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RESEARCH ARTICLE Open Access

A novel genetic locus linked to pro-inflammatory
cytokines after virulent H5N1 virus infection in
mice
Adrianus CM Boon1*, Robert W Williams3, David S Sinasac4 and Richard J Webby2

Abstract

Background: Genetic variation in the human population is a key determinant of influenza disease severity. A single
nucleotide polymorphism in the antiviral gene IFITM3 was linked to outcomes during the 2009 H1N1 pandemic. To
identify variant host genes associated with increased virus replication and severe disease, we performed a
quantitative trait locus analysis on pro-inflammatory cytokine production 48 hours after intranasal infection with
highly pathogenic H5N1 influenza virus.

Results: Pro-inflammatory cytokines CCL2, TNFα and IFN-α, were measured by ELISA in lung homogenates of DBA/
2J (D2), C57BL/6J (B6) and 44 different BXD recombinant inbred mouse strains. Virus titer was also assessed in a
subset of these animals. CCL2 (8-fold), TNFα (24-fold) and IFN-α (8-fold) concentrations varied significantly among
the different BXD RI strains. Importantly, cytokine concentration correlated very well (r =0.86-0.96, P <0.0001) with
virus titer suggesting that early cytokine production is due to increased virus infection and replication. Linkage
analysis of cytokine concentration revealed a significant locus on chromosome 6 associated with differences in
TNFα, IFN-α and CCL2 cytokine concentration (LRS =26). This locus accounted for nearly 20% of the observed
phenotypic variation in the BXD population studied. Sequence and RNA expression analysis identified several
candidate host genes containing missense mutations or deletions; Samd9l, Ica1, and Slc25a13. To study the role of
Slc25a13, we obtained Slc25a13 knockout line, but upon challenge with H5N1 influenza virus observed no effect on
CCL2 production, or morbidity and mortality.

Conclusion: A novel genetic locus on chromosome 6 modulates early pro-inflammatory cytokine production and
virus replication after highly pathogenic influenza virus infection. Candidate genes, Samd9l and Ica1, may be
important for the control of influenza virus infection and pathogenesis.

Keywords: H5N1 influenza virus, BXD, Quantitative trait locus analysis

Background
Severe respiratory and systemic disease caused by human
infection with avian H5N1 influenza virus is characterized
by high viral load and increased production of proinflam-
matory cytokines, which if left untreated, often results in
death [1,2]. Epidemiological studies of outbreaks of the
highly pathogenic H5N1 virus in Asia suggest that human
genetic polymorphisms influence disease severity [3,4].
More recently a single nucleotide difference in the antiviral

IFITM3 gene was associated with hospitalization and more
severe disease after the pandemic H1N1 influenza infec-
tion [5].
Pathogenesis after influenza virus infection is the result

of a complex interaction between the virus, immunity, and
environment [6-8]. The early events after infection are
critically important for the progression and outcome of
the disease [9,10]. Lack of virus neutralizing antibodies or
genetic variation in the virus [10] or the host [11] can in-
crease early virus replication and over-stimulate the innate
immune response creating a pathogenic host response.
The inflammatory environment associated with a patho-
genic response can blunt the adaptive immune response
[10] and promote virus replication through recruitment of
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susceptible cells [12]. Identifying the viral and host genetic
determinants that contribute to alterations in early replica-
tion and ensuing host response is important for the con-
trol of pathogenesis and the identification of targets for
the design of novel therapeutics. Forward genetic studies
in mice have identified several genetic factors that contrib-
ute to survival after infection [13-16], but few have studied
the very early host response after infection [15].
Infections with H5N1 and H7N9 are highly pathogenic

and cause severe morbidity and mortality. To identify host
genes and gene polymorphisms critical for the differences
during the early stages of H5N1 disease we have per-
formed a QTL analysis on genetically diverse strains of
mice looking at the production of pro-inflammatory cyto-
kines CCL2, TNF-α, and IFN-α, 48 hours post infection.
We identified a single genetic locus on chromosome 6
containing several polymorphisms associated with an
acute increase in the production of pro-inflammatory cy-
tokines. The identification of this locus and several intri-
guing candidate genes suggests that the host cytokines
response early after infection is due to a limited number
of genetic polymorphism.

Results
Differences in pro-inflammatory cytokine production
among mouse strains
Genetically diverse mice vary greatly in response to influ-
enza virus infection and we think this is the result of higher
virus replication in the first 24–72 h after inoculation. The
increase in viral titers in the lungs of susceptible strains,
such as D2, leads to the increased production of pro-
inflammatory cytokines compared to resistant strains, such
as B6 [11,13]. To understand the genetic and molecular
basis for this difference in host response and early viral
load, we quantified inflammatory host response 48 hours
after inoculation with 104 EID50 of an H5N1 virus (HK213).
This time point coincided with peak viral replication [13]
and the earliest point at which we can reliably measure the
production of IFN-α (Additional file 1: Figure S1). To quan-
tify the inflammatory response after HK213 infection we
measured titers of CCL2, TNFα and IFN-α in whole lung
homogenates. Compared to mock-infected animals the
concentration of CCL2, TNFα, and IFN-α increased signi-
ficantly (P <0.0001, Figure 1) in both parental strains after
inoculation. More importantly, levels of CCL2, TNFα, and

Figure 1 Increased concentration of CCL2, TNFα, and IFN-α in lung homogenates of A/Hong Kong/213/03 H5N1 virus infected DBA/2J
mice. (A) DBA/2J (D2) and C57BL/6J (B6) were inoculated with 104 EID50 of HK213 virus (+) or mock-inoculated (-) in 30 μl PBS. Forty-eight hours
post inoculation the lungs of the inoculated animals were collected, homogenized in sterile PBS, and stored at -80°C. The concentration of CCL2,
TNFα, and IFN-α in these homogenates was quantified by ELISA. The average cytokine concentration (pg/ml ± standard error of the mean) of
CCL2, TNFα and IFN-α is shown for mock-infected (n =4, single experiment), C57BL/6 (n =13 from 4 different experiments), and DBA/2J (n =15
from four different experiments). *** is P <0.0001. (B) Significant association between CCL2, TNF-α, and IFN-α concentration and lung virus titer
48 hours post inoculation with 104 EID50 of HK213 virus in B6, D2 and BXD recombinant inbred mouse strains (P < 0.0001 for all three cytokines).
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IFN-α were significantly higher in D2 compared to B6
(P <0.001 for all three cytokines), confirming our previ-
ous studies suggesting that early cytokine levels correl-
ate with virus titer.
To evaluate this further we quantified the lung virus

titer as well as the CCL2, TNFα, and IFN-α concentra-
tion in 12 different BXD RI mouse strains (Figure 1B) 48
hours post inoculation. Correlation analysis revealed a
highly significant association between lung virus titer
and TNF-α (r =0.96, P < 0.0001), CCL2 (r =0.86, P <
0.0001), and IFN-α concentration (r =0.88, P <0.0001) at
48 hours post inoculation.

Identification of candidate genomic loci associated with
increased levels of pro-inflammatory cytokines
The concentrations of TNFα, CCL2 and IFN-α in the
lungs of HK213 infected BXD RI mice ranged from 11-269
pg/ml, 728-6128 pg/ml, and 127-982 pg/ml respectively
(Figure 2 and Additional file 2: Table S1). Interestingly, sev-
eral BXD strains produced equally low amounts of CCL2,
TNFα, and IFN-α as the parent B6. In contrast, none of
the BXD strains produced similarly high levels of cytokines
as the D2 parent, suggesting that the high cytokine-
producing phenotype of D2 had reached a maximum
asymptote dependent on the cumulative effects of several
sequence variants. Regression analysis identified a highly
significant correlation between CCL2 and TNFα (r =0.82,
P <0.0001), CCL2 and IFN-α (r =0.78, P <0.0001), and
TNFα and IFN-α (r =0.81, P <0.0001) concentrations in
lung homogenates, suggesting a common mechanisms
modulating levels of cytokine production among BXD
strains.
QTL analysis on cytokine profiles identified a highly

significant locus located on chromosome 6 between 3.4
Mb and 14.5 Mb (Figure 3). This locus, Qivr6.1, is asso-
ciated significantly (P-genome wide <0.05) with the
amount of TNFα (peak LRS =25) and IFN-α (peak
LRS =27) produced 48 hours after intranasal infection
with HK213. Qivr6.1 also accounts for variation in the
concentration of CCL2 in lung homogenates, albeit at a
lower level of significance (peak LRS =17). In general,
Qivr6.1 accounted for ~18% of the phenotypic difference
in cytokine levels among BXD strains and the D2 allele
increased the trait value. Winsorization of the data con-
firmed the genetic association for Qivr6.1. In addition to
the highly significant locus on the proximal part of
chromosome 6, we also identified a suggestive locus
(Qivr6.2) for TNFα and CCL2 on the distal portion of
chromosome 6 between 81 and 89 Mb (peak LRS =15).
Another suggestive locus was identified for IFN-α and
CCL2 on chromosome 13 (Qivr13) between 103.2 and
107.2 Mb (peak LRS =16). Finally, TNFα concentrations
associated significantly with a locus on chromosome 1
(Qivr1) between 154.5 and 160.6 Mb (peak LRS =17).

Identification of candidate genes in Qivr6.1
To identify the genetic polymorphisms and host genes
that are responsible for the difference in production of
pro-inflammatory cytokines after HK213 virus infection,
we queried available sequence information for genetic
polymorphisms between 3–16 Mb on chromosome 6.
Three genes—Samd9l, Slc25a13, and Ica1—contain non-
synonymous SNPs, and one gene—Col28a1—has a large
in-frame deletion spanning three coding exons (exon
16 through 18 in NM_001037865.1) the D2 genotype
(Table 1). All four genes are expressed in HK213-infected

Figure 2 CCL2, TNFα, and IFN-α concentration in lung
homogenates of BXD recombinant inbred mouse strains.
Forty-four different BXD RI mouse strains (derived from DBA/2J and
C57BL/6) were infected with 104 EID50 of HK213 influenza virus in 30 μl
PBS. Forty-eight hours post inoculation the lungs of the inoculated
animals were collected, homogenized in sterile PBS, and stored at -80°C.
The concentration of CCL2, TNFα, and IFN-α in these homogenates was
quantified by ELISA. The average cytokine concentration (pg/ml ±
standard error of the mean) of CCL2 (A), TNFα (B) and IFN-α (C) is shown
for each BXD RI strain (black bars) and the parent strains (DBA/2J
(white bar) and C57BL/6 (grey bar)). The average cytokine concentration
for each BXD strain was calculated from 2-10 animals (average =5.2) and
36% of the BXD strains have been repeated independently.
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Figure 3 Genome-wide linkage analysis CCL2, TNFα, and IFN-α production after H5N1 virus infection. QTL analysis (www.genenetwork.org) was
performed on the CCL2 (A), TNFα (B), and IFN-α (C) cytokine concentrations in homogenates of lungs 48 hours after infection with HK213 H5N1 influenza
virus. QTL associated with increased CCL2, TNFα, and IFN-α concentration after infection with HK213 virus (Qivr6.1) was identified on chromosome 6 (3.4 -
14.5 Mb) as indicated by an LRS score of more than 17.7 (pink horizontal line in QTL plot). A second QTL associated with increased TNFα concentrations
was located on chromosome 1 (Qivr1, 154.5 - 160.6 Mb). This same locus also reached suggestive P-values for IFN-α. Suggestive loci were also found for
CCL2 and TNFα on chromosome 6 (Qivr6.2, 81 - 89 Mb) and for IFN-α and CCL2 on chromosome 13 (Qivr13, 103.2 - 107.2 Mb. Pink line denotes significant
linkage (genome-wide P <0.05, LRS >17.7) and grey line indicates suggestive linkage (LRS >12). For this study we focused on suggestive loci that were
nearly significant and identified in two or more pro-inflammatory cytokine QTL analysis.
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lung tissue of D2 and B6 strains and we confirmed these
mutations by sequence analysis of PCR products using
gene-specific primers and RNA extracted from HK213-
infected lung tissue from D2 and B6 (see Additional file 3:
Table S2 for primer sequences). In addition to these candi-
date genes, we also performed Sanger sequencing on
Pon1, Pon2, Pon3, Hepacam2, Cdcc32, Asb4, and C1galt1
because of their potential to affect cytokine production or
alter influenza virus infection. The reported single nucleo-
tide polymorphisms in Samd9l (rs30759164 (V169I) and
rs30516773 (I459V)), Slc25a13 (rs32512230 (V583A) and
rs30695207 (A648T)), and Ica1 (rs51311141 (A312T) and
rs6218746 (Q397R)) were confirmed by sequencing. Simi-
larly, we also confirmed the in-frame 69 amino-acid dele-
tion in Col28a1 in the D2 genotype. No additional
missense or nonsense polymorphisms or deletions and in-
sertions were identified between D2 and B6 in the coding
region of any of the other seven host genes that were
targeted for sequencing.
Next, we evaluated the missense polymorphisms across

several other inbred strains of mice that were previously
characterized for their response to influenza virus (Table 1)
[5]. The missense mutations in Samd9l and Slc25a13 were
unique to B6 and D2 strains respectively. In contrast the
genetic differences in Ica1 segregated well between resist-
ant and susceptible mouse strains. The exception was SM/
J whose genome harbored the susceptible missense muta-
tions in Ica1. The presence of the 69 amino-acid deletion
in Col28a1 was also present in the A/J strain of mice, but
not in the susceptible 129/SvImJ or the resistant mouse
strains.

RNA expression analysis of candidate genes in Qivr6.1
Using previously published RNA expression data [13]
from lungs obtained from D2 and B6 mice infected with
H5N1 influenza virus, we identified 41 host genes within
Qivr6.1 that were detected by microarray in the context of
uninfected or H5N1 IAV infected lung tissue. These in-
cluded the three polymorphic host genes Samd9l, Ica1
and Slc25a13, but not Col28a1. A comparison of baseline
RNA expression identified 5 host genes whose expression

levels were significantly different (P <0.01), albeit the differ-
ence was less than 2-fold. These included Ica1, Col1a2,
Calcr, Tfpi2 and Bet1. One probe (1431380_at), detecting a
transcript located within an intron of Ica1, was detected
only in B6 animals. Within the locus we also identified host
genes whose expression increased (Samd9l, Asns, Gpr85,
and Tfpi2) or decreased (Pon1, Hepacam2, Tmem106b,
and Pppr9a1) 2-fold (P < 0.05) 72 hours after infection with
H5N1 IAV in D2, B6 or both mouse strains. Importantly
we did not identify a transcript that was differentially
expressed only in D2 or B6 mice suggesting that there are
no sequence polymorphisms in important transcription
factor binding sites.
Finally, we evaluated available lung micro array data

from the QTL gene-network website, correlating TNF-α
cytokine levels 48 hours after H5N1 IAV infection with
basal gene expression in 37 BXD mouse strains [17]. Inter-
estingly, Ica1, Samd9l, Tfpi2 and Calcr correlated well
(Spearman Rank order correlation >0.4 or < -0.4, P < 0.01)
with TNF-α cytokine concentration in these mice.

Role of Slc25a13 on cytokine production and
pathogenesis after H5N1 infection
Citrin (the protein product of Slc25a13) is a member of
the mitochondrial carrier family of proteins and catalyzes
the calcium-dependent exchange of cytoplasmic glutamate
with mitochondrial aspartate across the mitochondrial
inner membrane [18-20]. Mutations in this gene result in
adult-onset type II citrullinemia (OMIM 605814) and neo-
natal intrahepatic cholestasis caused by citrin deficiency
(OMIM 603471) that lead to distinct and overlapping
effects on hepatic function through its role in urea cycle
function [21]. Because citrin was previously reported to
interact with the PA polymerase protein of influenza A
virus [22] and a gene-knockout mouse was available we
decided to test the hypothesis that Slc25a13 controls the
level of cytokine production. Therefore we predicted that
the absence of this gene would increase cytokine produc-
tion upon HK213 infection. To control for the appropriate
genetic background we used BALB/cAnCrl as controls for
the Slc25a13-/- knockout mice congenic on the BALB/

Table 1 Missense mutation analysis across multiple inbred mouse strains

Gene SNP DBA/2J 129/SvImJ A/J SM/J C57BL/6J Balb/cJ

Samd9l V169I I I I I V I

I459V V V V V I V

Slc25a13 V583A A V V V V V

A648T T A A nd1 A A

Ica1 A312T T T T T A A

Q397R R R R R Q Q

Col28a1 Deletion* Del −2 Del - - -

*Based on two flanking non-synonymous SNP (rs30133088 at position 312 and rs30660613 at position 602). 1 nd = no data available. 2 = similar to wild
type C57BL/6.
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cAnN background. Compared to HK213 infected control
animals, the Slc25a13-/- animals produced equal amounts
of CCL2, suggesting that the lack of Slc25a13 expression
did not affect H5N1 induced inflammation (Figure 4A).
With respect to disease severity, we monitored weight loss
and mortality over a 15 day period after inoculation with
105 or 106 EID50 of HK213 virus. No effect of Slc25a13
gene expression on morbidity (Figure 4B) or mortality
(data not shown) was observed.

Potential role for Samd9l, Ica1 and Col28a1 in influenza
virus infection and pathogenesis
Here we have identified a highly significant and novel
locus on the extreme proximal portion of chromosome 6

(Qivr6.1) that harbors three candidate genes associated
with increased inflammation early after H5N1 IAV infec-
tion. Samd9l is a Sam domain containing protein with
similarities to SAMD9 which has been shown to be im-
portant during virus infection and innate immunity [23].
Samd9l is expressed in many different tissues including
lung [24] and is upregulated by type I interferon. Knock-
down of Samd9l expression increases West-Nile virus
replication [25], although the mechanism is unknown.
Samd9l knockout mice are characterized by a delay in
homotypic endosome fusion resulting in persistence of
ligand-bound cytokine receptors [26]. IAV enters cells via
the endosomes requiring low pH to trigger membrane
fusion and deposition of its genomic material into the
cytoplasm. If Samd9l is important for the trafficking, mat-
uration and acidification of the endosome, it may act as an
antiviral host gene against IAV infection. Interferon in-
duced transmembrane protein 3 (IFITM3) is a host pro-
tein with potent antiviral activity. IFITM3 blocks entry of
many difference viruses, including influenza, at the stage
of membrane fusion in the endosome. Deletion of Ifitm3
in C57BL/6 mice resulted in increased virus load in the
lungs and increased morbidity and mortality after in-
fluenza virus infection [27]. While there are no non-
synonymous polymorphisms in the Ifitm3 protein between
the D2 and B6 mice, the increase in viral load and associ-
ated disease in Ifitm3-/- mice is similar to the phenotype
observed in D2 mice. An alternative hypothesis is that
Samd9l affects the persistence of ligand-bound cytokine
receptors which may increase cytokine signaling and
inflammation which in turn results in more recruitment of
inflammatory cells and virus infection [12]. Although two
non-synonymous amino-acid changes at position 169 and
459 in the BXD family are predicted to have minimal
effect on protein activity (SIFT prediction program), the
reported antiviral activity of Samd9l against another RNA
virus [25] and its effect on endosome function make
Samd9l our priority candidate gene.
Ica1 is another candidate gene. This islet cell auto anti-

gen that is the target of auto antibodies in type I diabetes
and Sjögren’s syndrome [28]. ICA1 was also identified in a
GWAS looking at genetic modifiers of glaucoma [29]. Ica1
together with Pick1 localizes to the trans-Golgi network
(TGN) and is involved in the regulation of secretory
vesicle trafficking [30,31]. Ica1 is highly expressed in ner-
vous, glandular and muscle tissue and to a lesser extend in
other tissues such as the respiratory tract. Differences in
Ica1 protein structure or expression can affect the sympa-
thetic nervous system activity and neuropeptide secretion
altering the host response to infection [32-34]. Changes in
vesicle trafficking may also alter mucus or antibody pro-
duction reducing innate immune defenses to the virus and
allowing for enhanced replication and increased cytokine
production. Ica1 could potentially affect the virus-encoded

Figure 4 Effect of Slc25a13 gene expression on H5N1 influenza
virus pathogenesis. (A) Slc25a13-deficient mice (Slc25a13-/-) and
control animals were inoculated with 105 HK213 virus for 48 hours
and the amount of CCL2 produced in the lungs was measured by
ELISA. The results are from 5 mice per group and are representative
of two experiments. (B) Slc25a13-/- mice (circles, n =7) and control
animals (triangles, n =9) were infected with 105 (filled symbols) or
106 (open symbols) EID50 of a highly pathogenic H5N1 influenza A
virus (A/Hong Kong/213/03 (HK213)) and weight-loss was monitored
for 15 days.
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matrix 2 (M2) ion channel activity in the TGN to neutralize
the acidic pH of the TGN in order to prevent activation of
HA to its fusogenic form. This activity activates NLRP3
resulting in the formation of the inflammasome, cleavage of
pro-IL-1β [35,36] and increased inflammation. Finally, Ica1
may alter the replication kinetics of IAV by changing intra-
cellular trafficking of TGN-associated vesicles required for
trafficking of the viral glycoproteins HA and NA to the
surface of the cells. Interestingly the amino acid residue at
position 312 in the C57BL/6J strain was predicted to be
damaging (SIFT functional polymorphism prediction pro-
gram), suggesting that the Ica1 allele in DBA/2J mice may
enhance virus replication.
Finally, Col28a1 is a von Willebrand factor A domain-

containing protein with many imperfections in the col-
lagenous domain [37]. The 69 amino acid deletion spans
one of the many collagen triple helix repeat domains of
the protein and it is not clear how this affects protein
activity. Interestingly, Col28a1 contains a serine protease
inhibitor domain, which could be important in reducing
inflammation or virus infection [38]. A polymorphism in
COL28A1 was associated with the cytokine response to
smallpox vaccination [39].

Discussion
Morbidity and mortality after influenza virus infection is
affected by genetic variation of important host genes.
Identification of the polymorphism and affected host
genes will provide significant insight into the pathogen-
esis after influenza virus infection. In order to identify
host genes with important effects on influenza patho-
genesis, we performed a quantitative trait locus analysis
on genetically diverse mouse strains comparing the early
inflammatory response after H5N1 virus infection. This
analysis identified a highly significant H5N1 control
locus (LRS 26) on the extreme proximal part of mouse
Chr. 6 that is homologous to a 5 megabase interval on
human Chr. 7p22 and 7q21 respectively.
Severe disease after influenza virus infection is mediated

by both host and viral factors and many studies suggest
that viral load and rapid replication are the determining
factor for the outcome of the disease. These findings are
supported by potent effects of neutralizing antibodies at
early time points and the relatively short period of time
(48 hours) in which treatment with antiviral therapeutics
is considered most effective. In contrast to these studies,
several others suggest that inflammation is independent of
viral load and caused by underlying illnesses, or differences
in viral protein function, essentially changing the host
response to infection from protective (disease prevention)
to pathogenic (disease promoting). Interferon antagonist
functions of NS1 or the endonuclease function of PA-X
are important examples of this process [40]. This view is
supported by studies using immune-modulatory agents,

like peroxisome proliferator-activated receptor-gamma
agonist, lipid mediators or sphingosine-1-phosphate re-
ceptor agonists that reduce inflammation without chan-
ging the viral load [41-43]. More recently it was reported
that inflammation itself is promoting virus replication by
recruiting cells to the site of infection allowing the virus to
grow to higher titers [12]. While many of these findings
are not mutually exclusive, our model using different in-
bred mouse strains favor the explanation that elevated
virus replication and infection are inducing the increase in
inflammatory response and subsequent excessive mortality
in the susceptible mouse strains. We now provide add-
itional evidence that inflammation and virus titers correl-
ate significantly (P < 0.0001) across a subset of BXD RI
lines with correlation coefficients between 0.86 and 0.96.
A major advantage of using inflammatory cytokines as

a biomarker for viral load is availability of commercially
available and validated assays and the increased dynamic
range between the different mouse strains. Although we
observed a 50-fold difference in viral titers between D2
and B6 parental strains, on a logarithmic scale this dif-
ference is much smaller (1.4-fold). In contrast, the cyto-
kine data is presented on a linear scale greatly increasing
our dynamic range between the B6 and D2 animals
while maintaining large fold differences in cytokine con-
centrations between D2 and B6. Thus a QTL analysis
with cytokine concentration as the phenotype is more
sensitive and likely to yield loci containing genetic poly-
morphisms involved in virus replication or antiviral ac-
tivity. Although we provide evidence that inflammatory
cytokine concentration in lung homogenates can be used
as a surrogate biomarker for viral load between different
mouse strains, extensive validation in nasal washes or
serum from human patients infected naturally or experi-
mentally with influenza virus needs to be done before
this can be used in clinical specimens.
Several loci and polymorphisms have been associated

with resistance to influenza virus disease using a variety of
different genetic mouse models. BXD RI strains were used
to identify genetic loci (Qivr or quantitative trait for influ-
enza virus resistance) on chromosomes 2, 5, 7, 16, 17 and
19 [13,15]. The collaborative cross, which includes B6 but
not the D2 mouse strain, was used to identify four differ-
ent “host response to influenza” virus loci (HrI) located on
chromosomes 1, 7, 15, and 16 [16]. Finally, BXA/AXB
strains were used to map loci on chromosome 2, 4, 6, and
17 associated with more severe influenza virus infection
[14]. The loci reported in this study have not been identi-
fied previously despite the repeated use of BXD strains.
Differences in phenotype, from very early (inflammation
48 hours after infection) to late (survival), and choice of
mouse and virus strains will identify different genetic poly-
morphisms. The current study identified several other loci
associated with increased production of pro-inflammatory
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cytokines after H5N1 influenza virus infection. The locus
on chromosome 1 (Qivr1), associated with increased levels
of TNFα, contains a well-known host antiviral gene ribo-
nuclease L (Rnasel). The presence of at least sixteen differ-
ent missense mutations between B6 and D2 (including
three that are predicted damaging) make this gene a likely
candidate. Qivr13 contains four host genes harboring non-
synonymous polymorphisms including Erbb2ip, a regulator
of Nod2-dependent NF-kappaB signaling, and a member
of the nuclear importin family (Ipo11). Finally Qivr6.2 con-
tains several polymorphic host genes including Mxd1 and
Anxa4.
To identify candidate genes we focused primarily on

sequence variation that affects the protein (non-syn-
onymous polymorphisms). However sequence variation
in regulatory regions of the gene, such as transcription
factor binding sites or micro-RNA target sites, can
change the level of protein expression and as such
impact virus infection and inflammation. At least for
Qivr6.1, we did not observe large differences (>2-fold) in
baseline expression of host genes nor did we identify
lack of induction of host genes in the susceptible D2
strain. Therefore we consider it unlikely that sequence
variation in regulatory or non-coding regions of the
genes present in this locus is causing the difference in
phenotype.
Slc25a13 was one of four candidate genes within the

Qivr6.1 locus associated with increased cytokine produc-
tion following H5N1 IAV infection. However, mice lack-
ing this gene did not demonstrate a change in cytokine
production, suggesting that Slc25a13 is not the host
gene whose polymorphism affected the early innate im-
mune response. Previously, Slc25a13 was found to asso-
ciate with the PA gene of a related highly pathogenic
H5N1 influenza virus (A/Vietnam/1203/04) [22]. The
absence of this interaction in the Slc25a13-/- had no dis-
cernable effect on the host response or pathogenesis
in vivo. Alternatively the effects of Slc25a13 gene dele-
tion vary between mouse strains. We tested the effect of
Slc25a13 on a Balb/cAn genetic background that is
different from both parental strains used to generate the
BXD family. It is feasible that the deletion of Slc25a13 in
C57BL/6J or DBA/2J mice would change the cytokine
profile after H5N1 virus infection. Deletion of the
Slc25a13 gene was previously reported to have variable
effects on metabolism dependent on the genetic back-
ground of the mouse strains [44]. Alternatively, the dele-
tion of Slc25a13 may not mimic the effects of the
genetic changes found in the D2 strain. The amino-acid
changes may have altered gene function that is not
captured in the Slc25a13 knockout mouse strain.
In conclusion, gene polymorphisms in the genome of

the infected host can have a profound impact on the
course of an H5N1 influenza virus infection. Although

severe disease outcomes are often attributed to inflam-
mation with excessive production of proinflammatory
cytokines, the pathogenicity of influenza infection is
rooted in increased virus titers in the lungs of the
susceptible hosts.

Conclusions
Severe disease after influenza virus infection is associ-
ated with excessive production of inflammatory cyto-
kines and recruitment of innate immune cells into the
infected tissue. An increase in dose or enhanced virus
replication contributes to the excessive production of in-
flammatory cytokines. Identification of host-factors that
facilitate virus replication and pathogenesis is important
for the discovery of host targets for the development of
novel antiviral therapies.
In this report we provide further evidence that excessive

production of inflammatory cytokines is due to higher
virus loads. We also show that pro-inflammatory cytokine
production following infection with highly pathogenic
H5N1 influenza virus is dependent on the genetic back-
ground of the mouse strain. Quantitative trait locus ana-
lysis identified a locus on chromosome 6 that is associated
with early production of pro-inflammatory cytokines and
increased virus replication in BXD recombinant inbred
mouse strains. Expression and coding sequence analysis
identified Samd9l and Ica1 as strong candidate genes in
this locus.

Methods
Mouse strains and influenza virus
Female DBA/2J (D2, stock no. 000671) and C57BL/6J (B6,
no. 000664) mice were purchased from the Jackson
Laboratory (Bar Harbor, ME) and housed at St Jude
Children’s Research Hospital, Memphis, TN, USA. Female
BXD recombinant inbred (RI) mouse lines derived from
crosses between B6 and D2 stock were acquired from Oak
Ridge National Laboratory (ORNL, Oak Ridge, TN). Mice
deficient in citrin (Slc25a13tm1Lct), congenic on a BALB/
cAnN genetic background, were obtained from the
Jackson Laboratory [45]. These mice were originally de-
scribed by Dr. David Sinasac as an animal model for type
II citrullinemia. Suitable control animals, BALB/cAnNCrl
(no. 028), were obtained from Charles Rivers Laboratories.
All mice were between 6 and 10 weeks of age. Infection
studies in mice were conducted under the approval of the
SJRCH Institutional Animal Care and Use Committee.
A highly pathogenic H5N1 influenza A virus was created

by reverse genetics as described previously [46,47]. The
virus contains seven gene segments of A/Hong Kong/213/
2003 H5N1 virus and the PB1 gene segment from A/
Chicken/Hong Kong/Y0562/2002 H5N1 virus. This highly
pathogenic H5N1 virus, referred to as HK213, was also used
in a previously study of pathogenesis in BXD strains [13].
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Mice were inoculated with IAV intranasally in 30 μl
of sterile PBS after sedation with Avertin (2,2,2-
tribromoethanol, Sigma-Aldrich, MO, USA). To assess
morbidity and mortality after HK213 virus infection, ani-
mals were weighed every second day until 21 days post-
infection. Animals that lost more than 30% of their initial
body weight were sacrificed per approved animal protocol.

Lung virus titer and cytokine analysis
Lungs from B6, D2, and BXD strains infected with 104

EID50 were obtained 2 days after infection and immedi-
ately homogenized in 2.0 ml tubes containing 1.0 ml
PBS and a stainless steel ball for two 30-sec periods at
30 Hz (TissueLyzer, Qiagen). After a 30-sec spin at
16,000 × g, the supernatant was collected, aliquoted, and
stored at –80°C. Virus titers were determined on MDCK
as described previously [13]. The concentrations of che-
mokine (C-C motif ) ligand 2 (CCL2) and tumor necrosis
factor-alpha (TNFα) in the lung homogenates of infected
animals were determined using Quantikine kits from
R&D Systems (Minneapolis, MN). The concentration of
interferon (IFN)-α was determined with the IFN-α
ELISA kit from PBL laboratories (Piscataway, NJ). The
average values for each BXD strain represent data from
2 to 10 cases per strain (average =5.2) with 16 of the 44
BXD strains repeated independently (Additional file 2:
Table S1). The data for D2 and B6 are the average of 13
and 15 cases, respectively, obtained from four independ-
ently repeated experiments. To control for inter-ELISA
assay variation, a fresh aliquot of pooled lung homoge-
nates of HK213 virus infected D2 and B6 mice was ana-
lyzed in each cytokine ELISA. The values for CCL2,
TNFα, and IFN-α in the pooled sample varied no more
than 15% from the average of all performed assays.

QTL mapping
Quantitative trait loci (QTL) mapping was performed using
the WebQTL module of GeneNetwork (www.genenetwork.
org). Interval mapping evaluates a potential QTL at regular
intervals and estimates the significance at each location by
using 2000 or more permutation tests [48,49]. Mapping
was done using data from 44 BXD RI strains for CCL2 and
TNF-α and 43 strains for IFN-α concentration in whole
lung homogenates after infection with H5N1. For the
original data set, see www.genenetwork.org (ID numbers
12971–12973). Loci associated with increased production
of pro-inflammatory cytokines were identified and are re-
ferred to here as Qivr (QTL for influenza virus resistance).
The QTL boundaries were defined as a drop in peak LRS
of 7 as this is considered the best approximation of a 95%
confidence interval in QTL mapping [50]. To reduce the
potential effects of outliers on the mapping outcome we
also performed the QTL analysis after winsorization; a
technique to reduce the effects of outliers on statistical

analysis [51]. Winsorization did not affect the outcome of
the analysis and the same significant and suggestive loci
were identified. In general, an LRS (likelihood ratio statis-
tics) value greater than 17.7 was significant (P genome-
wide <0.05) whereas a value between 12 and 17.7 was
suggestive. For this study we focused on suggestive loci
that were nearly significant and identified in two or more
pro-inflammatory cytokine QTL analysis.

DNA sequencing of candidate genes
Candidate host genes were amplified by PCR using cDNA
generated from RNA extracted from HK213 virus-infected
lung tissue obtained from B6 and D2 strains. The cDNA
was generated using gene-specific primers and Superscript
III First-Strand Synthesis System (Invitrogen) according to
the manufacturer’s protocol. For a list of primers see
Additional file 3: Table S2. Following PCR using the
Phusion polymerase protein (Finnzymes), the PCR prod-
ucts were excised from a 1.0% agarose gel and submitted
for DNA sequencing (Hartwell Center at St. Jude Children’s
Research Hospital) using gene-specific primers. The se-
quences were aligned and compared to the NCBI refer-
ence sequence. The murine candidate genes that were
fully sequenced included: Pon1 (NM_011134.3), Pon2
(NM_183308.2), Pon3 (NM_ 173006.1), Samd9l (NM_
010156.3), Ica1 (NM_010492.3), Hepacam2 (NM_178899.5),
Slc25a13 (NM_015829.3), Asb4 (NM_023048.5), Ccdc132
(NM_024260.5), C1galt1 (NM_052993.3). Col28a1 (NM_
001037865.1) was partially amplified and sequenced around
exon 16–18 to confirm an in-frame deletion.

Statistical analysis
Statistical analyses of differences in mortality were
determined by using the log-rank test. Differences in
morbidity and CCL2 production between control and
Slc25a13-/- animals were analyzed for statistical signifi-
cant using Student’s t-test. The Student’s t-test was also
used to analyze differences in cytokine concentration in
lung homogenates between the different mouse strains
or between HK213-infected and mock-infected samples.
The Pearson product-moment correlation coefficient
was determined for cytokine concentration and virus titer
using GraphPad Prism 6 software on untransformed data.

Additional files

Additional file 1: Figure S1. Kinetics of IFN-α production following H5N1
influenza virus infection in DBA/2J and C57BL/6 mice. DBA/2J and C57BL/6J
were inoculated with 104 EID50 of HK213 virus in 30 μl PBS. Twenty-four, 48
and 72 hours post inoculation the lungs of the inoculated animals were
collected, homogenized in sterile PBS, and stored at -80°C. The concentration
of IFN-α in these homogenates was quantified by ELISA.

Additional file 2: Table S1. TNF-α, IFN-α and CCL2 concentrations in
lung homogenates of the recombinant inbred BXD animals. BXD mice
were inoculated with 104 EID50 of HK213 virus in 30 μl PBS. Forty-eight
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hours post inoculation the lungs of the inoculated animals were
collected, homogenized in sterile PBS, and stored at -80°C. The
concentration of TNF-α, IFN-α and CCL2 in these homogenates was
quantified by ELISA.

Additional file 3: Table S2. Primer sequences used to amplify the
coding region of various candidate genes in Qivr6.1 locus.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ACB, RWW and RJW have made substantial contributions to conception and
design, or acquisition of data, or analysis and interpretation of data. DSS
provided the Slc25a13-/- animals and expertise on Slc25a13 biology. ACB,
RWW, DSS and RJW were involved in drafting and revising the manuscript.
All authors read and approved the final manuscript.

Acknowledgements
We would like to thank Dr. Matt Sandbulte for critically reviewing the
manuscript. We thank David Carey and Scott Krauss for their help in the
ABSL3+ facility and Jennifer DeBeauchamp and Brittany DesRochers for help
with mouse breeding. This project was funded, in part, by grants from the
National Institute Allergy and Infectious Diseases, National Institutes of
Health, Department of Health and Human Services under contract no.
HHSN266200700005C, and by the American Lebanese Syrian Associated
Charities (ALSAC).

Author details
1Departments of Internal Medicine, Division of Infectious Diseases, Molecular
Microbiology and Pathology and Immunology, Washington University School
of Medicine, St Louis, MO 63110, USA. 2Department of Infectious Diseases, St.
Jude Children’s Research Hospital, Memphis, TN 38105, USA. 3Department of
Anatomy and Neurobiology, University of Tennessee Health Science Center,
Memphis, TN, USA. 4Department of Medical Genetics, University of Calgary,
Calgary, Alberta, Canada.

Received: 3 June 2014 Accepted: 22 October 2014
Published: 24 November 2014

References
1. de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN, Hoang

DM, Chau NV, Khanh TH, Dong VC, Qui PT, Cam BV, Ha do Q, Guan Y,
Peiris JS, Chinh NT, Hien TT, Farrar J: Fatal outcome of human influenza A
(H5N1) is associated with high viral load and hypercytokinemia. Nat Med
2006, 12(10):1203–1207.

2. Peiris JS, Yu WC, Leung CW, Cheung CY, Ng WF, Nicholls JM, Ng TK,
Chan KH, Lai ST, Lim WL, Yuen KY, Guan Y: Re-emergence of fatal human
influenza A subtype H5N1 disease. Lancet 2004, 363(9409):617–619.

3. Horby P, Sudoyo H, Viprakasit V, Fox A, Thai PQ, Yu H, Davila S, Hibberd M,
Dunstan SJ, Monteerarat Y, Farrar JJ, Marzuki S, Hien NT: What is the
evidence of a role for host genetics in susceptibility to influenza
A/H5N1? Epidemiol Infect 2010, 138(11):1550–1558.

4. Olsen SJ, Ungchusak K, Sovann L, Uyeki TM, Dowell SF, Cox NJ, Aldis W,
Chunsuttiwat S: Family clustering of avian influenza A (H5N1). Emerg
Infect Dis 2005, 11(11):1799–1801.

5. Everitt AR, Clare S, Pertel T, John SP, Wash RS, Smith SE, Chin CR, Feeley EM,
Sims JS, Adams DJ, Wise HM, Kane L, Goulding D, Digard P, Anttila V,
Baillie JK, Walsh TS, Hume DA, Palotie A, Xue Y, Colonna V, Tyler-Smith C,
Dunning J, Gordon SB, Everingham K, Dawson H, Hope D, Ramsay P, Walsh Local
Lead Investigator TS, Campbell A, et al: IFITM3 restricts the morbidity and
mortality associated with influenza. Nature 2012, 484(7395):519–523.

6. Almond MH, Edwards MR, Barclay WS, Johnston SL: Obesity and
susceptibility to severe outcomes following respiratory viral infection.
Thorax 2013, 68(7):684–686.

7. Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A:
Microbiota regulates immune defense against respiratory tract influenza
A virus infection. Proc Natl Acad Sci U S A 2011, 108(13):5354–5359.

8. O'Brien KB, Vogel P, Duan S, Govorkova EA, Webby RJ, McCullers JA, Schultz-
Cherry S: Impaired wound healing predisposes obese mice to severe
influenza virus infection. J Infect Dis 2012, 205(2):252–261.

9. Brandes M, Klauschen F, Kuchen S, Germain RN: A systems analysis
identifies a feedforward inflammatory circuit leading to lethal influenza
infection. Cell 2013, 154(1):197–212.

10. Hatta Y, Hershberger K, Shinya K, Proll SC, Dubielzig RR, Hatta M, Katze MG,
Kawaoka Y, Suresh M: Viral replication rate regulates clinical outcome and
CD8 T cell responses during highly pathogenic H5N1 influenza virus
infection in mice. PLoS Pathog 2010, 6(10):e1001139.

11. Boon AC, Finkelstein D, Zheng M, Liao G, Allard J, Klumpp K, Webster R,
Peltz G, Webby RJ: H5N1 influenza virus pathogenesis in genetically
diverse mice is mediated at the level of viral load. MBio 2011,
2(5):e00171-11.

12. Pang IK, Pillai PS, Iwasaki A: Efficient influenza A virus replication in the
respiratory tract requires signals from TLR7 and RIG-I. Proc Natl Acad
Sci U S A 2013, 110(34):13910–13915.

13. Boon AC, de Beauchamp J, Hollmann A, Luke J, Kotb M, Rowe S, Finkelstein D,
Neale G, Lu L, Williams RW, Webby RJ: Host genetic variation affects
resistance to infection with a highly pathogenic H5N1 influenza A virus in
mice. J Virol 2009, 83(20):10417–10426.

14. Boivin GA, Pothlichet J, Skamene E, Brown EG, Loredo-Osti JC, Sladek R,
Vidal SM: Mapping of clinical and expression quantitative trait loci in a
sex-dependent effect of host susceptibility to mouse-adapted influenza
H3N2/HK/1/68. J Immunol 2012, 188(8):3949–3960.

15. Nedelko T, Kollmus H, Klawonn F, Spijker S, Lu L, Hessman M, Alberts R,
Williams RW, Schughart K: Distinct gene loci control the host response to
influenza H1N1 virus infection in a time-dependent manner. BMC Genomics
2012, 13:411.

16. Ferris MT, Aylor DL, Bottomly D, Whitmore AC, Aicher LD, Bell TA, Bradel-
Tretheway B, Bryan JT, Buus RJ, Gralinski LE, Haagmans BL, McMillan L,
Miller DR, Rosenzweig E, Valdar W, Wang J, Churchill GA, Threadgill DW,
McWeeney SK, Katze MG, Pardo-Manuel de Villena F, Baric RS, Heise MT:
Modeling host genetic regulation of influenza pathogenesis in the
collaborative cross. PLoS Pathog 2013, 9(2):e1003196.

17. Alberts R, Lu L, Williams RW, Schughart K: Genome-wide analysis of the
mouse lung transcriptome reveals novel molecular gene interaction
networks and cell-specific expression signatures. Respir Res 2011, 12:61.

18. Sinasac DS, Crackower MA, Lee JR, Kobayashi K, Saheki T, Scherer SW,
Tsui LC: Genomic structure of the adult-onset type II citrullinemia gene,
SLC25A13, and cloning and expression of its mouse homologue.
Genomics 1999, 62(2):289–292.

19. Kobayashi K, Sinasac DS, Iijima M, Boright AP, Begum L, Lee JR, Yasuda T,
Ikeda S, Hirano R, Terazono H, Crackower MA, Kondo I, Tsui LC, Scherer SW,
Saheki T: The gene mutated in adult-onset type II citrullinaemia encodes
a putative mitochondrial carrier protein. Nat Genet 1999, 22(2):159–163.

20. Palmieri L, Pardo B, Lasorsa FM, del Arco A, Kobayashi K, Iijima M, Runswick MJ,
Walker JE, Saheki T, Satrustegui J, Palmieri F: Citrin and aralar1 are
Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria. EMBO J
2001, 20(18):5060–5069.

21. Saheki T, Kobayashi K, Iijima M, Horiuchi M, Begum L, Jalil MA, Li MX, Lu YB,
Ushikai M, Tabata A, Moriyama M, Hsiao KJ, Yang Y: Adult-onset type II
citrullinemia and idiopathic neonatal hepatitis caused by citrin
deficiency: involvement of the aspartate glutamate carrier for urea
synthesis and maintenance of the urea cycle. Mol Genet Metab 2004,
81(Suppl 1):S20–S26.

22. Bradel-Tretheway BG, Mattiacio JL, Krasnoselsky A, Stevenson C, Purdy D,
Dewhurst S, Katze MG: Comprehensive proteomic analysis of influenza virus
polymerase complex reveals a novel association with mitochondrial proteins
and RNA polymerase accessory factors. J Virol 2011, 85(17):8569–8581.

23. Liu J, Wennier S, Zhang L, McFadden G: M062 is a host range factor
essential for myxoma virus pathogenesis and functions as an antagonist
of host SAMD9 in human cells. J Virol 2011, 85(7):3270–3282.

24. Jiang Q, Quaynor B, Sun A, Li Q, Matsui H, Honda H, Inaba T, Sprecher E, Uitto J:
The Samd9L gene: transcriptional regulation and tissue-specific expression in
mouse development. J Invest Dermatol 2011, 131(7):1428–1434.

25. Li J, Ding SC, Cho H, Chung BC, Gale M Jr, Chanda SK, Diamond MS: A short
hairpin RNA screen of interferon-stimulated genes identifies a novel negative
regulator of the cellular antiviral response. MBio 2013, 4(3):e00385-13.

26. Nagamachi A, Matsui H, Asou H, Ozaki Y, Aki D, Kanai A, Takubo K, Suda T,
Nakamura T, Wolff L, Honda H, Inaba T: Haploinsufficiency of SAMD9L,
an endosome fusion facilitator, causes myeloid malignancies in mice
mimicking human diseases with monosomy 7. Cancer Cell 2013,
24(3):305–317.

Boon et al. BMC Genomics 2014, 15:1017 Page 10 of 11
http://www.biomedcentral.com/1471-2164/15/1017

http://www.biomedcentral.com/content/supplementary/1471-2164-15-1017-S3.pdf


27. Bailey CC, Huang IC, Kam C, Farzan M: Ifitm3 limits the severity of acute
influenza in mice. PLoS Pathog 2012, 8(9):e1002909.

28. Gordon TP, Cavill D, Neufing P, Zhang YJ, Pietropaolo M: ICA69
autoantibodies in primary Sjogren's syndrome. Lupus 2004, 13(6):483–484.

29. The Blue Mountains Eye Study (BMES), The Wellcome Trust Case Control
Consortium 2 (WTCCC2): Genome-wide association study of intraocular
pressure identifies the GLCCI1/ICA1 region as a glaucoma susceptibility
locus. Hum Mol Genet 2013, 22(22):4653–4660.

30. Buffa L, Fuchs E, Pietropaolo M, Barr F, Solimena M: ICA69 is a novel Rab2
effector regulating ER-Golgi trafficking in insulinoma cells. Eur J Cell Biol
2008, 87(4):197–209.

31. Cao M, Xu J, Shen C, Kam C, Huganir RL, Xia J: PICK1-ICA69 heteromeric
BAR domain complex regulates synaptic targeting and surface
expression of AMPA receptors. J Neurosci 2007, 27(47):12945–12956.

32. Grebe KM, Takeda K, Hickman HD, Bailey AL, Embry AC, Bennink JR, Yewdell
JW: Cutting edge: sympathetic nervous system increases
proinflammatory cytokines and exacerbates influenza A virus
pathogenesis. J Immunol 2010, 184(2):540–544.

33. Tripp RA, Moore D, Winter J, Anderson LJ: Respiratory syncytial virus
infection and G and/or SH protein expression contribute to substance P,
which mediates inflammation and enhanced pulmonary disease in
BALB/c mice. J Virol 2000, 74(4):1614–1622.

34. Helyes Z, Elekes K, Sandor K, Szitter I, Kereskai L, Pinter E, Kemeny A,
Szolcsanyi J, McLaughlin L, Vasiliou S, Kipar A, Zimmer A, Hunt SP,
Stewart JP, Quinn JP: Involvement of preprotachykinin A gene-encoded
peptides and the neurokinin 1 receptor in endotoxin-induced murine
airway inflammation. Neuropeptides 2010, 44(5):399–406.

35. Ichinohe T, Pang IK, Iwasaki A: Influenza virus activates inflammasomes
via its intracellular M2 ion channel. Nat Immunol 2010, 11(5):404–410.

36. Iwasaki A, Pillai PS: Innate immunity to influenza virus infection. Nat Rev Immunol
2014, 14(5):315–328.

37. Veit G, Kobbe B, Keene DR, Paulsson M, Koch M, Wagener R: Collagen
XXVIII, a novel von Willebrand factor A domain-containing protein with
many imperfections in the collagenous domain. J Biol Chem 2006,
281(6):3494–3504.

38. Gong D, Farley K, White M, Hartshorn KL, Benarafa C, Remold-O'Donnell E:
Critical role of serpinB1 in regulating inflammatory responses in
pulmonary influenza infection. J Infect Dis 2011, 204(4):592–600.

39. Kennedy RB, Ovsyannikova IG, Pankratz VS, Haralambieva IH, Vierkant RA,
Poland GA: Genome-wide analysis of polymorphisms associated with
cytokine responses in smallpox vaccine recipients. Hum Genet 2012,
131(9):1403–1421.

40. Jagger BW, Wise HM, Kash JC, Walters KA, Wills NM, Xiao YL, Dunfee RL,
Schwartzman LM, Ozinsky A, Bell GL, Dalton RM, Lo A, Efstathiou S, Atkins
JF, Firth AE, Taubenberger JK, Digard P: An overlapping protein-coding
region in influenza A virus segment 3 modulates the host response.
Science 2012, 337(6091):199–204.

41. Aldridge JR Jr, Moseley CE, Boltz DA, Negovetich NJ, Reynolds C, Franks J,
Brown SA, Doherty PC, Webster RG, Thomas PG: TNF/iNOS-producing
dendritic cells are the necessary evil of lethal influenza virus infection.
Proc Natl Acad Sci U S A 2009, 106(13):5306–5311.

42. Morita M, Kuba K, Ichikawa A, Nakayama M, Katahira J, Iwamoto R,
Watanebe T, Sakabe S, Daidoji T, Nakamura S, Kadowaki A, Ohto T,
Nakanishi H, Taguchi R, Nakaya T, Murakami M, Yoneda Y, Arai H, Kawaoka
Y, Penninger JM, Arita M, Imai Y: The lipid mediator protectin D1 inhibits
influenza virus replication and improves severe influenza. Cell 2013,
153(1):112–125.

43. Walsh KB, Teijaro JR, Wilker PR, Jatzek A, Fremgen DM, Das SC, Watanabe T,
Hatta M, Shinya K, Suresh M, Kawaoka Y, Rosen H, Oldstone MB:
Suppression of cytokine storm with a sphingosine analog provides
protection against pathogenic influenza virus. Proc Natl Acad Sci U S A
2011, 108(29):12018–12023.

44. Saheki T, Iijima M, Li MX, Kobayashi K, Horiuchi M, Ushikai M, Okumura F,
Meng XJ, Inoue I, Tajima A, Moriyama M, Eto K, Kadowaki T, Sinasac DS,
Tsui LC, Tsuji M, Okano A, Kobayashi T: Citrin/mitochondrial glycerol-3-
phosphate dehydrogenase double knock-out mice recapitulate features
of human citrin deficiency. J Biol Chem 2007, 282(34):25041–25052.

45. Sinasac DS, Moriyama M, Jalil MA, Begum L, Li MX, Iijima M, Horiuchi M,
Robinson BH, Kobayashi K, Saheki T, Tsui LC: Slc25a13-knockout mice
harbor metabolic deficits but fail to display hallmarks of adult-onset type
II citrullinemia. Mol Cell Biol 2004, 24(2):527–536.

46. Hoffmann E, Neumann G, Hobom G, Webster RG, Kawaoka Y: “Ambisense”
approach for the generation of influenza A virus: vRNA and mRNA
synthesis from one template. Virology 2000, 267(2):310–317.

47. Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG: A DNA
transfection system for generation of influenza A virus from eight
plasmids. Proc Natl Acad Sci U S A 2000, 97(11):6108–6113.

48. Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, Hsu HC, Mountz JD, Baldwin
NE, Langston MA, Threadgill DW, Manly KF, Williams RW: Complex trait
analysis of gene expression uncovers polygenic and pleiotropic
networks that modulate nervous system function. Nat Genet 2005,
37(3):233–242.

49. Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD
recombinant inbred lines from advanced intercross populations in mice.
BMC Genet 2004, 5:7.

50. Dupuis J, Siegmund D: Statistical methods for mapping quantitative trait
loci from a dense set of markers. Genetics 1999, 151(1):373–386.

51. Shete S, Beasley TM, Etzel CJ, Fernandez JR, Chen J, Allison DB, Amos CI:
Effect of winsorization on power and type 1 error of variance
components and related methods of QTL detection. Behav Genet 2004,
34(2):153–159.

doi:10.1186/1471-2164-15-1017
Cite this article as: Boon et al.: A novel genetic locus linked to pro-
inflammatory cytokines after virulent H5N1 virus infection in mice. BMC
Genomics 2014 15:1017.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Boon et al. BMC Genomics 2014, 15:1017 Page 11 of 11
http://www.biomedcentral.com/1471-2164/15/1017


	Washington University School of Medicine
	Digital Commons@Becker
	2014

	A novel genetic locus linked to pro-inflammatory cytokines after virulent H5N1 virus infection in mice
	Adrianus C.M. Boon
	Robert W. Williams
	David S. Sinasac
	Richard J. Webby
	Recommended Citation


	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Differences in pro-inflammatory cytokine production among mouse strains
	Identification of candidate genomic loci associated with increased levels of pro-inflammatory cytokines
	Identification of candidate genes in Qivr6.1
	RNA expression analysis of candidate genes in Qivr6.1
	Role of Slc25a13 on cytokine production and pathogenesis after H5N1 infection
	Potential role for Samd9l, Ica1 and Col28a1 in influenza virus infection and pathogenesis

	Discussion
	Conclusions
	Methods
	Mouse strains and influenza virus
	Lung virus titer and cytokine analysis
	QTL mapping
	DNA sequencing of candidate genes
	Statistical analysis

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

