cence levels of the biological preparations. Phase
retrieval is a method used to measure the point-
spread-function (PSF) of the microscope [16], but
such a method is not capable of measuring wavefront
aberrations of extended objects. However, a closely
related method—phase-diverse imaging (PDI)—is
capable of measuring wavefront aberrations of ex-
tended objects [17,18]. PDI can be described as fol-
lows: in a typical imaging experiment there are two
unknowns, (i) the object and (ii) the wavefront aber-
ration; a single image is insufficient to accurately
measure the two unknowns. In typical PDI, one im-
age is acquired with the camera in focus, and a sec-
ond image is acquired with the camera slightly out of
focus. Thus with the two known images the two un-
knowns (object and wavefront aberration) can be ex-
tracted computationally [17,18]. In principle, such an
image-based wavefront sensor is readily applicable
in the high-signal-to-noise ratio imaging performed
through OCPI microscopy.

In order to apply AO to OCPI microscopy, a DM
needs to be placed in the light path of the microscope;
the DM has a number of control signals, and the
effect of these control signals on the aberration struc-
ture must be calibrated. SHWFS or interferometry-
based systems can be used to calibrate a DM, but

Fig. 1. (Color online) AO-OCPI schematic: (a) Experimental setup for AO-OCPI microscope. A DM is placed behind the back aperture of
the objective. The light reflected off the DM is imaged onto a camera. (b), (c) Schematic of wavefront aberration when the DM is flat and
when one actuator on the DM is moved.
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that would entail adding a new optical system to
the microscope. Since this problem is conceptually
equivalent to the wavefront sensing needed for AO,
PDI algorithms should also be useful for calibration
[19] [Fig. 1(b)]. In practice we apply a technique
known as multiframe blind deconvolution (MFBD)
[20]. In MFBD one usually acquires multiple images
of the same object with multiple unknown aberra-
tions (here caused by DM actuator movement) and
exploits the fact that the object is constant to infer
the structure of the aberrations. MFBD differs from
PDI only by having fewer constraints on the aberra-
tions. Thus, virtually all of the mathematical and
algorithmic apparatus can be shared both for aberra-
tion correction and DM calibration. In this paper we
describe the calibration of a DM in an OCPI micro-
scopy setting. It should be noted that such image-
based wavefront sensing is not limited to light-sheet
microscopy, but can be implemented in other imaging
applications.

2. AO-OCPI Optical Layout

In OCPI microscopy the optics needed to form a light
sheet are rigidly coupled to the objective, illuminat-
ing just the focal place of the objective [5] [Fig. 1(a)].
To permit imaging of extended neural tissues, we tilt
the objective (with the coupled laser sheet) from the
traditional face-on imaging to an angle of 30°. This
minimizes the distance traveled through tissue by
both the excitation light and the emitted light.
To correct the resulting aberrations, a DM (Mirao

52-d, Imagine Optics) is placed behind the back
aperture of the microscope objective (20× infinity-
corrected, 0.5 NA, water immersion, Olympus). The
light collected by the objective is reflected off the DM
before it is focused onto a camera (GRAS-14S5M,
Point Grey) by a 200mm tube lens (Edmund Optics)
[Fig. 1(a)].
The Mirao 52-d is a 52-actuator DM [21], with the

actuators encompassing a circular pupil of 15mm
diameter [Fig. 2(a)]. The reflective surface is made
of a silver-coated sheet with an array of permanent
magnets on the back side; to change the shape of the
mirror, one applies force by controlling the current in
coils placed opposite each magnet [Fig. 2(b)].

3. Phase-Diverse Imaging: Theory

Consider a base object emitting light with (scalar)
intensity f ðxÞ at position x in a two-dimensional
plane. (One challenge in applying traditional PDI
to microscopy is the extended, three-dimensional
nature of typical objects. The localization of excita-
tion in light-sheet microscopy makes its application
more straightforward.) A total of K different images
are collected of this fixed object; these images have
different aberrations, which here are generated by
different settings of the voltages for the DM. These
K diversity images are denoted dkðxÞ, k ¼ 1;…;K .
The PSF for the kth diversity image is denoted skðxÞ,
and because the imaging path is incoherent we write

skðxÞ ¼ jhkðxÞj2; ð1Þ

where hk is the inverse Fourier transform of the
optical transfer function for coherent illumination,
Hk. Explicitly,

hkðxÞ ¼ FT−1½HkðuÞ� ¼
Z

due−2πιu·xH0ðuÞeιϕkðuÞ; ð2Þ

where FT−1 is the inverse Fourier transform, u is a
point in the pupil, H0 is the aperture mask (usually
zero outside the pupil and one inside) and ϕk is the
aberration phase associated with the kth diver-
sity image.

The unknowns, f and the set fϕkg of all aberration
phases, will be determined by nonlinear optimi-
zation, minimizing the square difference between
observed (dk) and predicted (sk � f , where � is convo-
lution) images:

E½f ; fϕkg� ¼
XK
k¼1

Z
dujDkðuÞ − FðuÞSkðuÞj2; ð3Þ

where Dk, F, Sk are the Fourier transforms of dk, f ,
sk, respectively.

As shown previously [17,18], the penalty, Eq. (3),
can be converted to a pure function of ϕk by substi-
tuting the analytic solution for the optimum F,

Fig. 2. (Color online) Mirao 52-d. (a) Schematic image of the Mirao 52-d DM. The 52 actuators encompass a pupil of diameter 15mm. The
numbering of the actuators presented here is used in rest of the paper. (b) The mirror is made of a sheet of mirror with voltage-controlled
magnetic actuators on the back surface of the mirror.
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F ¼
XK
k¼1

DkS
†
k=

XK
l¼1

jSlj2; ð4Þ

where † is the complex conjugate, leading to a phase-
only penalty function

E0½fϕkg� ¼
Z

du

����P
k
DkðuÞS†

kðuÞ
����
2

P
l
jSlðuÞj2

−

Z
du

X
k

jDkðuÞj2:

ð5Þ
We note that the second term does not depend

upon the aberration. In minimizing the resulting
penalty function, the speed of convergence is sub-
stantially enhanced by using the penalty gradient
[18], which for our parameterization is

δE0

δϕkðuÞ
¼ 4 Im

�XK
k¼1

HkðuÞðZk �H†
kÞðuÞ

�
; ð6Þ

where

Zk ¼
�X

l

jSlj2
�X

j

DjS
†
j

�
D†

k

−

����
X
j

DjS
†
j

����
2
S†
k

�
=

�X
l

jSlj2
�

2
: ð7Þ

From Eqs. (1) and (2), note that the images are un-
changed by adding a constant to ϕk (a “piston shift”).
Thus, the mean value of ϕk is not meaningful. More-
over, the images are also unaltered by the replace-
ment ϕðuÞ → −ϕð−uÞ, because this merely results in
hðxÞ’s being replaced with its complex conjugate.
In our calibration procedure, we used the knowledge
that the actuators are arranged in a grid to ensure
that a consistent sign convention was adopted for
all actuators.

4. Parameterizations of the Aberration Function ϕ

For a parametric representation of fϕkg, Eq. (6) al-
lows the derivative with respect to any parameter
p to be calculated via the chain rule,

∂

∂p
¼

X
k

Z
du

∂ϕkðuÞ
∂p

δ
δϕkðuÞ

: ð8Þ

A. Gaussian Parameterization

Since individual actuators are expected to have a lo-
calized influence in the pupil plane, one simple (few-
parameter) approximation of the aberration phase
would be a Gaussian. (Here, the primary value of
a Gaussian parameterization is to provide an initial
guess for a more accurate method requiring more
parameters.) We postulate that the phase aberration
can be approximated as

ϕðuÞ ¼ Ae−ðu−u0Þ2=2σ2 ; ð9Þ

where A is the amplitude of deformation, u0 is the
center of deformation, and σ is the estimate of the
width of the deformation. The partial derivative of
ϕk with respect to the parameters is

∂ϕk

∂A
¼ e−ðu−u0Þ2=2σ2 ; ð10Þ

∇u0ϕk ¼ Aðu − u0Þ
σ2 e−ðu−u0Þ2=2σ2 ; ð11Þ

∂ϕk

∂σ ¼ Aðu − u0Þ2
σ3 e−ðu−u0Þ2=2σ2 : ð12Þ

Together with Eqs. (6) and (8), these equations allow
one to calculate the gradient of the penalty with
respect to the parameters of the Gaussian.

B. Zernike Parameterization

The most common way to parameterize aberrations
is with a Zernike expansion [22],

ϕk ¼
XJ
j¼1

αjZj; ð13Þ

where Zj is the jth Zernike function (using a single-
indexing scheme [23]) and αj is the coefficient for the
jth Zernike function.

The partial derivative of ϕk with respect to αj is
simply

∂ϕk

∂αj
¼ Zj: ð14Þ

C. Biharmonic Parameterization

An attractive alternative to these phenomenological
parameterizations is to consider a direct physical
model of the DM, i.e., parameterizing ϕ in terms of
the shape of the surface of the mirror. In the general
case, the alignment of the pupil with respect to the
DM is unknown, and in any event the projection of
the pupil onto the DM surface is compressed along
one axis owing to the angle of reflection off the
surface (Fig. 1). These statements may be encapsu-
lated as

ϕkðuÞ ¼ ψkðAuþ ξ0Þ; ð15Þ

where thematrixA and offset ξ0 correspond to a rigid
body deformation of the pupil, and ψkðξÞ is effectively
the mirror shape represented in two-dimensional co-
ordinates ξ in the plane of the mirror. This represen-
tation thus casts the problem as fundamentally a
rigid registration problem, but with respect to pupil
coordinates (phase) rather than a registration of two
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observed images. A needs to allow rotation and
scaling but not shearing (A ¼ RSRT , where R is a
rotation matrix and S is diagonal), and thus A is a
generic 2 × 2 symmetric matrix

A ¼
�
a1 a2

a2 a3

�
: ð16Þ

After fitting, the rotation angle and scaling diagonals
may be extracted from a singular value decomposi-
tion of A; in particular, the absolute value of the ratio
of the diagonals of S should be equal to the cosine of
the angle of reflection off the mirror surface.
The form of ψ depends on the DM. For the Mirao

52-d, the linearity with respect to perturbation of
individual actuators (see Fig. 5 below) suggests a
model

ψkðξÞ ¼
X
i

ðmivki þ ζiÞbiðξÞ; ð17Þ

where vki is the control voltage applied to the ith ac-
tuator in the kth diversity image, mi and ζi are the
slope and offset for this actuator, respectively, and
biðξÞ describes the shape of the surface induced by
applying unit voltage to the ith actuator; bi encapsu-
lates the physics of the device, and in this case the
necessary details (equation of motion and boundary
conditions) are not publicly disclosed by the manu-
facturer. However, because this mirror is constructed
from an elastic membrane, we postulate that the
membrane energy is a function of the curvature, i.e.,

Emembrane½b� ∝
Z

dξð∇2bÞ2; ð18Þ

where ∇2 is the Laplacian with respect to coordi-
nates ξ. Hence b satisfies the fourth-order biharmo-
nic equation,

ð∇2Þ2b ¼ 0: ð19Þ

This equation of motion needs to be supplemented by
the boundary conditions, for which we will assume
that the membrane is clamped at some radius R
and that this clamp sets both the membrane height
and slope to zero on the boundary (b ¼ 0 and r̂ ·∇b ¼
0 on the boundary, where r̂ is the unit radial vector).
Consequently, application of a unit force at point c
will induce a (normalized) displacement given by
the Green’s function [24],

bð~ξj~cÞ ¼ 1

R2 j~ξ − ~cj2 log
�
R2j~ξ − ~cj2
jR2 − ~c†~ξj2

�

þ 1

R4 ðR2 − j~ξj2ÞðR2 − j~cj2Þ; ð20Þ

where ~ξ ¼ ξx þ iξy is the complex number formed
from the x and y coordinates of ξ and similarly for
~c. For each actuator, the corresponding ci is specified

from the known grid arrangement of the actuators
[Fig. 2(a)].

The advantage of this approach is in the compara-
tively small number of parameters required: rather
than needing the first five orders of Zernike functions
(20 Zernike coefficients for each actuator, a total of
1040 parameters), here each actuator is represented
by only two parameters, mi and ζi. Indeed, in a first-
pass optimization onemay take ζi ¼ 0 and use a com-
mon value mi ¼ m for all actuators (assuming that
each electromagnet produces similar force), and thus
all 52 actuators contribute just a single parameter,
m. One also must fit R and the rigid-deformation
parameters A and ξ0, and for calibration with a sin-
gle bead we also modify Eq. (15) to allow a defocus,

ϕkðuÞ ¼ ψkðAuþ ξ0Þ þ αð2u2 − 1Þ; ð21Þ
to include the possibility that the bead is slightly
above or below the focal plane (which may not be
readily detectable in the mirror flat condition but can
nevertheless have a substantial effect on the aber-
rated images). Consequently, this approach requires
a total of either 8 parameters (A, ξ0, α, andm) or 110
parameters (A, ξ0, α, and susceptibility and offset,mi
and ζi, respectively, for each actuator).

Optimization of these parameters greatly benefits
from an analytic calculation of the gradients; for rea-
sons of space we do not present explicit formulas, but
their derivation from Eqs. (21) and (20) is entirely
straightforward (if slightly tedious). The initial guess
for the eight-parameter model is supplied by the user
with the help of a custom GUI program, to ensure
that the pupil registration parameters do not become
trapped in a local minimum far from the optimum
solution.

5. Experiments

We imaged a 0:2 μm (diffraction-limited) fluorescent
bead embedded at the surface of a flat slab of poly-
dimethylsiloxane (PDMS, Dow Corning, DC 184-A
and DC 184-B with a weight ratio of 10∶1). Each
actuator was manipulated by applying voltages
ranging from −0:1 to 0:1V with 0:01V steps (all
the other actuators were maintained at 0V), and an
image was collected at each step. Thus, we obtained
21 images for each of the 52 actuators, for a total
of 1092 images. In Fig. 3 we show the images ob-
tained by moving one of the actuators [actuator 22,
see Fig. 2(a)] from −0:09 to 0:1V (data from all actua-
tors is supplied as Media 1).

6. Results

A. Calibration of DM Using Zernike Parameterization

Each actuator was calibrated separately. The image-
basedwavefront reconstruction described inSection 3
was applied on the 21 images—obtained from apply-
ing different voltages to a single actuator—to calcu-
late the unknown underlying aberration function ϕ.
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In the optimization, the initial estimate of ϕ was
created by fitting a Gaussianmodel of the aberration,
which (having far fewer parameters) allowed rapid
and relatively exhaustive search. In Fig. 4 we show
that the images obtained by using Gaussian parame-
terization of ϕ yielded moderate agreement between
experimental and calculated images. We expanded
the ϕ obtained from the Gaussian parameterization
in terms of the first 5 orders of Zernike functions (20
parameters in total per actuator) and used the ob-
tained Zernike coefficients as the initial guess for
the Zernike-based optimization. We found that the
calculated estimate of ϕ did not improve substan-
tially when a larger number of Zernike functions
were used (see Fig. 12 below).
In Fig. 5(a) we show the optimized values for

the Zernike coefficients. Each of the Zernike para-
meters varies approximately linearly with voltage;
the slope of the relationship is plotted as a phase plot
in Fig. 5(b). The single-hump peak depicts the move-
ment of an actuator at the location of the peak. In
Fig. 6 we demonstrate the accuracy of the calibration
of one actuator [number 22, Fig. 2(a)] by showing the

measured and calculated images for images obtained
when different voltages are applied to this actuator.

Each actuator was calibrated individually with an
identical voltage series comprising 21 images. One
observes that the resulting aberrations define a grid
structure reminiscent, as onemight expect, of the un-
derlying grid of actuators (Fig. 7). To visualize the
alignment between Figs. 2(a) and 7 one needs to
reflect the DM actuator grid across the vertical. In
Media 2 we show the measured and calculated
images obtained for all the actuators.

In Fig. 5(a) we can see that the Zernike coefficients
have a nonzero component at zero applied voltage.
This yields an estimate of the baseline aberrations
of the system, which include any imperfections in
the system optics (which tend to be small) and devia-
tions in the mirror shape from nominally flat (which
can be more substantial). In Fig. 8(a) we show that
the zero offsets measured for each of the actuators
have similar values even though they were measured
independently. By calculating the means of the off-
sets for each of the 20 Zernike coefficients, we esti-
mated the shape of the mirror when all actuators
are set to zero voltage [Fig. 8(b)]. The flatness of the
mirror can be improved by supplying an array of off-
set voltages v0, with

v0 ¼ −MþZ0; ð22Þ

where Z0 is the vector of Zernike coefficients in
the nominally flat condition, M is the matrix formed
from the slope of the Zernike coefficients for each ac-
tuator [Fig. 5(a)], and + denotes the Moore–Penrose
pseudoinverse.

B. Calibration of DM Using a Physical Membrane-Based
Model of DM

We performed the 8- and 110-parameter biharmonic
parameterizations of the aberrations caused by indi-
vidual actuators. The eight-parameter model was
obtained by using all 21 × 52 images to fit the para-
meters A, ξ0, α, and a single value of m for all actua-
tors, while setting ζ ¼ 0. The resulting phases for
each of the actuators are shown in Fig. 9.

To obtain the actuator phases for the 110-
parameter model, A, ξ0 and α were held constant
while m and ζ were fitted separately for each actua-
tor. In Fig. 10 we show the value of mi obtained for
each of the actuators. The mi values appear to be de-
pendent on the location of the corresponding actuator
—suggesting an underlying asymmetry in the DM.

In Fig. 11 we show the experimental and calcu-
lated images (using biharmonic parameterization)
obtained when voltage is applied to actuator 22. The
quality of the agreement is lower than observed for
the Zernike fit (Fig. 6). Therefore, henceforth we
adopted the Zernike parameterization.

To quantitatively compare the different parame-
terizations implemented in this paper, we calculated
the fitting error [given by Eq. (3)] for each of the cases
(Fig. 12). Gaussian and biharmonic parameteriza-

Fig. 3. Images of a 0:2 μm bead obtained after applying from
−0:09 to 0:1V to actuator 22 [see Fig. 2(a) for the location of the
actuator]. Each image is 64 × 64 pixels, with 1pixel ¼ 0:29 μm×
0:29 μm. (All consequent bead images have the same dimensions).
Media 1 shows images obtained from moving each of the 52
actuators.

Fig. 4. Measured (top) and calculated (bottom) images of a bead
when different voltages are applied to actuator 22. The calculated
images were obtained from the calculated estimate of ϕ using
Gaussian parameterization.
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tions lead to the greatest fitting error. The fitting
error decreased as greater numbers of Zernike coef-
ficients were used. Most of the decrease in fitting
error was achieved by including Zernike polynomials
up through the fifth order, and so we truncated the
expansion at this point for the tests described below.

C. Testing the Calibration

The calibration was performed individually for each
actuator, yet for AO one must manipulate all of the
actuators simultaneously to compensate for arbi-
trary aberrations. To test whether the calibration
procedure suffices in this circumstance, we specified
random voltages for all the actuators in the DM and
measured the resulting images of beads. Using the
Zernike calibration data, we estimated the total
wavefront aberration as the linear sum of aberra-
tions caused by individual actuators. This predicted
aberration was then used to calculate the theoretical
PSF to obtain a calculated estimate of the image. A
schematic of the procedure is shown in Fig. 13 (see
Media 3). In the figure, the unaberrated image is
the image acquired when all the actuators are set
to zero voltage. The predicted aberrated image is pro-
duced by the convolution of the estimated wavefront
aberration with a point (since the underlying object
is unknown).

To explore whether the deviation from nominal
flatness requires compensation, we considered the
random voltage test both before and after correcting
for the true mirror flatness (Fig. 14). The calculated
images are modestly improved by including the
flatness correction. We performed such a random-
voltage test, using 50 different sets of random
voltages, with all of them leading to good agreement
between the measured and the calculated images
(Fig. 14, Media 3).

The accuracy of the calibration can also be tested
by comparing the calibration-derived random aber-
ration to the true random aberration. We calculated
the true random aberration by using PDI, as
described in Section 3. We used the unaberrated im-
age and the randomly aberrated image as the two

Fig. 5. (Color online) Actuator 22 calibration using a Zernike parameterization. (a) Each of the 20 Zernike coefficients varies nearly
linearly with voltage. The slope of the relationship is plotted as a phase plot in (b). (b) The single-hump peak of the phase plot depicts
the movement of the actuator at the location of the peak (colorbar units are radians per volt).

Fig. 6. Measured (top) and calculated (bottom) images of a bead
when different voltages are applied to actuator 22. The calculated
images were obtained from the Zernike parameterization. Media 2
shows corresponding images obtained for all actuators.

Fig. 7. (Color online) Phase plots obtained for all 52 actuators,
using Zernike parameterization. Each of the phase plots is scaled
independently to demonstrate the underlying differences.
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input images and optimized the phase. As an ini-
tial estimate we used the calibration-derived phase,
which consisted of up to fifth-order Zernike coeffi-
cients. To explore a possible role for the higher-order
coefficients in representing the error, we extended
the phase to consist of up to sixth-order Zernike coef-
ficient, setting the sixth-order Zernike coefficients
initially to zero. The Zernike coefficients were opti-
mized to produce the optimum aberrated phase.
Figure 15 shows the calibration-derived phase (pre-
dicted phase), the PDI-derived phase (optimized
phase) and the difference in the two phases for the
images shown in Fig. 13. Figure 15(d) shows that
the calibration-derived estimates for the Zernike
coefficients are very close to the optimized values.
We performed the same calculation on each of the

50 sets of the random voltages tested (Media 3)
and plotted the rms error in Fig. 15(e). The rms error
averaged across realizations was ∼30nm, which is
below the threshold for making a significant impact
on image quality. Thus we conclude that the cali-
brated DM data yields an accurate model of the
mirror.

7. Discussion

By using only an image-based analysis we have
shown that MFBD can be used to accurately cali-
brate a DM. The decision whether to use MFBD or
other methods depends on several factors. (i) Equip-
ment: MFBD-based calibration does not require spe-
cialized optical equipment such as SHWFS and
interferometers. The MFBD method even avoids
the need for a beam splitter [19]. (ii) Speed: the speed
of wavefront sensing in SHWFS and interfer-
ometry—by virtue of being specialized devices to
measure wavefronts—is nearly instantaneous. In

Fig. 8. (Color online) DM flat. (a) Magnitude of Zernike coeffi-
cients for each of the actuators at zero applied voltage obtained
from optimization of each actuator independently; note the consis-
tency of the fitting result. The first two Zernike coefficients contri-
bute to overall tip and tilt of the PSF and are not shown in this
figure. (b) Phase present at zero applied voltage (colorbar units
are radians).

Fig. 9. (Color online) Phase plot obtained for all 52 actuators,
using the 8-parameter biharmonic parameterization. Each of
the phase plots is scaled independently to demonstrate the under-
lying differences.

Fig. 10. (Color online) Values ofmi obtained for each of the actua-
tors after a 110 parameter biharmonic parameterization of ϕ
(colorbar units are radians per volt).

Fig. 11. Measured (top) and calculated (middle, bottom) images
of a bead when different voltages are applied to actuator 22. The
calculated images were obtained by using a biharmonic parame-
terization with 8 (middle) and 110 (bottom) parameters. Media
4 shows corresponding images obtained for all actuators.
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MFBD-based calibration, the wavefront calculation
is a computationally intensive process. The calibra-
tion of a single actuator, using 21 images (see
Section 6) took ∼3 min (this includes a preliminary
GUI-based Gaussian estimate, followed by a
Zernike-based optimization of the aberration func-
tion ϕ) on a 32Gbyte RAM, single-core processor.
Thus the calibration of the 52 actuator DM took
∼2:5h. Fortunately, such a CPU-intensive calcula-

tion needs to be performed only once, during the
construction of the microscope. (iii) Accuracy: the
MFBD-based calibration is ultimately limited by the
noise in the images. We have shown that the method
produces an error of ∼30nm, which is well below the
threshold where the error has a significant impact on
the image quality. We note that this accuracy com-
pares well with previous studies [19], in that this re-
presents the open-loop calibration error, and that it is

Fig. 12. (Color online) Comparison of fitting errors: (a) fitting error between experimental and calculated images using different ϕ para-
meterizations, for actuator 22. The different parameterizations are Gaussian (G), from second- to eighth-order Zernike parameters, bi-
harmonic parameterization using 8 parameters (B8), and biharmonic parameterization using 110 parameters (B110). (b) Total fitting error
between the experimental and calculated images for all actuators.

Fig. 13. (Color online) A random set of voltages are applied to the DM to produce the acquired image. The Zernike-parameterization-
based calibration of the DM is used to calculate the predicted phase produced by the set of random voltages (colorbar units are radians).
The predicted phase is then used to create the predicted image. The agreement between the acquired and predicted images demonstrates
the accuracy of the calibration of the DM. Media 3 shows images obtained from using the 50 sets of random voltages.
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a small fraction of a much larger underlying aberra-
tion (Figs. 12 and 15) of a type—generated by apply-
ing random voltages to all actuators—not included in
the data used to perform the calibration.
We explored two different parameterizations for

the phase aberration. The Zernike parameterization
of the DM (using 1040 parameters) led to accurate
calibration of the DM. The parameterization based

on a physical model was attractive because of the
smaller number of parameters (8 or 110). This reduc-
tion in number of parameters required to describe a
52-actuator DM can be attributed to the gridlike pla-
cement of the actuators on the DM and the physical
characteristics of a membrane mirror. The physical
model led to a useful but less-accurate calibration of
the DM. We suspect this reflects the fact that the bi-
harmonic model is an imprecise description of the
underlying physics of the Mirao 52-d, for which
important details are not publicly available. For ex-
ample, if the membrane is under some tension, the
equation of motion might require the addition to
Eq. (18) of a term penalizing the gradient of b. Never-
theless, our results demonstrate that physical mod-
els have considerable potential for parameterizing
aberrations with small numbers of parameters.
Given that PDI MFBD is fundamentally an optimi-
zation technique, reducing the number of parameters
may improve the speed and/or robustness of conver-
gence, potentially extending the range of applica-
tions of PDI.

MFBD was shown to be an accurate and efficient
method for calibrating a DM in a light-sheet micro-
scope. A major advantage of this approach is that the
hardware demands are minimal; most of the
complexity is contained in themathematical analysis

Fig. 14. Sets of random voltages were applied to the DM to obtain
the experimental (Exp.) images. Zernike-based calibration of the
DM was used without (Calc:−) and with (Calc.+) offset correction
to obtain the calculated images for the given set of random vol-
tages. Each column represents images obtained from a different
set of random voltages.

Fig. 15. (Color online) (a) Predicted phase from calibration data (colorbar units are radians). (b) Optimized phase calculated by using PDI
on the unaberrated and aberrated images shown in Fig. 13. (c) Difference in the two phases. Note that the colormap has been rescaled to
show fine detail. (d) Zernike coefficients for predicted (a) and optimized (b) phases. (e) The rms error (in nanometers) between the two
phases for all 50 sets of random voltages tested. The red × represents the rms error obtained for the example shown in (d).
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and therefore encapsulated in software. We have
made our software freely available at http://holylab
.wustl.edu. These developments should contribute
to more widespread application of AO in microscopy.
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the McKnight Technological Innovations in Neu-
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