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We investigate new sampling strategies for projection tomography, enabling one to employ fewer measurements
than expected from classical sampling theory without significant loss of information. Inspired by compressed
sensing, our approach is based on the understanding that many real objects are compressible in some known
representation, implying that the number of degrees of freedom defining an object is often much smaller than
the number of pixels/voxels. We propose a new approach based on quasi-random detector subsampling, whereas
previous approaches only addressed subsamplingwith respect to source location (view angle). The performance of
different sampling strategies is considered using object-independent figures of merit, and also based on reconstruc-
tions for specific objects, with synthetic and real data. The proposed approach can be implemented using a struc-
tured illumination of the interrogated object or the detector array by placing a coded aperture/mask at the source or
detector side, respectively. Advantages of the proposed approach include (i) for structured illumination of the
detector array, it leads to fewer detector pixels and allows one to integrate detectors for scattered radiation in
the unused space; (ii) for structured illumination of the object, it leads to a reduced radiation dose for patients
in medical scans; (iii) in the latter case, the blocking of rays reduces scattered radiation while keeping the same
energy in the transmitted rays, resulting in a higher signal-to-noise ratio than that achieved by lowering exposure
times or the energy of the source; (iv) compared to view-angle subsampling, it allows one to use fewer measure-
ments for the same image quality, or leads to better image quality for the same number of measurements. The
proposed approach can also be combined with view-angle subsampling. © 2014 Optical Society of America

OCIS codes: (110.6960) Tomography; (110.7440) X-ray imaging; (340.7430) X-ray coded apertures;
(340.7440) X-ray imaging; (110.6955) Tomographic imaging.
http://dx.doi.org/10.1364/JOSAA.31.001369

1. INTRODUCTION
Computerized tomographic imaging [1] or projection tomog-
raphy is the process of estimating a multidimensional func-
tion/distribution from measurements of its line integrals.
The function of interest usually represents some physical
property of an object, and here we refer to it as simply the
“object.” Sampling in tomography [2] has classically relied
on a simplified description of the relationship between angu-
lar sampling and the desired resolution, assuming the object is
described by images or image volumes and represented on a
rectangular grid. The spacing between angles should be no
bigger than the pixel/voxel size divided by twice the largest
dimension.

There has been significant recent interest in reducing the
number of measurements for inferring an underlying signal/
image, leading to the field of compressed sensing (CS). The
seminal work of Candès et al. [3] and Donoho [4] demon-
strated that if the underlying signal/image is sparse in its na-
tive basis, or in some orthonormal basis (e.g., wavelets), then
the number of required measurements for perfect signal/
image recovery may be much smaller than that anticipated
by classical sampling theory. If the image or basis coefficients
are not exactly sparse but rather are compressible (many
coefficients are negligibly small, but not exactly zero), then
highly accurate signals/images can still be reconstructed. In
the following, for simplicity we refer to images as being

“sparse,” with the understanding that in practical settings
near-sparsity (“compressibility”) is more common.

The idea behind CS for imaging is that we have a very large
set of basis images, of which only a small but unknown set has
non-negligible coefficients. Therefore, the measurements
need to be maximally sensitive to as many of the basis images
as possible, and images that differ in a small number of basis
images must be as distinguishable as possible in measurement
space. The optimal measurements are therefore as unstruc-
tured as possible in terms of their sensitivity to basis images,
but they should also maximally separate sparse representa-
tions in measurement space. The reconstruction of the image
from these unstructured measurements is enabled by using a
sparsity prompting penalty such as l1 norm or total variation
(TV) [3,4]. This penalty incorporates the prior knowledge that
only a small set of coefficients is significant and prevents the
problem from being ill posed.

Many studies have considered sampling and compression
in tomographic systems. Image estimation from incomplete
data has been part of x-ray imaging since the beginning of
computed tomography [5]. The earlier studies considered in-
complete data due to physical constraints that include limited
views [5–7] and few view projections [7–10]. Convex optimi-
zation strategies used in initial CS studies have been used in
tomography for over 30 years [11,12], and the use of the l1

norm to invert tomographic data for geometrically sparse
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objects predates modern CS terminology (e.g., see [8]). Initial
CS studies were inspired by some of the earlier work in
tomography, as can be seen by Candès et al.’s motivating ex-
ample relating to a few-view tomographic reconstruction in a
parallel-beam geometry [13]. CS, in turn, continues to inspire
the tomographic community, and some of the later works
consider designed undersampling of the object with respect
to view angles [7,14–17] and use TV or l1 constrained
reconstructions; the potential benefit is, of course, reducing
radiation dose.

Tomographic measurements are embedded on spaces with
lower dimensionality than the physical spaces of the mea-
sured object. Typically one seeks to reconstruct 3D objects
from measurements distributed on 2D manifolds (for a given
source configuration, measurements are performed on a 2D
angular grid). To acquire an additional data dimension, one
often varies the measurement geometry as a function of time
(e.g., considering different source configurations over time,
and for each, data are measured on a 2D manifold). This
thereby creates a 3D measurement space to match the 3D
object space.

One form of compressive measurements attempts to re-
cover a 3D object based on a single 2D measurement. For ex-
ample, we have shown that 3D hyperspectral [18], diffraction
[19], and x-ray scatter [20,21] images may be reconstructed
from 2D data. We have also analyzed compressive sampling
for reconstruction of 3D objects with conventional optics
[22]. Most recently, we have shown that 3D video data cubes
may be constructed from 2D frames [23], thus using compres-
sive tomography to perform the reconstruction with respect
to time. With specific reference to projection tomography,
our previous work has focused on the use of reference struc-
tures [24] and coded apertures [25] to physically implement
quasi-random unstructured codes consistent with compres-
sive measurements. We have termed this class of compressive
measurement systems “compressive tomography,” character-
ized by estimating an N -dimensional physical object from
measurements in M < N dimensional physical space.

In this paper we pursue a different means of reducing the
quantity of measured data. The framework is based on the
more-conventional approach of performing measurements
on 2D manifolds, and acquiring a third dimension by varying
the source-object orientations (view angles) over time. How-
ever, in this setting we seek to reduce the total number of mea-
surements (line integrals) beyond what is considered possible
by classical sampling theory. There are two sampling rates
that can be controlled to reduce the total number of measure-
ments: (i) reducing the number of detectors in the 2Dmanifold
and (ii) reducing the number of source-object orientations
(view angles) considered. Although reducing the number of
view angles has been studied due to its straightforward imple-
mentation [7,14], reducing the number of detectors has been
overlooked, and the goal of this work is to investigate the util-
ity of this approach. Subsampling of either detectors or view
angles can be done uniformly, pseudorandomly, or using a
prescribed pattern. We compare several sampling strategies
using multiple figures of merit. We show that detector subsam-
pling can outperform view-angle subsampling, and in addition
has important practical advantages. Detector subsampling
can be accomplished by structured illumination, i.e., imposing
a structured pattern on the illuminating beam using coded

apertures on either the source or detector side, depending
on the application.

Our motivation is x-ray imaging where in addition to trans-
mitted photons that travel directly from source to detector,
there are also a considerable number of photons that scatter
from within the object via various physical mechanisms, such
as Compton and coherent scatter, and reach the detectors by
passing through a nondirect trajectory. Scatter may be consid-
ered as a dominant source of noise, such as in medical scans
using cone beam computed tomography [26,27], where the
measurement of scatter is done in a separate scan to estimate
the noise level, which is then utilized by the reconstruction
algorithm to improve image quality. Alternatively, measuring
scatter may provide valuable information about the molecular
structure of the imaged object [28] and can be used for
material discrimination and characterization. For example,
this is used in security applications, where dangerous substan-
ces such as explosives can be detected [29,30]. Other applica-
tions include quality control in industrial manufacturing [31]
and illegal drug detection [32]. Regardless of whether it is con-
sidered as a source of noise or information, the measurement
and estimation of scattered radiation is often desirable in ad-
dition to transmitted radiation.

Reducing the number of transmission detectors allows the
use of new sensors to exploit and measure scattered radiation
during the same scan. We do not explicitly consider measure-
ment of scatter here, but note that the reduction in the number
of detectors is motivated in part by the opportunity to mea-
sure scattered signals in the newly available sensing space.
In medical applications, detector subsampling may be imple-
mented by blocking source rays, thereby exposing the patient
to less harmful radiation, which also results in reduced scat-
tered radiation. In this case, the level of scatter will decrease
per view angle, while keeping the same transmitted radiation
in the remaining rays, leading to improved SNR. An alternative
approach to reducing radiation dosage is to reduce the power
of the source or to reduce exposure time while keeping all
measurements. However, this will further lower the SNR
and consequently lower image quality [33].

Detector subsampling can also potentially enable multi-
source object illumination for compressive tomography. In
this case, coded apertures are designed such that any detector
pixel only measures a single ray and the illumination pattern
of each source undergoes quasi-random detector subsam-
pling. This provides the connection between the strategies
studied here and compressive tomography as defined above
and will be the subject of future work.

There are several key differences between the compressive
measurements explored in this paper for projection tomogra-
phy and the general framework of CS as described in [3,4,34–
36]. Theoretical CS studies [3,4] that provide the strongest re-
sults make use of completely random measurements, which
are maximally spread out in the space where the object of in-
terest has a sparse representation in some basis (e.g., native
basis or wavelet basis), and suggest measuring different linear
combinations of all basis coefficients. In contrast, in projec-
tion tomography, measurements are by nature confined to a
line in physical-location space. In addition, most tomographic
systems have the property that reducing the number of
measurements implies reducing the number of angular sam-
ples or line integrals acquired, as opposed to measuring linear
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combinations of line integrals. This is a restrictive constraint
that closely ties tomographic system design to sampling
theory. In addition, these systems can have a wide range of
designs that depend on the physics and/or geometry of the
target, each design providing different additional limitations
to how the object can be interrogated.

Several theoretical CS studies [34–36] rely on the
assumption that the set of measurements and the set of basis
functions (leading to a sparse representation of the object)
can both be described as projections onto an orthonormal ba-
sis. Instead of using completely random combinations of stan-
dard measurements, these studies suggest using a random
subset of standard measurements, which is more practical.
However, tomographic measurements are linearly dependent
and are generally not easily described by projections onto an
orthonormal basis. One option is to use the slice-projection
theorem, which enables one to describe integrals along paral-
lel lines in terms of radial lines in the 2D Fourier space of the
object [13]. Geometries employed in practical x-ray systems
greatly differ from the parallel beam geometry (e.g., real sys-
tems typically employ fan-beam or cone-beam illuminations).
When the object is sampled according to classical sampling
theory, it is possible to reorder the line integrals into parallel
lines using interpolation [37]. However, this approach cannot

be done in a straightforward way when the object is signifi-
cantly undersampled in actually used geometries, and the
same procedure would result in a large number of missing
samples in detector space, which would render the direct
Fourier transform on detector measurements quite challeng-
ing. Extensions of the slice-projection theorem to practical
geometries lead to complicated representations [38].

The remainder of the paper is structured as follows. In
Section 2 we state the general sampling problem and present
the sampling strategies that will be explored in this paper. We
review classical sampling theory, as a point of reference. De-
tails about the forward operator used in this study are dis-
cussed in Section 3. In Section 4 we present a singular
value decomposition (SVD) analysis, which gives insight into
the degree of ill-posedness and sensitivity to noise introduced
by the various sampling strategies. It also clarifies which fea-
tures of the object a system design is most sensitive to, and
how much it is matched to sparse objects. In Section 5 we
analyze the proposed sampling strategies using CS theory.
We present results for synthetic data in Section 6, demonstrat-
ing that even with significant undersampling, the object can
still be reconstructed with good quality; we also discuss

how the proposed approach is related to previously used strat-
egies. The most promising strategies are verified in Section 7
on real data coming from an experimental x-ray laboratory at
Duke University and from a Siemens Sensation 16 scanner for
human imaging located at St. Louis Children’s Hospital. To en-
able a simple theoretical analysis, we focus mainly on 2D ob-
jects, but the results can be easily extended to 3D objects, as
demonstrated by the examples for the patient dataset.

2. PROBLEM STATEMENT
A. Preliminaries
For simplicity, we focus on 2D functions, denoted f �x�, with
x � �x1; x2�. Depending on the specific application, the mea-
sured line integrals are usually arranged in a certain pattern,
which we refer to as a “scanning geometry,” or simply
“geometry.”

In the translate–rotate (parallel-beam) geometry [1], the
lines come in parallel bundles and are parametrized by the
direction of the beam defined by angle φ and the displacement
s perpendicular to the central ray in a bundle [see Fig. 1(a)].
The measurements in this configuration correspond to the
Radon transform defined by

Rf �φ; s� �
Z
x·θ�s

f �x�dx; θ � �cos φ; sin φ�: (1)

A commonly used physical configuration is the fan-beam
geometry, with lines arranged into fans emanating from focal
points (point sources) distributed over a circle around the ori-
gin; these are parametrized by the angular location of the
source β and the angle α between each ray and the “central
ray” that goes through the origin [see Fig. 1(b)]. This gives rise
to the fan-beam transform D, defined by

Df �β; α� �
Z
L�β;α�

f �x�dx; (2)

where L�β; α� is the line connecting the source and detector.
The relation to the Radon transform is given by

Df �β; α� � Rf �β� α − π∕2; r sin α�; (3)

where r is the distance of the source from the origin. An alter-
native configuration is shown in Fig. 1(c), where a linear dis-
placement is used instead. Note that there are other types of
geometries that arise in different applications, e.g., the outer

Fig. 1. Different scanning geometries in 2D and the corresponding parameters for the line integrals. The disk of radius ρ defines the image domain
where the function f is to be reconstructed from measurements of the line integrals. (a) Parallel beam (translate–rotate) geometry, (b) curved
detector fan-beam geometry, and (c) flat detector fan-beam geometry.
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circle in Fig. 1(b) could be centered about the source, but we
do not aim at giving an extensive list.

In real physical configurations only a discrete set of param-
eter values can be measured. Although in the continuous case
the fan-beam transform is a reparameterization of the Radon
transform, in the discrete case the grids of these two geom-
etries will be different. For example, trying to reorder fan-
beam measurements with only a few view angles into parallel
lines will result in many missing detector and view angle sam-
ples in the parallel-beam geometry. The Radon transform
plays a central role in classical sampling theory, as discussed
in Section 2.C and Appendix A, but the translate–rotate geom-
etry is no longer used in modern computed tomography (CT)
systems, and we shall consider here a sampled fan-beam
transform.

B. Sampling Strategies
The canonical 2D geometries described in Section 2.A consti-
tute a natural starting point for any study of new sampling
strategies, as they have already been studied extensively
and are well understood [2]. In this work we shall focus on
the fan-beam geometry, due to its practical use in x-ray CT
systems. The same concept is also applicable to spiral CT with
evidence provided in Section 7.B. There are two variables ac-
cording to which undersampling is possible: (1) detector loca-
tion and (2) view angle [“view angle” is the angle between the
line from the source to the origin and a reference axis, e.g., the
angle β in Fig. 1(b)]. We shall compare view and detector
undersampling while setting the variable that is not being
undersampled to the minimal required resolution according
to classical sampling theory. There are four basic sampling
strategies that are considered, as summarized in Fig. 2: (i) uni-
form view (UV) subsampling, in which views are selected
uniformly by keeping only every Nth view angle, and the com-
plete detector set is used; (ii) random view (RV) subsampling,
in which views are selected randomly while the complete de-
tector set is used; (iii) uniform detector (UD) subsampling, in
which detectors are selected uniformly by keeping only every
N th detector, and the complete view angle set is used; and
(iv) random detector (RD) subsampling, in which detectors
are selected randomly while the complete set of view angles
is used. The view subsampling strategy (UV) has been previ-
ously considered in [7]. The nonstructured (random) detector
subsampling has not been considered before, to the best of
our knowledge. We compare to the case where both view
and detector sampling are done according to the minimal

resolutions dictated by classical sampling theory, which we
refer to as “complete measurements.”

As explained in the introduction, the nonstructured (quasi-
random) detector subsampling is more suitable for sparse rep-
resentations of the object, and clear evidence for that will be
given in Sections 4–7. We will consider a few variations. (i) Dy-
namic random detector (DRD) subsampling is where detec-
tors are selected randomly per view angle with a different
selection for each view angle. (ii) Semidynamic random detec-
tor (SDRD) subsampling is the same as DRD, but with a num-
ber of different detector arrays (selections) that is less than
the number of views so the same detector selections are
reused in a periodic way. This can correspond to using a
few different masks, which is easier to implement in practice.
(iii) Static random detector (SRD) subsampling is the same
as DRD, but with the same detector selection used for
all views.

C. Sampling Conditions Based on the Peterson–
Middleton Theorem
Sampling theory for tomography originated from classical
sampling theory, which permits the reconstruction of a
band-limited function from its values on a regular grid or lat-
tice. However, the imaged domain is always of finite support,
and strictly speaking there are no band-limited functions of
compact support. Therefore, a widely used approach is to con-
sider essentially band-limited functions instead, i.e., the fre-
quency content outside some frequency band is considered
negligible. Given a desired resolution of some size, sampling
conditions are derived for stable reconstruction of details
down to that size. Here “stable” means that a small error in
measurements does not result in an arbitrary large error in
the reconstructed function.

Assume the object of interest f is contained inside a disk of
radius ρ outside which f � 0. Sufficient sampling conditions
for several different 2D geometries are summarized in Table 1
for reconstructing details of down to size δ. There are two dif-
ferent resolutions that are required according to this theory,
one for the view-angle intervals and one for detector intervals
(see Fig. 1 for the definitions of the parameters).

For completeness, in Appendix A we outline the derivation
of the sampling conditions. The overview of the derivations
emphasizes that nowhere in the theory is it assumed that
the object to be measured may be represented sparsely,
and therefore the theory does not account for all aspects
of the signal model leveraged here.

Fig. 2. Different sampling strategies under consideration demonstrated on a fan-beam geometry. The blue circles denote source locations (cor-
responding to view angles), and lines denote source–detector pairs (for clarity, only the lines for one source location are shown for each case). The
solid and dashed lines correspond to measured and nonmeasured line integrals, respectively. The large circle represents the source trajectory, and
the small circle represents the imaged domain. (a) Uniform view (UV) subsampling, (b) random view (RV)-angle subsampling, (c) uniform detector
(UD) sampling, and (d) random detector (RD) subsampling.
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3. FORWARD MODEL STUDIED
In all the following studies we use the flat detector fan-beam
geometry detailed in Fig. 3, which corresponds to the exper-
imental system used in Section 7. The noiseless measured line
integrals (sinogram data) are given in the matrix form

y � Hf; (4)

where f ∈ RN� represents the object of interest, which is dis-
cretized using a 2D Cartesian grid (image) and rearranged as a
vector. In x-ray CT, f is the attenuation of x rays per unit
length inside the imaged object in units of mm−1 (the full
physical model for x-ray imaging will be discussed in
Section 6). H ∈ RM×N� contains the intersection length of each
ray with each pixel inside the image (for x-ray CT, it is in units
of mm), with row index corresponding to line integral and
column index corresponding to image pixel. A complete data-
set is chosen according to the classical sampling theory of
Section 2.

In the following theoretical study, f is represented on a
128 × 128 (N � 1282) Cartesian grid corresponding to a rec-
tangular region of size 116 mm × 116 mm, but the image do-
main is restricted to a disk of radius ρ � 58 mm in order to
be consistent with the theory presented in Section 2.C. In
the system in Fig. 3, the detector panel and source are not
equally spaced from the axis of rotation as assumed by theory
(Rx ≠ r in Fig. 3), so we calculate the sampling rates for a sym-
metric system where these distances are equal to r and then
project back to the given detector panel location. According
to Table 1, the minimal resolution for detectors is 0.377 mm
and for views is 0.494°, which for the given detector size of
193 mm and a full scan of 360° corresponds to 512 detectors
and 727 views, a total of M � 372; 224 rays. These sampling
rates are used as a starting point from which we downsample
according to different sampling strategies, and we refer to
them as the “complete set” of measurements. Note that the
off-axis displacement Δ in Fig. 3 is very small, and its effect
on the sampling rates can be neglected. This displacement is

often used in order to break the symmetry in the line integrals
when source and detector locations are exchanged and to
make sure there is no redundancy in measurements when
source locations cover the entire 360° of the circle. We would
also like to note that the number of measurements in the com-
plete set is much greater than the number of unknowns (pix-
els/voxels) due to the ill-posed nature of the problem [39].

4. SINGULAR VALUE ANALYSIS
The SVD of H is a valuable tool for analyzing ill-posed prob-
lems [2]. When comparing two competing sampling strategies
for a given noise level, if nothing is known about the object
that is being measured, then the strategy that has more com-
ponents lying above that noise level is preferred, since it cap-
tures more orthogonal components of the object. However,
many times some prior information about the object is known.
In this case, it is not enough to judge the performance based
on the number of singular components above the noise level;
one needs to consider which features of the object the system
is most sensitive to, which are given by the right singular vec-
tors corresponding to the highest singular values. Ideally, the
features that the system is most sensitive to will belong to the
class of objects that is of interest. An alternative approach is
to look at the features that cannot be recovered reliably,
which represent the effective null space of the system when
noise is present.

In this work, we assume the measured object can be rep-
resented by an image that is sparse in some known represen-
tation. In the following section we shall show that for a sparse
object we would like the singular components that are most
sensitive to noise to be as incoherent (noise-like) as possible,
i.e., as noncompressible as possible. In this way, wemake sure
that the effective null space of the system does not include
sparse or compressible objects that are of interest, so we
can distinguish between two different sparse objects in mea-
surement (sinogram) space. A more detailed explanation will
be provided in Section 4.B.

A. Singular Values
Here we calculate the singular values of H in Eq. (4) corre-
sponding to different random sampling strategies discussed
in Section 2.B. We start with the minimal resolution required
by classical sampling theory for both views and detectors that
defines the full H matrix that corresponds to the complete set
of measurements. Then, the image f is undersampled accord-
ing to the different strategies, and this determines the remain-
ing rows of H that are used to compute the SVD. The selected
measurements are drawn uniformly at random using standard
pseudorandom number generators.

Figure 4 presents the singular values of H for random sub-
sampling by a factor of 16. The random selection of measure-
ments was repeated 20 times for each subsampling strategy,
and the mean and standard deviation for this ensemble were

Table 1. Sufficient Sampling Conditions for Reconstructing Details down to Size δ for the

Scanning Geometries in Fig. 1 According to Classical Sampling Theory

Geometry View Interval Detector Interval

Parallel Δφ � δ∕2ρ Δs � δ∕2
Fan—curved detector Δβ � �r � ρ∕r�δ∕2ρ Δα � δ∕2r
Fan—flat detector Δβ � �δ∕2ρ��r � ρ∕r��1 − ρ2∕r2� Δy � δ∕2

Fig. 3. Fan-beam geometry with flat detector panel used throughout
the analysis and simulations, which corresponds to the experi-
mental system described in Section 7. ρ � 58 mm, Δ � 1.2 mm,
r � 484.6 mm, Rx � 290.2 mm.
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computed. The forward operator on the Haar wavelet domain
obtained by right multiplying H by the discrete inverse wave-
let transform matrix (DWTM) has the same singular values
due to the unitary property of the DWTM. Two different ex-
amples for noise levels are shown in Fig. 4(a) and indicated by
two dashed lines denoted “noise level 1” and “noise level 2.”
For the higher noise level (no. 1), RV sampling has more sin-
gular components above noise level than DRD sampling, and
therefore the former is preferred in this regime [see also
Fig. 4(b) for a zoom-in view of the first 5000 singular compo-
nents]. However, for the lower noise level (no. 2), DRD sam-
pling is much better than RV, and the difference in the number
of components that are above noise level is significantly
greater than for the higher noise level. This analysis shows
that if nothing is known about the object, the DRD approach
is better than RV for the lower noise regime (at least for the x-
ray geometry considered). A SDRD sampling scheme that uses
only 10 different detector arrays (or masks) performs very
similarly to the DRD approach and offers potential simplifica-
tion of system design (note that SDRD is indistinguishable
from DRD within the scale of Fig. 4 and was therefore omit-
ted). In the SDRD approach, the mask is still changed for
every view, but there are less masks than views, so the masks
are reused periodically (10 masks instead of 727 for DRD).
The number of required masks should change according to
the complexity of the imaged object; however, this goes
beyond the scope of this work (see discussion in Section 8).
It is also interesting to note that the differences between SRD
sampling (where the same detector array is used for all views)
and RV sampling are minor compared to DRD. In the low-
noise regime SRD and RV are the worst subsampling strate-
gies according to this analysis.

The next natural question to ask is this: do we necessarily
gain from sampling randomly instead of uniformly? In order to
answer this question, Fig. 5 compares the singular values of H
with uniform sampling versus different random sampling
approaches. It can be seen in Fig. 5(a) that UV sampling is
comparable to RV sampling, so there is no advantage to
random sampling. A similar result can be seen in Fig. 5(b)
for detector sampling, where UD sampling is only slightly
better than SRD sampling. However, DRD sampling is

significantly better than UD and SRD, at least in the low-noise
regime. The condition number (ratio of largest singular value
to smallest singular value) for DRD is almost two orders of
magnitude smaller than for UD or SRD. What sets DRD apart
from the other approaches is the fact that different detectors
are sampled at each view angle. In conclusion, according
to this analysis, random sampling for detectors leads to
better conditioning of the forward operator, i.e., increased ro-
bustness to noise, but only provided it is done dynamically,
i.e., changing the used detectors from one view angle (source
location) to the other.

B. Singular Vectors
An important requirement for a system measuring sparse ob-
jects is to be able to distinguish between two different sparse
objects via their corresponding measurements. Assume the
measurements can be described as

y � Φx; (5)

where Φ is the discrete linear operator on the domain in
which the object representation x is sparse (in our example
it is the wavelet domain). In order to illustrate the concept
in the simplest way, we shall assume a strictly sparse image,
i.e., the number of nonzero elements denoted ‖x‖0 is small. In
order for two different sparse images x1; x2 with ‖x1;2‖0 ≤ S to
yield different measurements, one must require that the null
space of Φ does not contain objects with less than 2S
elements, since

Φx1 ≠ Φx2 ⇒ Φ�x1 − x2� ≠ 0 (6)

and since ‖x1 − x2‖0 ≤ 2S. This property can be quantified us-
ing the coherence metric discussed in Section 5.A, but it can
also be illustrated here using the singular components. We
shall look at the features that cannot be recovered reliably,
which represent the effective null space of the system when
noise is present. We would like those components in the null
space to be as incoherent (noise-like) as possible in the spar-
sifying domain, i.e., to be as noncompressible as possible, so
that the condition in Eq. (6) will hold.

Fig. 4. Singular values for undersampling by a factor of 16 using the different random subsampling strategies described in Section 2.B. RV, random
view; SRD, static random detector; DRD, dynamic random detector. The mean and standard deviation (std) for 20 different random selections are
indicated by solid lines and shaded strips, respectively. For clarity the boundaries of the shaded strips correspond to 1 std above and below the
mean (gray strip for RV and yellow strip for SRD). Note that the means for DRD and SDRD are indistinguishable from each other in this scale and
therefore the latter is omitted here. Also, the std for DRD and SDRD are indistinguishable from the mean of DRD and are therefore omitted here.
Also included are the singular values for the complete dataset (“Full”). The forward model is described in Fig. 3, and a 128 × 128 image resolution is
used. A circular domain was used to be consistent with classical sampling theory. (a) All singular components and (b) only first 5000 components.
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Figures 6–8 show some representative examples of the
right singular vectors of H for the lowest singular values
corresponding to the UD, DRD, and UV sampling strategies,
respectively, and presented as images. The right singular
vectors for the forward operator on the Haar wavelet domain
are obtained by applying the wavelet transform to the
singular vector. The wavelet decompositions are shown in
Figs. 9–11 for UD, DRD, and UV, respectively. The right sin-
gular vectors for UD in Figs. 6(a)–6(d) are clearly compress-
ible using the Haar wavelet basis, as seen in Fig. 9. In view of
the discussion above and these results, UD sampling is clearly
not suited for compressible objects. The right singular vectors
for DRD in Fig. 7 are significantly less compressible than
the ones for UD, as seen by comparing Fig. 10 with
Fig. 9. In fact, they consist of unstructured noise-like patterns,
which is the desired property for CS. This illustrates once
again the importance of random (unstructured) sampling
of detectors. The singular vectors for DRD sampling in
Figs. 7(a)–7(d) are also less compressible than the ones for
UV sampling in Figs. 8(a)–8(d), as seen by comparing Fig. 10
with Fig. 11, which suggests that DRD is the preferred
strategy.

For a complete dataset, the singular vectors resemble those
for the parallel beam geometry that are widely known in the
literature, since in principle, this is just a reordering of the
rays. In that case, the singular vectors are spread across
the entire image domain, and vectors corresponding to lower
singular values have higher spatial oscillations (higher fre-
quency content) than the vectors for higher singular values.
However, it should be noted that the singular vectors for
subsampled data can differ considerably from the ones cor-
responding to the complete dataset. For example, UD subsam-
pling results in a more sparse covering of the central region of
the image, and therefore this region is most sensitive to noise.
It is therefore not surprising that the last singular vectors are
confined to this region (see Fig. 6), as opposed to the singular
vectors for the complete dataset, which are spread across the
entire image domain. Another key difference is that all singu-
lar vectors for subsampled data contain both high and low
local frequencies.

5. COMPRESSIVE SENSING THEORY
Assume the signal can be represented in a given orthonormal
basis in RN :

f � Ψx; (7)

where the columns of Ψ ∈ RN×N represent the basis functions
and x ∈ RN are the basis weights, assumed to be sparse
(compressible). The measurement model is usually assumed
to be linear:

y � Hf � ϵ � HΨx� ϵ; (8)

where ϵ is an unknown noise vector (deterministic or random)
and in the second equality we substituted Eq. (7). A key result
in CS is stated in terms of the restricted isometry property
(RIP). The matrix Φ � HΨ is said to satisfy the RIP of order
S if there exists a constant δs ∈ �0; 1� such that

�1 − δs�‖x‖22 ≤ ‖Φx‖22 ≤ �1� δs�‖x‖22; (9)

for all vectors x having at most S nonzero entries (S sparse).
Known examples of matrices that are guaranteed to have this
property with high probability are random matrices with
entries drawn independently from Gaussian or Bernoulli dis-
tributions. However, in practical physical problems measure-
ments have predefined structure, e.g., in tomography each
measurement corresponds to a line integral, and the random
matrices described above are not very useful. Also, the task of
verifying that a given (structured) matrix satisfies the RIP has
exponential complexity, since one needs to verify that each
combination of up to S columns of Φ satisfies the inequality
in Eq. (9) (assuming we know S).

To address this issue, alternative approaches have been
proposed in [34–36] that are based on the notion of the coher-

ence between the measurements and the representation basis.
A measurement ensemble given by H in Eq. (8) is said to be
“incoherent” with respect to the representation Ψ in Eq. (7)
if the rows of H have a small inner product with the
columns of Ψ. The main result in [34] assures that incoherent

Fig. 5. Singular values for ×16 undersampling using the different sampling strategies described in Section 2.B. Here we compare uniform sampling
to random sampling in the cases of (a) view subsampling and (b) detector subsampling. UV, uniform view; RV, random view; UD, uniform detector;
DRD, dynamic random detector; SRD, static random detector. For strategies involving random sampling, the mean and standard deviation (std) for
20 different random selections are indicated by solid lines and shaded strips, respectively. For clarity the boundaries of the shaded strips
correspond to 1 std above and below the mean (gray strip for RV and yellow strip for SRD). Note that the means for DRD and SDRD are
indistinguishable from each other in this scale and therefore the latter is omitted here. Also, the std for DRD and SDRD are indistinguishable
from the mean of DRD and are therefore omitted here. The forward model is described in Fig. 3, and a 128 × 128 image resolution is used.

Kaganovsky et al. Vol. 31, No. 7 / July 2014 / J. Opt. Soc. Am. A 1375



measurements subsampled at random can be inverted with
overwhelming probability. This definition of coherence is
restricted to the case where both H and Ψ are unitary
matrices. Unfortunately, as discussed in the introduction,
our tomographic measurements do not comply with this
requirement, so this definition of incoherence cannot be
used here.

Another line of work [41] uses a different definition for co-
herence, which we shall employ in our study, since it allows
arbitrary measurements and also arbitrary dictionary repre-
sentations of the object (not necessarily an orthonormal
basis). The measurements are said to be “incoherent” if any
two different basis functions lead to different measurements.
In order to calculate this coherence, we define the transform
point spread function as in [42,43], given by

TPSF�i; j� � �ΨTHTHΨ�i;j ; (10)

where ��i;j denotes the element at the ith row and jth column
and H was defined in Eq. (4). The coherence is defined as

μ≜max
i≠j

jTPSF�i; j�j∕
��������������������������������������������
TPSF�i; i�TPSF�j; j�

p
: (11)

According to this definition, coherence is the maximal inner
product between two measurements generated by different
basis images. The coherence is also related to the RIP as de-
scribed in [44]. As mentioned in the introduction, the system
must maximally separate basis images in the measurement
range (sinogram) space in order to distinguish between differ-
ent basis images. This separation is quantified here by the in-
coherence, or lack of correlation between measurements
corresponding to different basis images, so a low coherence
is desirable. The connection between coherence and the null
space property mentioned in Section 4.B is discussed in [41],
and here we shall briefly mention it to point out potential lim-
itations of this metric. The null space vectors fγ∶Φγ � 0g;
have nonzero entries at locations corresponding to linearly de-
pendent columns in Φ (by definition of linear dependence).
Accordingly we have ‖γ‖0 ≥ SparkfΦg;, where the spark is
the minimal number of linearly dependent columns. The

(a) (b)

(c) (d)

(e) (f)
Fig. 6. Right singular vectors with lowest singular values in the case of uniform detector (UD) subsampling by a factor of 16. Note that a circular
domain was used.
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null space property in Eq. (6) is satisfied if SparkfΦg ≥ 2S.
Computing the spark is not feasible, since it requires
considering all possible combinations of columns. The bound
SparkfΦg ≥ 1� 1∕μ can be used instead, where μ is the coher-
ence defined in Eq. (11). This illustrates the pessimistic nature
of the incoherence metric, since it forms a lower bound on
the spark.

A. Results
The coherence for different subsampling strategies with re-
spect to the Haar wavelet basis has been calculated according
to the definition in Eq. (11). The columns of the matrix
ΨTHTHΨ have been normalized so that the sum of the
squared entries in each column equals 1. The off-diagonal
element of the resulting matrix with the maximal absolute
value is equal to the coherence. Here we use a circular image
domain to be consistent with the previous analysis. We re-
move any wavelet basis images that are outside this domain

and also disregard any pairs of wavelets that are identical
inside the image domain. The random selection of views/
detectors for each strategy has been repeated 50 times, and
the mean and standard deviation of the coherence for this
ensemble are computed.

The results for different random subsampling strategies are
shown in Table 2. It can be seen that the mean performance of
DRD sampling is comparable to RV sampling up to ×16 sub-
sampling but with 2 times lower standard deviation, so DRD is
less sensitive than RV to the particular choice of measure-
ments. SRD sampling is clearly a bad choice, especially for
high subsampling rates, which agrees with the SVD analysis
in Section 4. A simple way to visualize the different ap-
proaches is to picture the measurement (sinogram) space
as a 2D matrix where rows correspond to detectors and col-
umns correspond to views. The SRD corresponds to randomly
removing rows, while the RV approach corresponds to ran-
domly removing columns. The DRD approach, on the other

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Right singular vectors with lowest singular values in the case of dynamic random detector (DRD) subsampling by a factor of 16. Note that a
circular domain was used.

Kaganovsky et al. Vol. 31, No. 7 / July 2014 / J. Opt. Soc. Am. A 1377



hand, corresponds to randomly removing individual pixels, so
it is more spread out in sinogram space. One might naively
expect that SRD and RV should be comparable, but the results
clearly show the advantage of RV. The above intuition relies
on notions of object smoothness and implies some form of
interpolation. However, we are considering subsampling rates
for which standard interpolation techniques fail, and we as-
sume sparseness in the wavelet domain instead of smooth-
ness, which implies piecewise constant objects when
employing Haar wavelets or piecewise smooth objects when
employing Daubechies wavelets. According to the same intu-
ition, one might also expect that DRD would perform better
than RV, and in this case, this is indeed seen by the differences
in standard deviation in Table 2.

The wavelet pairs or basis images that lead to the highest
coherence (correlation of measurements) vary according to a
few typical cases, depending on the strategy used and the spe-
cific realization of the selected measurements when random
subsampling is employed. In one case that occurs frequently,

one basis image is the scaling function (constant across all
image space) and the second basis image is one of the sec-
ond-level wavelets occupying a 64 × 64 quadrant of the image.
We shall refer to this case as type I. In the second case, the
basis images are neighboring finest-scale wavelets around the
center of the image occupying a 2 × 2 square, or alternatively,
parent–child wavelet pairs with the child in the finest scale.
We shall refer to this case as type II. For DRD and SRD most
occurrences (random realizations) are of type II, but as the
subsampling factor increases considerably (say, 16 and up),
type I becomes more frequent and eventually dominates. In
contrast, for RV subsampling, type I is always dominant, with
a few more occurrences of type II when going to higher sub-
sampling rates. The correlation between wavelet pairs of type
II is expected based on classical sampling theory: if one choo-
ses to sample below the minimal rate for a given minimal res-
olution, details of the smallest size might not be resolved in
measurement space. The correlation between wavelet pairs
of type I, which involve coarse-level wavelets, seems to

(a) (b)

(c) (d)

(e) (f)
Fig. 8. Right singular vectors with lowest singular values in the case of uniform view-angle (UV) subsampling by a factor of 16. Note that a circular
domain was used.
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contradict those arguments. This is due to the fact that
wavelets have positive and negative values and various
cancellation effects occur.

Table 3 shows the coherence for different uniform subsam-
pling strategies. It is seen that UV sampling has lower coher-
ence than RV sampling, and also lower coherence than DRD.
The most correlated wavelet pair for UV sampling is of type I
defined above. The next most correlated pair is a”parent–
child” pair in the coarsest scale (128 × 128 and 64 × 64 basis
images, respectively). This situation does not change when we
go to high subsampling factors, unlike in RD sampling (DRD,
SRD), where essentially most correlated wavelets were of the
finest scale (type II). It is interesting to note in Table 3 that the
coherence for UV does not change much as the object is in-
creasingly undersampled and even slightly decreases. This is
consistent with the fact that the most correlated wavelets are
always at the coarsest level (type I) with large spatial support.
Clearly this demonstrates some sort of pitfall in the coherence
metric, and one should be careful in interpreting these results.
For a UD with low undersampling rates we obtain a similar
result; however, for higher undersampling rates the most
correlated wavelets become type II and coherence increases
rapidly to very high values, which supports the conclusions
made in Section 4.

Generally speaking, as incoherence increases (coherence
decreases) it becomes possible to distinguish between objects
that are less sparse, i.e., that have more nonzero coefficients
in their representation. Wavelet transforms of natural images

will typically have most of their zeros or small-valued coeffi-
cients in the fine-scale levels (high frequencies). Therefore,
from a CS perspective, it is better to have higher coherence
for fine-scale wavelets than to have high coherence for coarse-
scale wavelets, since the coarse-scale content will be less
sparse and its reconstruction will be more prone to fail for
higher coherence. This fact is not reflected in the coherence
metric used here. Instead of considering typical situations, it
rather reflects a “worst-case” scenario (for more details see,
for example, [41,45]). Therefore, it is actually encouraging to
see that in DRD the fine-scale wavelets are the ones respon-
sible for the highest coherence, as opposed to UV, where they
are the coarsest-scale wavelets. Indeed, in practice, when
comparing DRD with UV, we have seen several cases in which
there is a clear advantage to DRD, as described in the sequel.

In summary, coherence, like any other metric, has its own
merits and pitfalls, and this is why we have employed several
different measures of performance. In the case of random
sampling (detector and view), it proved to be useful and con-
sistent with the SVD analysis and the performance seen in
practice for several objects (to be reported in Sections 6
and 7). However, for uniform sampling (detector and view),
it led to some confusing results such as the slight decrease
of coherence as the subsampling rate was increased,
and for UV subsampling this was persistent even at high sub-
sampling rates. We also found a disconnect with the actual
performance of UV during reconstructions. We report these
surprising results in order to promote the development of

(a) (b)

(c) (d)
Fig. 9. Multiresolution image decomposition using Haar wavelets for the UD right singular vectors shown in Fig. 6. Each block contains the
magnitudes of wavelet coefficients corresponding to a different spatial scale, with the horizontal scale decreasing from left to right and the vertical
scale decreasing from top to bottom, e.g., the block near the bottom-right corner contains the wavelet coefficients for the finest scale in both
directions (the support of these wavelets is 2 × 2 pixels). Within a block, each entry corresponds to a different spatial translation of the wavelet.
The magnitude of the wavelet coefficients is presented in logarithmic scale. These plots were generated using the MATLAB command “plotwa-
velet2” and with a rescaling value of 100 [40].
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(a) (b)

(c) (d)

Fig. 10. Multiresolution image decomposition using Haar wavelets for the DRD right singular vectors shown in Fig. 7. See further details in the
caption of Fig. 9.

(a) (b)

(c) (d)

Fig. 11. Multiresolution image decomposition using Haar wavelets for the UV right singular vectors shown in Fig. 8. See further details in the
caption of Fig. 9.
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better metrics. Lastly, we note that coherencemerely provides
a lower bound on the spark [see discussion after Eq. (11)],
which is the natural metric but is computationally unfeasible.

6. RECONSTRUCTION USING SYNTHETIC
CT DATA
A. Methods
So far we have assumed in Sections 4 and 5 that the line in-
tegrals are measured directly. Here, we shall consider a more
detailed physical model for the measurements, which is used
in practice in x-ray CT and which will also be used in Section 7
for experimental data. The mean number of photons reaching
a detector after a ray has passed the object is given by Beer’s
law [46]:

Ii � Ii0 exp
�
−

Z
Li

f �x�dz
�
; (12)

where i denotes a source–detector pair connected by ray Li,
Ii0 is the mean number of photons that would reach the ith
detector without the object, and f ≥ 0 is the distribution of
the linear attenuation constant in mm−1 inside the object
under test. Denoting di and di0 as the ith detector reading
with and without the object, respectively, we define the
log-transformed and calibrated measurements as

yi � ln
di0

di
� ln di0 − ln di: (13)

For a monoenergetic source, the detected signal di is gener-
ally assumed to be Poisson distributed with the mean and
variance equal to Ii given by Eq. (12) [46]. For large values

of Ii, the log-transformed measurement yi can be shown to
have a Gaussian distribution [47]. After discretizing the line
integrals and f as described in Eq. (4), the Gaussian noise
model reads

y ∼Hf � ϵ; ϵ ∼N �0;Σ�; (14)

where the ith element in y is given by Eq. (13) and ϵ is a nor-
mally distributed noise with a zero mean and a covariance
matrix given by

Σ � diag�I−10 exp�Hf��: (15)

Note that for simplicity we assume Ii0 � I0 for all i. In the
following numerical simulations we use this model with I0 �
105 to generate synthetic data. In the reconstruction phase, we
are given the measurements y, and we estimate the attenua-
tion of x-ray radiation per unit length in the object given by f,
which distinguishes between different materials.

The reconstruction algorithm employed here is the rel-
evance vector machine (RVM), which was first introduced
in the context of machine learning [48] and later adopted
for compressive sensing in [49]. In the RVM, the inversion
of compressive measurements is done from a Bayesian per-
spective [50]. Specifically, we have a prior belief that f should
be sparse in some basis, i.e., in the representation f � Ψx,
many x have small values [see Eq. (7)]. This belief is repre-
sented by a probability density function for the weights x that
assigns high probability to small weights but still allows a few
large weights. Instead of just providing a single estimate for x,
a full posterior probability distribution function is computed
using Bayes’ rule. The posterior distribution represents the
current state of knowledge, combining the prior knowledge
with the information gained by measurements, and describes
how likely different possible estimates for x are. Typical
choices for point estimates are the mean of the posterior dis-
tribution for x and the value of x for which the posterior is
maximal (maximum a posteriori � MAP). In addition to a
point estimate for x, the Bayesian approach also provides er-
ror bars that may be used to give a sense of confidence in the
estimated value, and they may also be used to guide the opti-
mal design of additional CS measurements, implemented with
the goal of reducing the uncertainty about x or f [49]. It is
worth emphasizing that the RVM performs a nonlinear
reconstruction of the object by imposing a sparse solution
and thus utilizes the underlying signal model. The MAP esti-
mates for the object bear similarity to standard nonlinear CS
algorithms [49], where in addition to minimizing the distance

Table 2. Mutual Coherence of Different Random Sampling Strategies with Respect to the Haar Wavelet Basis

and for Different Undersampling Ratiosa

DRD SDRD SRD RV

Downsampling Mean Std Mean Std Mean Std Mean Std

×2 0.3295 0.0011 0.3292 0.0036 0.3457 0.0319 0.3295 0.0015
×4 0.3305 0.0017 0.3281 0.0064 0.4649 0.1344 0.3317 0.0030
×8 0.3324 0.0024 0.3307 0.0119 0.6361 0.1743 0.3322 0.0050
×16 0.3341 0.0043 0.3634 0.0344 0.8195 0.1513 0.3460 0.0234
×32 0.3953 0.0215 0.4794 0.1028 0.9236 0.1028 0.3793 0.0564

aDRD, dynamic random detector; SDRD, semidynamic random detector; SRD, static random detector; RV, random view. For each approach, the random
ray selection is repeated 50 times and the mean and standard deviation (std) of the coherence for this ensemble is shown. The coherence for complete
measurements (no subsampling) is 0.3285. The image is of resolution 128 × 128.

Table 3. Mutual Coherence of Different

Uniform Sampling Strategies with Respect to the

Haar Wavelet Basis and for Different

Undersampling Ratiosa

Downsampling Detectors (UD) Views (UV)

×2 0.328444 0.328329
×4 0.328436 0.328322
×8 0.398522 0.328311
×16 0.7118 0.3281
×32 0.9212 0.3286

aThe coherence for complete measurements (no subsampling) is
0.3285. The image is of resolution 128 × 128. UD, uniform detector
sampling; UV, uniform view sampling.
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between the measured and modeled signal, there is also a
sparsity-promoting penalty that is determined by the prior
probability distribution.

Here, we shall use a simple version of the RVM with some
minor modifications to adapt it to x-ray transmission tomog-
raphy. The noise covariance matrix in [48] is Σ � σ2I, with I
being the identity matrix. In order to convert the model in
Eq. (15) to the standard RVM model, one has to perform
two modifications. We follow the approach in [17] and esti-
mate the object-dependent covariance matrix Σ in Eq. (15)
by replacing Hf with the measurements y. In all our experi-
ments we found this simple estimate to work very well
compared to using the exact nonlinear model with Σ given
by Eq. (15). Next, we apply a noise-whitening procedure by
replacing y and H with ~y � Σ−1∕2y and ~H � Σ−1∕2H, respec-

tively, reducing the covariance matrix for ~y to the identity ma-
trix. A full treatment of the RVM for x-ray transmission
tomography will be presented in a subsequent paper, which
will include the option of using the original noise model in
Eq. (15) without estimating the noise covariance matrix first.

B. Results
Figure 12 shows reconstructions of the relative attenuation
maps for a 128 × 128 Shepp–Logan phantom [Fig. 12(a)] using
the RVM algorithm and for different random sampling strate-
gies. To determine convergence during RVM iterations, we
verified that successive iterations satisfy the condition
‖f�t�1� − f�t�‖2∕‖f�t�‖2 ≤ 0.01, where the superscript denotes
the iteration number. In this case four iterations satisfied
the above criterion for all strategies. Relative attenuation

(a) (b)

(c) (d)

(e) (f)
Fig. 12. (a) Truth, (b)–(d) reconstructed images using RVM with four iterations. Values represent the attenuation per unit length divided by the
attenuation per unit length of water. (b) Using all measurements; (c)–(f) measurements downsampled by a factor of 32 using the following sampling
strategies: (c) dynamic random detector (DRD), (d) random view (RV), (e) semidynamic random detector (SDRD), (f) static random detector
(SRD). Data have been generated according to Eqs. (14) and (15) with I0 � 105. Colored hatch marks in (b) and (c) indicate the cross sections
shown in Figs. 14(a) and 14(b), respectively (with matching colors).
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values limited to the window [0.5, 2]; are presented in
Appendix B, where it is easier to see the differences between
the different approaches. The measurements are synthesized
from the model in Eqs. (14) and (15) with I0 � 105. The
reconstruction using the complete synthesized measurements
is shown in Fig. 12(b), which is almost indistinguishable from
the truth in Fig. 12(a). Figures 12(c)–12(f) show reconstruc-
tions when using different random sampling strategies with
downsampling by a factor of 32. It is clearly seen (see also
Appendix B) that SRD sampling [Fig. 12(f)] and RV sampling
[Fig. 12(d)] have the worst results, with an advantage to RV.
DRD sampling [Fig. 12(c)] yields the best result among all ex-
plored strategies. It should also be noted that the image quality
with DRD [Fig. 12(c)] is not degraded much relative to the re-
constructed image using the complete set of measurements
[Fig. 12(b)], and that almost the same quality can be achieved
with SDRD sampling [Fig. 12(e)], using only 10 masks in this

case. Table 4 shows the root mean-squared error (RMSE)
averaged over 50 different random measurement selections
and verifies the previous statements regardless of the particu-
lar random realization.

Figure 13 shows reconstructions of relative attenuation
maps when uniform sampling strategies are used. Relative
attenuation values limited to the window [0.5, 2]; are
presented in Appendix B, where it is easier to see the
differences between different sampling strategies. It can be
seen that UV sampling is preferred over RV sampling, which
is consistent with the observations made in Sections 4 and 5.
When comparing the best view-angle sampling strategy, UV
[Fig. 13(b)], to the best detector sampling strategy, DRD
[Fig. 12(c)], it is evident that the latter yields a better image
in this case; see also Appendix B. Figure 14 presents a
comparison of these two approaches for 1D cuts of the
images. Figures 13(c) and 13(d) show the reconstructions

Table 4. Root Mean-Squared Error (RMSE) for RVM Reconstructions Averaged over 50 Different

Random Selections from the Complete Dataset and for Different Sampling Strategiesa

Downsampling DRD SDRD SRD RV

×4 8.4 × 10−3 8.4 × 10−3 9.6 × 10−3 9 × 10−3

×8 1.87 × 10−2 1.87 × 10−2 3.77 × 10−2 2.56 × 10−2

×16 1.89 × 10−2 1.9 × 10−2 8.3 × 10−2 4.32 × 10−2

×32 3.63 × 10−2 3.69 × 10−2 2.918 × 10−1 1.243 × 10−1

aThe RMSE has been normalized by the l2 norm of the truth. DRD, dynamic random detector; SDRD, semidynamic random detector; SRD, static
random detector; RV, random view. The source intensity parameter is I0 � 105. For each set of measurements only four iterations in RVM were
used. Since noise does not vary considerably between different measurements, a single dataset has been generated according to the model in
Eqs. (14) and (15), and the same dataset has been used for all strategies. We use the 128 × 128 Shepp–Logan phantom of Fig. 12(a). The l2
error when using the complete set of measurements (no subsampling) is 6.5 × 10−3 .

Fig. 13. Reconstructed images for uniform undersampling by a factor of 32. (a), (b) RVM after four iterations; (c), (d) filtered backprojection
(FBP). (a), (c) uniform detector (UD) sampling; (b), (d) uniform view (UV) sampling. The data have been generated according to the model in
Eqs. (14) and (15) with I0 � 105. Cross sections of the image in (b) along the horizontal and vertical lines are shown in Figs. 14(a) and 14(b),
respectively (with matching colors).
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for UD and UV subsampling, respectively, using the filtered
backprojection algorithm [1]. This is merely done to illustrate
just how much the object is undersampled, and we do not
claim our results are the best possible by using filtered back-
projection (e.g., one can attempt to interpolate the miss-
ing rays).

7. EXPERIMENTAL CT DATA
A. Physical Phantom Dataset
Here we present reconstructions for a dataset acquired with
an experimental CT system at Duke University. Details of the
experimental system are provided in Appendix C. In these ex-
periments we image the “DUKE” geometry summarized in that
appendix. In this case we have a good estimate of the ground
truth to help us evaluate the quality of the reconstruction (as
opposed to Section 7.B, where a human patient is being
scanned and the truth is unknown). As mentioned already,
the system geometry is identical to the one used in the sim-
ulations in Section 6 and enables us to fairly compare simu-
lation and practice.

We have already established in Section 4–6 that the two
most competitive strategies are UV sampling and DRD sam-
pling, and we shall focus on them here. Continuing the ap-
proach used in Section 6, we would like to make sure that
we have a fair starting point for comparison according to
classical sampling theory. However, when comparing the sys-
tem specifications (see Appendix C) with the required resolu-
tion detailed in Section 3, we find that detector resolution is
oversampled by a factor of 1.5 and the view angle is under-
sampled by a factor of 2. One way to make a comparison be-
tween detector and view-angle sampling is to uniformly
undersample detectors by a factor of 3 so that both views
and detectors are ×2 undersampled relative to the minimal
theoretical sampling rates, and any additional subsampling
would use this as a starting point. In this way, the total number
of measurements (projections) would be the same after the
additional subsampling with respect to either view angles
or detectors. However, as demonstrated previously, uniform
detector undersampling was one of the worst sampling strat-
egies, whereas for view angles, uniform undersampling was
shown to be the best choice. Therefore, comparing detector
and view-angle subsampling under these conditions is not fair.
The reconstructed images for UV and DRD are shown in

Fig. 15 for ×8 undersampling, which was the highest rate
without introducing significant artifacts. Despite the unfair
comparison, it can be seen that DRD and UV are comparable.
In addition, it is seen that the use of just 10 masks (SDRD)
is comparable to using different masks for all views (DRD).
In all cases, undersampling was done by disregarding
available measurements before any processing was done. A
study concerning the undersampling of detectors using an
actual mask or a beam stop array will be reported in a
future publication. The reconstruction was done using the
same method discussed in Section 6. The criterion for deter-
mining convergence was the same as in Section 6.B, for which
eight iterations were sufficient for all strategies.

We perform another comparison where we use the full
available data as a starting point (with detectors oversampled
by a factor of 1.5 and views undersampled by a factor of 2),
and we make sure that both view angles and detectors are ap-
proximately undersampled by the same factor relative to
classical theory. More specifically, if we downsample the data
by, say, a factor of S∕2 for UV, then for DRD we downsample
by a factor of 3S∕2. For DRD, several detector intervals would
be greater than 1∕S th of the minimal interval required by
classical theory (with high probability), while for UV the view
intervals would be exactly 1∕Sth of the minimal view interval,
which gives UV an advantage over DRD. In addition, UV sam-
pling uses the full set of detectors, which are oversampled by a
factor of 1.5, while DRD uses a set of views that is under-
sampled by 2. In this comparison we shall show that the pro-
posed method (DRD) outperforms UV, despite these
disadvantages. In this kind of comparison the total number
of measurements (projections) will be smaller for detector
sampling, as it needs to be subsampled by a higher factor.
Figures 16(a) and 16(b) compare the reconstructions for
×16 undersampling, where the result for DRD sampling has
fewer artifacts than UV sampling. In short, DRD yields a
higher quality image with three times fewer measurements.
A major improvement is obtained by combining these two
strategies. Figure 16(c) shows the results for subsampling
by a factor of 4 with respect to both detectors and view angles.
The advantage over UV in terms of image quality is clearly
seen in Fig. 17, which shows 1D cuts of the reconstructed im-
age. Because of the way we perform the detector subsam-
pling, the number of measurements is still three times less
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Fig. 14. 1D Cuts of the images in Fig. 12(b) (blue) for complete data, Fig. 12(c) (green) for dynamic random detector sampling (DRD), and
Fig. 13(b) (red) for uniform view (UV) sampling. These cuts are indicated in the images by matching colored hatch marks. (a) Horizontal cut
at the middle of the image and (b) vertical cut at the middle of the image.
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Fig. 16. Reconstructed images using RVM for experimental data. Values represent the attenuation per unit length divided by the attenuation per
unit length of water. Undersampling ratios are relative to the minimal sampling rates dictated by classical theory. (a) View angles are undersampled
by a factor of 16, and all available detectors are used, which are oversampled by 1.5; (b) detectors are ×16 undersampled using the DRD strategy,
and views are ×2 undersampled due to limited data; (c) in the combined approach detectors are ×4 undersampled using the DRD strategy, and view
angles are ×4 undersampled uniformly (object is undersampled by a total factor of 16). Unlike in Fig. 15, detector selection is done from all available
detectors, which are ×1.5 oversampled, and to obtain the same undersampling relative to classical theory, the detectors were downsampled ×3
more than views, so in (b) and (c) there are ×3 fewer measurements (line integrals) than in (a). All other specifications are the same as in Fig. 15.
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Fig. 15. Reconstructed images using RVM for experimental data. Values represent the attenuation per unit length divided by the attenuation per
unit length of water and are limited to the window �0; 1.8�. Undersampling ratios are relative to the minimal sampling rate dictated by classical
theory. (a) The object is ×2 uniformly undersampled with respect to both detectors and views; (b)–(d) the available data are downsampled by an
additional factor of 4 with respect to detectors or views (×8 undersampled for either detectors or views and ×2 undersampled for either views or
detectors, respectively). (b) Dynamic random detector sampling (DRD), (c) uniform view (UV) sampling; (d) semidynamic random detector
(SDRD) sampling. Only eight iterations of RVM have been used to generate all images. All strategies have the same number of measurements
(line integrals). Colored hatch marks in (a) indicate the cross sections shown in Fig. 17.
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than for UV. To demonstrate just how much the object is
undersampled, we present in Fig. 18 the reconstructions
using the filtered backprojection algorithm for UD and UV
subsampling.

B. Clinical Dataset
With approval from the Washington University Institutional
Review Board (IRB), patient data were acquired on a Siemens
Sensation 16 scanner at St. Louis Children’s Hospital using
a spiral scanning mode. Further details are available in
Appendix D.

The computations run on this clinical dataset were consis-
tent with those reported here for the simulated dataset and the
Duke dataset. In particular, SRD and UD sampling, i.e., the use
of the same detectors for every view, produced images with
noticeable spiral artifacts. The best performance for detector
sampling was obtained using DRD sampling, where the detec-
tors used are changed for each view. The use of UV sampling
led to better performance than RV sampling. As mentioned
before, undersampling was done by disregarding available
measurements before any processing was done, and no masks
were used during the actual measurements.
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Fig. 17. Linear attenuation coefficients (relative to water) along the columns indicated by matching colored hatch marks in the images in Figs. 15
and 16. Blue represents Fig. 15(a) for full data, red represents Fig. 16(a) for UV sampling, and green represents Fig. 16(c) for combined DRD-UV.
Arrows point to regions where significant differences between methods exist.
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Fig. 18. Reconstructed images for experimental data using the filtered backprojection (FBP) algorithm. (a) View angles are undersampled uni-
formly by a factor of 16, and detectors are undersampled uniformly by a factor of 2 (relative to classical sampling theory) and (b) detectors are
undersampled uniformly by a factor of 16, and view angles are undersampled uniformly by a factor of 2 (relative to classical sampling theory).
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Shown below in Figs. 19–21 are examples of using DRD
and UV sampling on the clinical data. The complete results
will be presented elsewhere. Each of these three figures
has three subfigures showing the axial, coronal, and sagittal
cuts through the center of the volume. Figure 19 shows the

reconstructed images obtained by using the entire dataset
without subsampling. The reconstruction was done using
our regularized alternating minimization (AM) algorithm,
which computes the MAP estimate for the attenuation func-
tion using the Beer’s law model [51]. For the regularization

Fig. 21. Cross sections through the reconstructions of patient data using all of the views, but only 1∕29 of the detector measurements, and using 10
ordered subsets. All other specifications are the same as in Fig. 19.

Fig. 19. Cross sections through the reconstruction of pediatric patient data using all the data, after 50 iterations of the AM algorithm, using 145
ordered subsets (to speed convergence) and a neighborhood penalty with β � 3200. The axial (red frame), coronal (green frame), and sagittal (blue
frame) views are shown from left to right. The color-coded hatch marks within the enclosing frames indicate the planes from which the orthogonal
views are taken. Linear attenuation coefficients from 0 (air) to 0.45 cm−1 (approximately bone) are shown in the range from black to white,
respectively. The image volume is 512 × 512 × 135 voxels, with voxel dimensions of 1 mm × 1 mm × 2 mm. A cut along the column indicated
by yellow hatch marks in the axial view is shown in Fig. 22.

Fig. 20. Cross sections through the reconstructions of patient data using 1∕29 of the views, uniformly spaced in angle of rotation around the
patient, but all the detectors, and using 10 ordered subsets. All other specifications are the same as in Fig. 19.
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we used a Huber-class neighborhood penalty on the voxels.
The penalty is of the form

Ψ�f � �
X
i

X
j∈N i

wijψ�f i − f j�; (16)

whereN i is the neighborhood for the ith voxel,wij is a weight
depending upon (inversely proportional to) the physical dis-
tance between the ith and jth voxels, f i is the linear attenu-
ation constant at the ith voxel (as before), and ψ is chosen to
be locally quadratic for small values and linear for large
values, such as

ψ�t� � 1
δ2

�jδtj − ln�1� jδtj��: (17)

The penalty is weighted by a factor β to control the trade-off
between the data fit term (the log-likelihood in our case) and
the penalty. For this example, we chose δ � 5000 and
β � 3200. This corresponds to a penalty that is close to a
TV penalty. In order to validate this choice, we compared it
to the maximum likelihood estimate, which is the MAP esti-
mate in the limit where the penalty goes to zero (not shown
here for brevity).

Figure 20 shows the result for the regularized AM algorithm
using UV sampling with 1∕29 of the views. Figure 21 shows the
images for the same regularization parameters using data
obtained by DRD subampling with 1∕29 of the data. The
parameters for the regularization are the same as in Fig. 19.
However, given that there are 1∕29 the number of terms in the
data fit, this effectively places a higher weight on the neigh-
borhood penalty. For DRD sampling, the images remain close
to the images obtained by using all of the data. By comparing
DRD (Fig. 21) to UV (Fig. 20), one can see there are clearly
fewer artifacts using DRD, and fine details (high-frequency
content) are seen more clearly. To see these differences more
clearly, we have presented in Fig. 22 the linear attenuation

coefficients along lines marked in the images. The profiles
shown in Fig. 22 demonstrate the fact that images recon-
structed from DRD data exhibit fewer artifacts and suffer less
from loss of contrast than images reconstructed from UV data.

Treating the regularized reconstruction of full data as the
“gold standard,” the sum of squared differences between it
and other reconstructions are shown in Fig. 23. Unlike the pre-
vious experiments, UV sampling exhibited a smaller error than
DRD sampling when one-tenth or more of the data were used.
This may be understood by examining the sampling character-
istics of the Siemens Sensation 16 CT scanner from which the
data were acquired (see details in Appendix D). The sum of
squared differences was computed only for voxels within the
patient. The pediatric patient was small compared to an adult
and positioned so that the maximum distance from the center
of rotation occupied by the patient was measured to be ap-
proximately 125 mm. Therefore, the domain of interest includ-
ing the patient was smaller than the one for which the system
was designed and based on which the sampling rates were
selected. Calculating the sampling rates according to the sec-
ond row of Table 1 for this small object with ρ � 125 mm to-
gether with r � 570 mm for the Sensation 16 scanner reveals
that this system oversamples the region where the patient is
located with respect to view intervals. To see this, note that a
system designed for this smaller region would require (based
on Table 1)Δβ∕Δα � 5.56, whereas the actual ratioΔβ∕Δα for
the geometry and sampling of the Sensation 16 is 4. Since ac-
cording to Table 1 only Δβ depends on ρ (the size of the ob-
ject), this means that Δβ is smaller than it needs to be (note
that the working resolution, denoted as δ in Table 1, is the
same for both cases, since the imaged domain and the number
of voxels are the same). It is therefore not surprising that UV
sampling performs better than DRD sampling for moderate
downsampling rates, as is the case on the left portion of
Fig. 23. However, as the fraction of data that is kept is reduced
further, DRD performs better than UV and has a lower
error, which is in accord with the conclusions of the previous
experiment.
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8. CONCLUSIONS
We have investigated sampling strategies for tomography that
go beyond classical sampling theory and enable one to under-
sample the field of view while retaining the essential informa-
tion about the object. Inspired by the field of CS, our approach
is based on the understanding that many real objects are com-
pressible in some known representation and that the number
of degrees of freedom that defines an object is much lower
than the number of pixels in the image, so fewer measure-
ments should be sufficient if one incorporates this prior infor-
mation during object reconstruction. We have proposed a new
approach based on nonstructured (random) detector subsam-
pling, whereas previous works have only addressed view-
angle subsampling. The performance of different sampling
strategies has been compared to the proposed approach using
object-independent performance measures such as SVD and
mutual coherence, and also based on reconstruction results
for specific objects with synthetic and real data. In most parts
of this paper we considered a fan-beam geometry and repre-
sented the imaged object using a Haar wavelet basis, but the
framework we presented is far more general and can be ap-
plied to other geometries and for other sparse representations
of the object. We have also demonstrated how the proposed
approach is equally successful for spiral CT, using a different
algorithm for the reconstruction and utilizing the fact that the
gradient magnitude image is sparse.

We have shown that despite the differences between prac-
tical tomographic systems and CS theory, we have reached
similar conclusions to what has been previously demonstrated
in the CS literature, with a few important differences. Our con-
clusion is that distinguishing between different compressible
objects in measurement space requires the sampling to be as
unstructured as possible in sinogram space, i.e., what we
termed DRD. In this approach, the selection of detectors
changes quasi-randomly from one source position (view an-
gle) to the other, and one can imagine this by randomly remov-
ing points in the sampled sinogram space (the 2D space where
the horizontal axis corresponds to views and the vertical axis
corresponds to detectors). This conclusion has been based on
an SVD analysis and another study based on CS theory that
employs coherence as a figure of merit. Interestingly, we have
also shown that even if no prior information about the object
is assumed, DRD is still the subsampling strategy least sensi-
tive to noise.

Reconstructions based on simulated data clearly demon-
strate the superiority of DRD subsampling over other subsam-
pling strategies for a given number of measurements. We also
presented reconstructions for real data acquired in an exper-
imental x-ray laboratory at Duke University and from a com-
mercial Siemens scanner for human imaging located at St.
Louis Children’s Hospital. In the former we used a fan-beam
geometry to scan a 2D cross section of an object, while the lat-
ter is a spiral CT geometry that performs a 3D scan of a patient.
These studies are very important in order to validate the prac-
tical usefulness of the proposed approach, since considerable
model mismatch can occur. We have shown that the proposed
approach sustains its advantages for real data and for two dif-
ferent geometries. The image quality obtained with the pro-
posed approach was superior to the one achieved by view-
angle subsampling with the same number of measurements,
and in some cases even with fewer measurements. In addition,

in some cases, combining detector and view-angle subsam-
pling outperformed each of these strategies when used
separately.

Nonuniform detector subsampling offers many advantages
that are not taken into account in this work. It allows for the
design freedom to combine detectors dedicated to measuring
scattered radiation, which provides additional information
about the object in some applications and enables estimation
of the noise level in others. When detector subsampling is
implemented by reducing the number of detectors, it leads
to lower detector costs or, alternatively, allows integration
of detectors for scattered radiation, which is of interest in sev-
eral applications. In medical systems, it could be implemented
using ray-blocking masks at the source side, leading to a re-
duced radiation dose to patients. Blocking rays can potentially
reduce scattered radiation while keeping the same energy for
the transmitted rays, resulting in a higher signal-to-noise ratio
than the one achieved by lowering exposure times or the en-
ergy of the source. Also, the proposed detector sampling
could be leveraged in the design of snapshot compressive
tomography, where the object is simultaneously illuminated
by several sources while a coded aperture performs detector
subsampling, such that each source will only measure a single
ray. All of these will be the subjects of future work.

We would like to comment on the connection between
our work and prior art in [7,9,10,14–17], also discussed in
Section 1. First, it is important to note that our work focuses
on comparing sampling strategies and not on image
reconstruction techniques. More specifically, we consider
how to undersample the object even if a complete set of mea-
surements can be taken, with the potential advantages men-
tioned above. Traditionally, prior art considers incomplete
data due to physical constraints (as opposed to introducing
them by design), and the focus is on a proposed image
reconstruction technique to cope with the missing data.
Regardless of the cause of missing data, some prior knowledge
about the object needs to be incorporated into the
reconstruction technique in order to provide regularization
to the otherwise ill-posed problem. When comparing
different sampling strategies, we have used the same image
reconstruction technique in order to isolate the effect of the
sampling strategy itself. Furthermore, we have used two differ-
ent image reconstruction techniques to demonstrate that our
results are independent of the specific technique. Several re-
cent studies [7,14,17] consider the possibility of deliberately
undersampling the object with respect to view angles but do
not distinguish between designed and physically constrained
undersampling, simply because there is no need for new sys-
tem design to perform view-angle subsampling. In contrast, the
methods of detector subsampling we consider do lead to new
system designs. In [7,14,17] the authors consider UV subsam-
pling in divergent beamgeometries (conebeam, fanbeam), and
we have used this approach to compare to the proposed
method. In some cases, such as in [10], there are physical con-
straints due to which the number of views is limited. Our re-
sults in Figs. 16 and 17 suggest the possibility of using RD
subsampling in combination with few views; however, a more
careful study is required. A different class of problems arises
when the range of view angles is limited [5–7] and is known to
be extremely ill-posed even before any sampling is considered
[52]. This class of problems is beyond the scope of our work.
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Lastly, we would like to note some remaining questions for
future research. Our approach throughout this work was to
implicitly assume a given object complexity (sparsity level),
a given undersampling rate, and a given noise level, for which
we have tried to determine the best subsampling strategy. Ac-
cording to CS theory, the sparsity level of the object (how
compressible it is in some given representation) controls
the maximal undersampling rate that can be used without con-
siderable loss of detail. This suggests a study of the depend-
ence between the sparsity level and the maximal sampling
rate. Closely related to this is a question regarding the SDRD
strategy, for which only a few random masks or detector pat-
terns were used instead of different patterns (masks) for every
view. It remains to be studied how the required number of
masks (or detector patterns) changes with the object’s com-
plexity. To see the connection between these two questions,
we note that by decreasing the number of RD patterns

(masks), the rays are less spread out in the image domain
and some regions of the object will be sampled at a lower rate.
Therefore, in accordance with CS theory we expect the spar-
sity level to control the number of masks that are sufficient.
Regarding the influence of noise, we have seen in Section 4.A
that the singular value analysis suggests that our conclusions
might change in the very low-noise regime. Therefore, another
desired study is that of performance versus noise level. De-
spite this fact, it is important to note that the noise level in
both simulations and experiments is standard for CT and is
the same for all sampling strategies.

APPENDIX A: OUTLINE OF THE
DERIVATION OF SAMPLING CONDITIONS
Next we quickly outline the derivation of the above sampling
conditions and make the above statements more precise. In

(a) (b)

(c) (d)

(e) (f)

Fig. 24. Values represent the attenuation per unit length divided by the attenuation per unit length of water. (a) Truth; (b)–(f) reconstructed
images via RVM: (b) using all measurements, (c)–(f) after measurements have been downsampled by ×32. (c) Dynamic random detector sampling
(DRD), (d) random view sampling (RV), (e) SDRD sampling, (f) static random detector sampling (SRD). Only four iterations of RVM have been
used. The data have been generated according to the model in Eqs. (14) and (15) with I0 � 105. Showing values in �0.5; 2�;.
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doing so, we shall try to keep the details down to a minimum,
and for further reading we recommend [2]. The theoretical
analysis starts with the definition of an essentially band-
limited function f �x� that satisfies

Z
jξj>b

jf̂ �ξ�j2dξ ≤ ϵ0; (A1)

where f̂ is the 2D Fourier transform of f �x� and ϵ0 is assumed
to be small. We shall denote the set of line integrals over f by
the function g�γ� given by either the Radon or fan-beam trans-
form in Eq. (1) or (2), respectively. The function g is periodic
with respect to the variables in γ � �γ1; γ2�T which are generic
line parameters, e.g., γ � �β; α�T for fan beams (see Fig. 1).
Next, we denote the set of samples of g on a grid by

S≜fγ � Wl; l ∈ Z2g; (A2)

where W is a real and nonsingular 2 × 2 matrix that is defined
by the scanning geometry and the sampling rates for γ. To find
sufficient conditions in terms of the sampling rates for γ, one
constructs a set K in the 2D γ space that is tailored to the spe-
cific scanning geometry. Utilizing the Petersen–Middleton
theorem [53] for periodic functions, it can be proven that
for a lattice W such that the sets fK� 2π�W−1�T l; l ∈ Z2g;
are mutually disjoint and for any f such that g�S� � 0, we
have [2]

‖Rf ‖L∞
≤ C1e

−λb‖f ‖L1
� C2ϵ0; (A3)

where C1; C2; λ are some positive constants, ‖ · ‖L1
; ‖ · ‖L∞

de-
note the norms in the corresponding Lebesgue spaces, and b

and ϵ0 are defined in Eq. (A1). The sampling rates for γ; are
then determined by the conditions for which the sets
fK� 2π�W−1�T l; l ∈ Z2g; are mutually disjoint. In plain En-
glish, Eq. (A3) states that if f yields zero line integrals for
the samples satisfying the conditions above, then the Radon
transform of f cannot have an arbitrarily large norm and is
bounded by terms proportional to ϵ0 (the deviation from
band-limited functions) and the L1 norm of f . In that sense,
choosing small C1;2 restricts the null space of the operator f →
g�Wl� to negligible functions. This assures us that a function
can be reconstructed reliably (stably), i.e., a small error in
measurements does not correspond to an arbitrarily large
error in the reconstructed function (as measured by the L∞
norm of the Radon transform). The constants C1; C2; λ and
the set K for parallel-beam geometry can be found in [2,54]
and for the fan-beam geometry with curved and flat detectors
in [39] and [55], respectively. It is important to note that in this
approach the sampling conditions are derived by construction
(namely, the choice of the set K) and so are only sufficient
conditions, not necessary ones. Indeed, there are well-known
examples where more efficient sampling conditions have
been found, such as the interlaced parallel beam geometry
[54] and its analog in fan-beam geometry [39]. This line of
work does not use any assumptions on f such as sparsity.

APPENDIX B: RECONSTRUCTION RESULTS
FOR SYNTHETIC DATA
In order to see more clearly the differences between the differ-
ent sampling strategies, we present the reconstructions of
Fig. 9 and Fig. 10 in the main paper with the attenuation values

(a) (b)

(c) (d)
Fig. 25. Reconstructed images for uniform undersampling ×32. (a), (b) Using RVM after four iterations; (c), (d) using filtered backprojection
(FBP). (a),(c) UD sampling; (b), (d) UV sampling. Only four iterations in RVM have been used. The data have been generated according to
the model in Eqs. (14) and (15) with I0 � 105. The attenuation values are limited to the range �0.5; 2�, where the differences are more apparent.
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limited to the window �0.5; 2�;, and these are shown in Figs. 24
and 25, respectively.

APPENDIX C: EXPERIMENTAL SETUP FOR
THE PHYSICAL PHANTOM DATASET
The data have been acquired at the Duke Multi-Modality Im-
aging Laboratory (MMIL) [56]. The object under test consists
of the 3D letters “DUKE” made from the VeroBlue material
(see Fig. 26) used in 3D printers, which according to our ex-
periments has a linear attenuation constant 1.458 times that of
water. The x-ray source specifications are 60 kVp, 50 mA, and
25 ms. A 0.55 mm Cerium filter was used to strongly filter the
bremsstrahlen (continuous spectrum x-rays) and create a
pseudo-monoenergetic source spectrum. The flux-energy
curve of the source with the Cerium filter was calculated with
XSPECT software [57] and is shown in Fig. 27. The detector
has a pixel pitch of 127 μm and a fill factor of 0.75 (pixel pitch
divided by pixel size). Detector measurements were software
binned into 2 × 2 pixels to increase the number of photon
counts per pixel. By integrating the flux-energy curve and
accounting for detector fill factor, we estimated a total of
I0 � 2 × 103 photons per detector pixel. The view angle

resolution was 1°. (In order to achieve the flux requirements
necessary for proper photon statistics and model assump-
tions, x-ray tube heating constraints limited the number of
acquisitions while maintaining a consistent experiment to
about 1° per frame). Additional details are shown in Fig. 28.

APPENDIX D: EXPERIMENTAL SETUP FOR
THE CLINICAL DATASET
With approval from the Washington University IRB, patient
data were acquired on a Siemens Sensation 16 scanner at
St. Louis Children’s Hospital using a standard abdominal im-
aging protocol with contrast agent. The Sensation 16 is a third-
generation multidetector-row CT scanner and was operated in
spiral scanning mode. The x-ray source orbits around the iso-
center of the system every 0.5 s at a distance of 570 mm. The
number of uniformly spaced views per rotation is 1160. The
source is collimated to a width of 1.5 cm at the isocenter of
the system. The detectors are arranged in 16 rows of 672 de-
tectors, each on a cylindrical arc with a radius of 1040 mm and
centered at the source. Each detector subtends an arc of
0.00135413 rad, so the entire fan subtends approximately
52°. The center of the detector array was offset by 1∕4 of a

Fig. 26. Left: the scanned object, 3D letters “DUKE.” Right: positioning of object. We used tape, and other means, to suspend objects in the air as
well as to minimize scatter compared to other potential holders.

Fig. 27. Simulation of the flux-energy curve for the x-ray source with
the 0.55 mm Cerium filter used in the experiment, obtained by
XSPECT software.

Fig. 28. We collimated the source into a fan beam using two lead
blocks that were both made flat and parallel with a fly cutter. The
length of collimator blocks helped ensure the beam had a very limited
divergence.
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detector to improve sampling. The voltage and current of the
x-ray tube were 120 kV and 150 mAs, respectively. The patient
bed traveled 24 mm per rotation of the gantry at a uni-
form speed.
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