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We examine coding strategies for coded aperture scatter imagers. Scatter imaging enables tomography of
compact regions from snapshot measurements. We present coded aperture designs for pencil and fan
beam geometries, and compare their singular value spectra with that of the Radon transform and
selected volume tomography.We show that under dose constraints scatter imaging improves conditioning
over alternative techniques, and that specially designed coded apertures enable snapshot 1D and 2D
tomography. © 2013 Optical Society of America
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1. Background

The focus of this paper is tomography based on coded
aperture x-ray scatter imaging (CAXSI). We consider
pencil and fan beam geometries, and use singular
value decomposition (SVD) to compare each CAXSI
system with other tomographic strategies, such as
Radon imaging and selected volume tomography
(SVT). Singular value analysis is often used to evalu-
ate the noise sensitivity of measurement systems
and to quantify the number of components measured
above the noise floor. We show that the singular
values for CAXSI decay more slowly compared
with other techniques as the image resolution is in-
creased. Pencil beam CAXSI enables imaging along a
single ray from a snapshot measurement (a single
exposure of a detector array) by detecting a diversity
of scattered x rays [1]. Fan beam CAXSI enables
snapshot imaging within a plane normal to a 2D de-
tector array [2]. Careful selection of scattered rays
could be important for minimizing radiation doses

and/or maximizing throughput in tomographic
systems.

Scatter imaging was first proposed in 1959 [3] and
has been the subject of numerous studies and re-
views [4]. Scatter tomography has used Radon meth-
ods [5] and energy resolved detection [6]. The most
common strategy, however, relies on SVT using colli-
mation filters at the source and at the detector [7].
CAXSI is a novel approach to scatter imaging that
uses coded masks between the scattering object and
the detector array. In contrast with collimation
filters, the coded aperture allows rays from multiple
directions to simultaneously illuminate each detec-
tor pixel. Increased photon efficiency is the advan-
tage of CAXSI relative to selected volume imaging.

Following initial proposals for spectroscopy [8] and
imaging [9], coded aperture optical systems focused
for many years on Hadamard codes for spectroscopy
[10] and uniformly redundant arrays for imaging
[11]. Recent studies, however, show that novel codes
in combination with biased, nonlinear, and/or decom-
pressive estimators may achieve comparable or
better results [12]. As an example, coded aperture
snapshot spectral imaging uses pseudorandom codes
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to improve the efficiency of spectral image collection
[13]. For sparse or compressible objects coded aper-
ture multiplexing can improve system sensitivity
and SNR even when photon noise is dominant [14].

The system geometry for forward scatter CAXSI is
illustrated in Fig. 1. Scattered radiation from an il-
luminated sample passes through a coded aperture
placed a distance d in front of a 2D detector array.
CAXSI owes its throughput and snapshot advan-
tages to the combination of scatter imaging and
coded apertures with high transmittance (50%), a
number of which are presented in this paper. An
ideal coded aperture will minimize self-similarity
under translation, scaling, and/or rotation. Specifi-
cally, a shift (translation) code t�x� will possess a
correlational inverse t̂�x� such that

R
t�x�t̂�x − a�dx �

δ�a�, where δ�� � �� is the Dirac delta function. For a
scale code,

R
t�x�t̂�xa�dx � δ�a − 1�. Similar condi-

tions can be constructed for rotational codes. For in-
coherent imaging, 0 ≤ t�x� ≤ 1 but t̂�x� is not bound
by this constraint since it is applied digitally.

Shift codes are well known in coded aperture im-
aging and provide resolution parallel to a detector ar-
ray. The shift codes in this paper are based on
quadratic residues. We motivate the use of harmonic
functions as scale codes due to their distinguishabil-
ity under magnification, providing resolution in
range from a detector plane. We present combined
scale and rotation codes for pencil beam illumination
providing resolution in both range and scattering an-
gle. For fan beam illumination, we combine scale
and shift codes to image planes perpendicular to
the detector array.

In this paper, linear scattering models are ana-
lyzed which are applicable when attenuation is neg-
ligible or otherwise corrected for. We derive analytic
SVDs for isotropic scattering objects and resort to
numerical evaluation for the anisotropic cases.
SVD may be performed for any linear operator over
continuous or discrete domains and provides a
powerful tool for comparing measurement systems.
Reference [12] discusses SVD analysis for computa-
tional imaging and related reconstruction methods,
such as truncated SVD and Tikhonov regularization.
The fundamental concept is that measurement noise
produces an effective singular value cutoff below
which the singular vectors are not reliably recovered.

The next section analyzes pencil beam CAXSI
under the assumption of isotropic scattering. This
is extended to anisotropic scattering and applicable
coded aperture designs are presented in Section 3. A
coded aperture for fan beam illumination and iso-
tropic scattering is presented in Section 4, and the
scalability of CAXSI is compared with other tomo-
graphic strategies in Section 5. Results are summa-
rized in Section 6.

2. Pencil Beam CAXSI

As a first example of code design, suppose that a
pencil beam illuminates a section of the target object
distributed along the z axis. Our goal is to image
object scattering density f �x � 0; y � 0; z�. The full
volume may subsequently be reconstructed by raster
scanning.

We assume isotropic scatter to all detector posi-
tions, which approximates Compton (incoherent)
scattering or x-ray fluorescence when attenuation
is weak and the detector array subtends a small solid
angle with respect to the object (this assumption will
be relaxed in Section 3). The detector elements lie in
the z � 0 plane and measure the scatter. The scatter
visibility is modulated by a coded aperture a distance
d from the detector plane. For simplicity, we assume
a 1D coded aperture transmittance t�x�, where xmay
be a Cartesian coordinate or a radius from the pencil
beam axis. The signal at coordinate x in the detector
plane is

g�x� �
Z

zmax

d
f �z�t

�
x
�
1 −

d
z

��
dz: (1)

For simplicity, the system geometric response is
omitted and the source is monochromatic. Estima-
tion of f �z� from g�x� is enabled by judicious selection
of t�x�.

The coordinate transformation β � 1 − d∕z
changes Eq. (1) to

g�x� �
Z

1

0

~f �β�t�xβ�dβ; (2)

where ~f �β� � f �z � d∕�1 − β��d∕�1 − β�2 and we
assume zmax ≫ d. Equation (2) is a “scale transforma-
tion”; inversion is straightforward if t�x� is orthogo-
nal in scale.

Harmonic functions are orthogonal in scale
(sinusoids at different frequencies have vanishing
correlation). The simplest choice for t�x� satisfying
the requirements that 0 ≤ t ≤ 1 is t�x� �
�1 − cos�2πux��∕2, where u is the spatial frequency
of the coded aperture. The measurement model is
then

g�x� � 1
2

Z
1

0

~f �β��1 − cos�2πuxβ��dβ: (3)

Equation (3) is familiar as the forward model for the
Fourier transform spectroscopy [12]. The singular

Detector arrayCoded aperture

Object

Illumination plane

Fig. 1. System geometry for planar scatter imaging.
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vectors for this transformation are derived from the
constant singular vector associated with the 1 oper-
ator and prolate spheroidal singular vectors associ-
ated with the kernel cos�2πuxβ�. Assuming that
the support of g�x� is �0; X �, the singular value corre-
sponding to the first operator is Nx � uX, which is
the number of harmonic periods that are observed
for a scatter point at z � ∞.

The singular vectors of the operator
−�1∕2� cos 2πuxβ supported over β ∈ �0; 1� and x ∈
�0; X � are the prolate spheroidal wave functions
ψn�β� for n even [15]. The corresponding singular
values are

������������
λnNx

p
∕2, where λn ≈ 1 for n < Nx∕2

and λn ≈ 0 for n > Nx∕2 [12].
The even prolate spheroidal functions are not

orthogonal to the constant vector over [0, 1] but
the much larger singular value associated with the
constant vector means that the spaces spanned by
the two operators approximate the space spanned
by their sum. The singular decomposition space thus
consists of a single vector with singular value Nx∕2
andNx∕2 − 1 secondary vectors corresponding to sin-
gular values

�������
Nx

p
∕2.

The prolate spheroidal basis yields resolution
elements of length 1∕Nx distributed uniformly
distributed over β � �0; 1�. Converting back to the z
coordinate, one derives resolution

Δz � z2

Nxd
: (4)

This expression may be understood by noting that
the location z of a single point scatterer is localized
by observing u0, the frequency of the sinusoid
projected onto the detector. The aperture code is
magnified by a factor z∕�z − d� and so u0 � u�z − d�∕z.
The signals from two point scatters separated by a
distance Δz lose orthogonality when Δu0 ≤ u∕Nx
due to the finite detector size. Propagating this
uncertainty to z through Δu0 � �∂u0∕∂z�Δz produ-
ces Eq. (4).

3. Anisotropic Scattering

In the previous section we motivated the use of har-
monic codes for range discrimination under isotropic
scattering. If a 2D detector is used, there is a redun-
dancy of scattered rays, which may be exploited to
estimate features other than density along the 1D ob-
ject. In this section we present such an example
where a more general scattering model relaxes the
assumption of isotropic scattering to allow depend-
ence on θ, the polar scattering angle. This applies,
for instance, to Bragg (coherent) scattering from
liquids, powders, and amorphous compounds. In this
case one may vary the code t�φ; ρ� as a function of an-
gle φ and radius ρ in order to image θ and z simulta-
neously. The forward model in this case is

g�φ; ρ� �
Z

zmax

d
f �z; θ�t

�
φ; ρ

�
1 −

d
z

��
dz (5)

with polar angle φ and radius ρ in the detector plane.
Let r � ρ�1 − �d∕z�� be the radius at which the ray
connecting beam position z with detector radius ρ
intersects the aperture plane. Transforming the inte-
gral in Eq. (5) from z to r, and defining f �r; ρ� �
�ρd∕�ρ − r�2�f �z � ρd∕�ρ − r�; θ � tan−1�ρ − r∕d�, the
forward model takes the simple form

g�φ; ρ� �
Z

t�φ; r� f �r; ρ�dr: (6)

Each radius therefore defines a subspace for the op-
erator

R
t�φ; r��� � ��dr and its matrix representation t.

The elements of t are tij � t�iΔφ; jΔr�, given by sam-
ples of the transmittance at regular intervals in φ
and r. Because t operates on subspaces, the singular
values of Eq. (6) are equal to those of t. However, the
transformation from �z; θ� → �r; ρ� is not unitary and
therefore the SVD of Eq. (5) is more complicated, mo-
tivating numerical evaluation.

We seek invertible codes for t with entries in [0, 1].
The simplest coded aperture is based on the identity
matrix, shown in polar and Cartesian coordinates in
Fig. 2. This aperture is a type of collimator since each
detector receives a single ray, and therefore provides
minimal throughput. Multiplexing with 50% average
transmittance can be achieved by a coded aperture
based on a discrete cosine transform (DCT), shown
in Fig. 3. This mask contains gray scale values,
but some applications require binary codes due to
fabrication limitations. This motivates codes based
on a Hadamard matrix (Fig. 4) or randomized fea-
tures (Fig. 5). A high-resolution Cartesian image of
the DCT code is included, which shows its continuous
form, and the columns of the Hadamard matrix have
been sorted so the angular frequency increases with
radius. This sorting operation is unitary and there-
fore preserves the singular value spectrum.

For each of the apertures in Figs. 2–5, the forward
model from Eq. (5) was numerically simulated as a
matrix in order to find its singular value spectrum.
The object was sampled with 48 × 48 pixels from
z � d to 2d and θ � 0 to 27°. Each coded aperture
was simulated at d � 100 mm with 31 polar sections
and 31 radial sections from r � 0 to 25 mm. The
detector was sampled with 96 polar and 96 radial
sections from ρ � 0 to 50 mm. The singular value
spectra for these code choices are plotted together
in Fig. 6, and we have included the harmonic code
t�x�, which was previously derived for isotropic scat-
tering. The identity code shows the poorest perfor-
mance, due to its low overall transmission. The
harmonic and DCT codes show significantly larger
values and follow each other closely. The Hadamard
and random binary codes have the largest singular
values and choosing between these two depends on
which singular vectors should be emphasized.

4. Fan Beam CAXSI

CAXSI may also be applied to planar imaging. Once
again, we consider isotropic scattering for simplicity.
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Fig. 2. Coded aperture based on the identity matrix. (a) Polar coordinates (r, φ). (b) Cartesian coordinates �x; y�.

Fig. 3. Coded aperture based on the DCT. (a) Polar coordinates (r, φ). (b) Cartesian coordinates �x; y�.

Fig. 4. Coded aperture based on a Hadamard matrix. (a) Polar coordinates (r, φ). (b) Cartesian coordinates �x; y�.
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When the entire y–z plane is illuminated as in Fig. 1,
the forward model becomes

g�x; y� �
Z

Y∕2

−Y∕2

Z
zmax

d
f �x0 � 0; y0; z0�

× t
�
x
�
1 −

d
z0

�
; y
�
1 −

d
z0

�
� y0

d
z0

�
dy0dz0: (7)

Choosing t�x; y� � �1� sin�2πux�p�νy��∕2 where p�νy�
is orthogonal in translation provides sensitivity to
shifts in y and z. The quantity ν is the spatial
frequency of the code in the y direction. We assume
specifically that

p�y� �
X
n

pn�2 rect�y − n� − 1�;

where rect�y� is a unit square pulse of width 1 and
fpng is a binary sequence with two-level autocorrela-
tion. Such sequences may be found for various code
lengths [16]. Quadratic residue derived codes of
length P � 4m� 1, with P prime, are particularly

straightforward, and yield transverse imaging reso-
lution Δy � z∕�νd� [11]. Two scatter points separated
by Δy produce signals shifted by one code period in
the y direction.

Figure 7 shows aperture designs that are harmonic
in the horizontal (x) axis and translation coded in the
vertical (y) axis using quadratic residue codes. The
aperture resolution (number of code features) was
varied separately in each direction to illustrate the
scaling of the singular value spectrum, shown in
Fig. 8. Measurements were numerically simulated
over a 100 mm× 100 mm area and 96 × 96 samples.
The object was represented by 48 × 48 pixels over a
square region of dimension 100 mm in the y–z plane,
centered 150 mm from the detector. The coded
aperture was simulated at distance 100 mm from
the detector and tiled to provide full coverage from
all scatter points.

A look at the singular value spectra in Fig. 8 re-
veals the effect of code resolution. The codes with
16 features (eight sinusoid periods) in the x direction
both cutoff at about 900 singular values, and the co-
des with 32 features in x retain about 1600 singular
values. Increasing the shift code resolution from 17
to 29 features amplifies the singular values but does
not appear to add more. Increasing the frequency of
the harmonic code has the strongest effect of adding
singular values and amplifying the spectrum.

The coded aperture with 32 × 29 features was com-
pared with a similar random code drawn from a uni-
form distribution on [0, 1], shown in Fig. 9. The
singular value spectra for the CAXSI systems using
the two codes are shown in Fig. 10. For the first 620
singular values our code outperforms the random
code but then a crossover occurs and the random code
produces a more slowly decaying spectrum. We ex-
pect the random aperture will perform worse in a
noisy environment where a limited number of singu-
lar vectors are measurable.

5. Scalability of Imaging Techniques

In this section we compare Radon imaging and SVT
with CAXSI for 2D tomography under the constraint

Fig. 5. Coded aperture based on a random binary matrix. (a) Polar coordinates (r, φ). (b) Cartesian coordinates �x; y�.

0 100 200 300 400 500 600 700 800
0

 
Identity
Harmonic in x
Random binary
DCT
Hadamard

Fig. 6. Singular value spectra of the pencil beam system for each
code choice.
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of fixed radiation dose. The singular values for each
technique scale with the resolution of the desired im-
age, where we assume the number of measurements

M equals the number of object coefficients. Radon im-
aging is a method of transmission tomography where
the measurements are line integrals of the target’s
density. Radon imaging requires multiple exposures
for each tomographic image. The singular values of
the 2D Radon transform are λm �

��������������������������
4π∕�m� 1�

p
[17], with each value having a degeneracy of m� 1.
The Radon transform therefore yields typical singu-
lar values proportional to 1∕M1∕4. Letting N be the
number of reconstructed pixels in each object dimen-
sion,M � N2 so the singular values are of magnitude
1∕

�����
N

p
. A pencil beam scanned over a plane produces

N subspaces each with N singular values propor-
tional to 1∕

�����
N

p
. For the Radon system to deliver

the same dose as the scanned pencil beam, the source
must be N times dimmer during Radon’s N expo-
sures. The effective scaling is then 1∕N3∕2 for Radon
and 1∕

�����
N

p
for pencil beam CAXSI. In Appendix A,

we show that the singular values scale like 1∕N
for fan beam CAXSI, and since this is a snapshot
technique the dose is comparable to the scanned
pencil beam.

Fig. 7. Coded apertures based on a sinusoid in x (horizontal) and a quadratic residue in y (vertical). The number of code features in each
direction �x; y� are (a) 32 × 29, (b) 16 × 29, (c) 32 × 17, and (d) 16 × 17 features.

0 200 400 600 800 1000 1200 1400 1600 1800
0

16 (x) by 17 (y) features
16 (x) by 29 (y) features
32 (x) by 17 (y) features
32 (x) by 29 (y) features

Fig. 8. Singular value spectra for each of the coded apertures in
Fig. 7.
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SVT is a scatter imaging technique that uses
collimation at the source and detector so that each
measurement is sensitive to a single object voxel
[7]. Using an array of detectors collimated appropri-
ately, snapshot measurement is possible using SVT.
The measurement matrix for SVT is diagonal and
the elements are the singular values. For a fixed
dose, the singular values are proportional to 1∕N
for a pencil beam and 1∕N2 for a fan beam since
these are the fractions of voxels contributing to each
measurement.

Table 1 summarizes the scaling laws for 1D and 2D
imaging using pencil and fan beam CAXSI, Radon
imaging, and SVT. In each case the singular values
are scaled so the maximum is 1. Both pencil and
fan beam CAXSI show improvement over other
methods for 1D and 2D imaging. In addition, pencil
beam CAXSI enables independent reconstruction of
each ray, whereas planar Radon imaging multiplexes

points over a plane. Independent reconstruction of
each subspace enables spot tomography, where a
single pencil beam illuminates a region of interest,
eliminating unnecessary doses to neighboring
regions.

These results assume equal photon efficiency for
scatter and transmission imaging. In practice, the
scatter systems will include an additional factor
for the fraction of the total scatter signal detected,
and the ratio of scattered to transmitted photons
for the object of interest.

6. Summary

In this paper, we present CAXSI techniques employ-
ing pencil and fan beam illumination. By using spe-
cially designed coded apertures, 1D and 2D density
distributions can be reconstructed from a single
exposure of an appropriate imaging detector. Har-
monic codes are shown to provide range resolution
under the assumption of isotropic scattering, an
approximation for x-ray fluorescence and Compton
(incoherent) scattering. Two-dimensional codes are
developed for anisotropic scattering along a pencil
beam, applicable to Bragg scattering from liquids,
powders, and amorphous compounds. For each
system we present singular value analyses of the
first-order scattering model, which are compared
with Radon imaging under a fixed dose constraint.
CAXSI shows several advantages, including im-
proved scalability, snapshot capability, and the pros-
pect of “spot tomography” where isolated regions of
interest are irradiated. Further refinement of the
scattering models will include energy-dependent
absorption and multiple scattering effects, as well
as energy-sensitive measurement techniques. Im-
proved performance is expected when scatter and
transmission signals are used together in joint
estimation of object structure.

Appendix A

In this section we derive the SVD for fan beam
CAXSI. Starting with the forward model in Eq. (7),
we introduce the projective coordinates:

α � y0
d
z0

β � 1 −

d
z0
:

If we define a new object function F�α; β� �
�d∕�1 − β�3�f �x0 � 0; �α∕1 − β�; �d∕1 − β��, the forward
model becomes

Fig. 9. Coded aperture with resolution 32 × 29 based on uniform
random values in [0, 1].

0 500 1000 1500 2000 2500
0

Harmonic (x) MURA (y)
Random

Fig. 10. Singular value spectra for the proposed code and a
random code.

Table 1. Scaling of Dose-Constrained Singular Values for Pencil
Beam CAXSI, Fan Beam CAXSI, Radon Imaging, and SVTa

Image Dimension Pencil Fan Radon SVT

1D 1∕
�����
N

p
— — 1∕N

2D 1∕
�����
N

p
1∕N 1∕N3∕2 1∕N2

aIn each case the singular values are scaled so that the
maximum is 1.
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g�x; y� �
Z

1

0

Z
∞

−∞
F�α; β�t�xβ; βy� α�dαdβ:

The adjoint is defined by

FA�α0; β0� �
Z

Y∕2

−Y∕2

Z
X∕2

−X∕2
g�x; y�t�xβ0; β0y� α0��dxdy:

We rearrange this expression in terms of the normal
operator:

FA�α0; β0� �
Z

1

0

Z
∞

−∞
F�α; β�K�α; β; α0; β0�dαdβ

with kernel function

K�α; β; α0; β0� �
Z

X∕2

−X∕2

Z
Y∕2

−Y∕2
t�xβ; βy� α�

× t�xβ0; β0y� α0��dxdy: (A1)

Now consider a separable aperture code with
the form t�x; y� � �1� A�x�B�y��∕2 and −1 ≤ A�x�
B�y� ≤ 1. Inserting this into Eq. (A1),

KS�α; β; α0; β0� �
Z

X∕2

−X∕2

Z
Y∕2

−Y∕2

1� A�xβ�B�βy� α�
2

×
1� A�xβ0��B�β0y� α0��

2
dydx:

We consider codes with 50% average transmission so
that

R X∕2
−X∕2

R Y∕2
−Y∕2 A�xβ�B�βy� α�dydx ≈ 0. Then we can

neglect this contribution and consider only

KS�α; β; α0; β0� �
XY
4

� 1
4

Z
X∕2

−X∕2
A�xβ�A�xβ0��dx

×
Z

Y∕2

−Y∕2
B�βy� α�B�β0y� α0��dy: (A2)

With our scale code A�x� � cos�2πux�, the integral
over X is

Z
X∕2

−X∕2
cos�2πuxβ� cos�2πuxβ0�dx

� 1
2

Z
X∕2

−X∕2
cos�2πux�β − β0�� � cos�2πux�β� β0��dx

� 1
2πu�β − β0� sin�πuX�β − β0��

� 1
2πu�β� β0� sin�πuX�β� β0��

≈
X
2
sinc�Nx�β − β0��

with Nx � uX . This neglects the rapidly oscillating
term β� β0. The eigenfunctions for the sinc kernel
are the prolate spheroidal wave functions [18];

however, we take a different approach here. For
simplicity we take Nx ≫ 1 so that the integral is
only nonzero when β ≈ β0. Equation (A2) is approxi-
mated by

KS�α;β;α0;β0��
XY
4

�X
8
sinc�Nx�β−β0��

×
Z

Y∕2

−Y∕2
B
�
β�β0

2
y�α

�
B
�
β�β0

2
y�α0

��
dy

with �β� β0∕2� ≈ β ≈ β0 at the peak of the sinc func-
tion. If B�y� is periodic with period P so that B�y� �P∞

n�−∞ cn exp�2πiny∕P� (as would be represented by
a convolutional code), then

KS�α;β;α0;β0��
XY
4

�X
8
sinc�Nx�β−β0��

×
Z

Y∕2

−Y∕2

�X
n

cn exp
�
2πin
P

�
β�β0

2
y�α

���

×
�X

n0
c�n0 exp

�
−2πin0

P

�
β�β0

2
y�α0

���
dy:

We approximate the integral with a full period over
the periodic function, which is 2P∕β� β0, neglecting
any edge effects:

KS�α; β; α0; β0�

� XY
4

� X
8
sinc�Nx�β − β0��Y�β� β0�

2P

×
Z

P∕�β�β0�

−P∕�β�β0�

�X
n

cn exp
�
2πin
P

�
β� β0

2
y� α

���

×
�X

n0
c�n0 exp

�
−2πin0

P

�
β� β0

2
y� α0

���
dy:

All of the terms for which n ≠ n0 are zero, so the
integral becomes

KS�α;β;α0;β0��
XY
4

�X
8
sinc�Nx�β−β0��

Y�β�β0�
2P

×
Z

P∕�β�β0�

−P∕�β�β0�

X
n

jcnj2 exp
�
2πin
P

�α−α0�
�
dy:

Evaluating the integral,

KS�α; β; α0; β0� �
XY
4

� XY
8

sinc�Nx�β − β0��

×
X∞
n�−∞

jcnj2 exp
�
2πin
P

�α − α0�
�
:

The sum is just the Fourier series of the autocor-
relation of B�y�, represented by BA�y�:
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KS�α; β; α0; β0� �
XY
4

�
1� 1

2
sinc�Nx�β − β0��BA�α − α0�

�
:

(A3)

Equation (A3) describes the point spread function at
projective coordinates �α; β� due to an impulse at
�α0; β0�. The SVD can be found by solving the
eigenvalue equation

λ2mnF�α0; β0� �
Z

1

0

Z
∞

−∞
Fmn�α; β�K�α; β; α0; β0�dαdβ

(A4)

with the eigenvectors being the singular vectors of
the kernel and the eigenvalues being the squares
of the singular values λmn. For simplicity, we
assume the object is periodic such that F�α; β� �
F�α� P; β� 1�. An ansatz for the form of the singular
vectors is

Fmn�α; β� � e−2πi�
αm
P �βn�:

Inserting this into the eigenvalue Eq. (A4),

λ2mne−2πi�
α0m
P �β0n� � 1

P

Z
P∕2

−P∕2
dα

Z
1

0
dβe−2πi�

αm
P �βn�K�α;β;α0;β0�:

On the right-hand side, the integrals over the first
term in K�α; β; α0; β0� evaluate to

XY
4P

Z
P∕2

−P∕2
dαe−

2πiαm
P

Z
1

0
dβe−2πiβn � XY

4
δn0δm0:

The second term in K produces

XY
8P

Z
P∕2

−P∕2
dαe−

2παm
P BA�α

− α0�
Z

1

0
dβe−2πiβn sinc�Nx�β − β0��:

The first integral evaluates to �XY∕8� exp�−2πimα0∕
P�jcmj2. For the second integral, sinceNx ≫ 1 the sinc
function only contributes when β ≈ β0 and we can ex-
tend the limits to 	∞. The result is the Fourier
transform of the sinc, or exp�−2πβ0n�rect�n∕Nx�∕Nx.
We find singular values

λmn �
��������
XY

p

2

��������������������������������������������������������
δm0δn0 �

jcmj2
2Nx

rect
�

n
Nx

�s
: (A5)

To evaluate cm, note that the function B�y� is the con-
volution of the code sequence a�y� � PNy−1

n�0 anδ�y −
nP∕Ny� and the pulse train b�y� � P∞

m�−∞ rect�Ny�y∕
P −m��, where Ny is the code length. From the con-
volution theorem, the continuous Fourier transform
of B�y� is ~B�ν0� � ~a�ν0� ~b�ν0�, where ν0 is a spatial
frequency and

~a�ν0� �
Z

∞

−∞
dye−2πiyν0a�y� �

XN−1

n�0

ane−2πinν
0P∕Ny

~b�ν0� �
Z

∞

−∞
dye−2πiyν0b�y�

� 1
Ny

sinc
�
ν0P
Ny

� X∞
m�−∞

δ

�
ν0 −

m
P

�
:

The coefficients cm can be extracted via

cm � lim
ϵ→0

Z
m∕P�ϵ

m∕P−ϵ
dν0 ~B�ν0�

� 1
Ny

sinc
�
m
Ny

� XNy−1

n�0

ane−2πinm∕Ny

� 1
Ny

sinc
�
m
Ny

�
~am;

where f ~amg is the DFT of fang. From Parseval’s
theorem, the RMS value of ~am is

�����������������������������
1
Ny

XNy−1

m�0

j ~amj2
vuut �

��������������������XNy−1

m�0

janj2
vuut �

�������
Ny

q
;

where the last line follows from an � 	1. Therefore,
we have jcmj ≈ sinc�m∕Ny�∕

�������
Ny

p
. Substituting

this value for cm in Eq. (A5), the singular values
for m ≠ 0 or n ≠ 0 are

λmn � 1
2

�������������
XY

NxNy

s
rect

�
n
Nx

�
sinc

�
m
Ny

�
:

This spectrum has maximum value λ00 �
��������
XY

p
∕2

and roughly NxNy singular values that are smaller
by a factor of

�������������
NxNy

p
. When estimating N2 object

coefficients with Nx � Ny � N, the singular values
have magnitude proportional to 1∕N.
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