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 Mouse photoreceptors are born starting at embryonic day
13, with the peak of production at postnatal day 1 (P1). By
P10, the differentiating photoreceptors have migrated into the
outer nuclear layer (ONL), after which they start their final
process of maturation, the growth of the outer segment (OS),
and the establishment of functional synapses. The outer plexi-
form is complete by about P14 [1]. Thus, when testing visual
function in young mice using scotopic electroretinogram re-
cordings (ERG), a-waves (reflecting rod responses) can be
recorded as early as P10 [2], whereas b-waves (reflecting the
photoreceptor-driven postsynaptic response of the bipolar cells)
can be recorded by about P11 ([3]; unpublished observation).
Several candidate factors that control rod photoreceptor dif-
ferentiation have been identified, such as the transcription fac-
tors nrl [4] and crx [5,6], or the basic fibroblast growth factor
FGF-2 [7].

In addition to their role in development, growth factors,
neurotrophic factors, and cytokines have been implicated in
maintaining photoreceptor health and function, as well as in
preventing them from undergoing light-induced cell death. For
example, adult mouse rods can be protected from light-induced
cell death and stimulated to regenerate their OS by a single
dose of brain-derived neurotrophic factor BDNF [8]. If this

were a direct effect, it would imply that rods express trkB
receptors, and cells in the retina or the retinal pigment epithe-
lium (RPE) provide the neurotrophin BDNF. Interestingly, it
has now been demonstrated that rods themselves do not ex-
press detectable levels of TrkB by either immunohistochem-
istry [9,10] or RT-PCR [11]. However, other cells such as a
subset of cones [12], horizontal, some bipolar, amacrine and
ganglion cells as well as Mueller glial cells in the retina and
the RPE, do express TrkB [10]. BDNF has been shown to be
present in retinal ganglion cells and secretory cells overlying
the ciliary body, as well as cells of the superior colliculus
[13,14],which can deliver BDNF to the retina via neurotrophin-
receptor-dependent retrograde transport (for review see: [15]).
Thus, candidate cells in the retina that could respond to BDNF,
and thereby produce the indirect effect, include all the cell
types that express trkB receptors, in particular the Mueller
glial cells. Mueller glial cells have been shown to secrete fac-
tors important for photoreceptor survival in culture [16]. They
are thought to participate in a push-pull mechanism that regu-
lates photoreceptor survival and apoptosis in vivo [17] and
they respond to exogenous BDNF with c-fos expression and
ERK phosphorylation [10,18]. The identification of these
molecules acting on the photoreceptors, and the cells involved,
will be an important milestone for understanding the control
of photoreceptor neurodegeneration and protection.

We have investigated the requirement of TrkB in the de-
velopment of the retina by analyzing transgenic mice in which
all isoforms of trkB have been eliminated [10]. Migration and

© 2003 Molecular Vision

Retarded outer segment development in TrkB knockout mouse
retina organ culture

Baerbel Rohrer,1,2 Judith Mosinger Ogilvie3,4

Departments of 1Ophthalmology and 2Physiology and Neuroscience, Medical University of South Carolina, Charleston, SC; 3Harold
W. Siebens Hearing Research Center, Central Institute for the Deaf and 4Department of Ophthalmology and Visual Sciences, Wash-
ington University School of Medicine, St. Louis, MO

Purpose: To determine the effects of trkB deficiency in the mouse retina on photoreceptor development and retinal
organization, in the absence of confounding systemic effects.
Methods: Newborn mice that carried two null trkB alleles (trkB-/-) and their wild type (WT) littermates were used for
retinal organ cultures. On Day 21, rod development was assessed histologically in plastic sections (outer segment length)
and retinal organization was analyzed using retinal cell-type specific antibodies. Anatomical data obtained from the organ
cultures were compared to previously published histological results from in vivo data.
Results: (1) Rod outer segment length was significantly shorter in retinas from trkB-/- mice in the presence of normal
numbers of rods. (2) No dopaminergic amacrine cells were observed in the knockout retina. (3) Unlike in the in vivo
condition, recoverin-positive OFF-cone bipolar cells were present in trkB-/- retinas grown in culture.
Conclusions: (1) These results demonstrate that rod outer segment development is compromised in the absence of trkB in
the retina. (2) This study further supports our previous conclusion that the elimination of trkB expression alters rod
development, because the presence of trkB receptors within the retina is essential for normal rod maturation and not
because of confounding systemic effects. (3) More generally, this study stresses the importance of investigating complex
phenotypes in gene knockout mice under conditions that isolate the organ under investigation from unrelated systemic
variations.

Correspondence to: Baerbel Rohrer, Ph.D., Department of Ophthal-
mology, Medical University of South Carolina, 167 Ashley Avenue,
Charleston, SC, 29425; Phone: (843) 792-5086; FAX: (843) 792-
1723; email: rohrer@musc.edu

18



differentiation of rods occurs, albeit slightly delayed, but their
OS fails to develop properly. At any age up to P16 (when most
trkB-/- animals die) the OS in the mutant mouse is shorter than
that in age matched normal animals. When rod function was
assessed in ERG recordings, it was determined that the P16
mutant rods elicited hyperpolarizing a-waves of amplitudes
and kinetics that were comparable to those of P12 wildtype
animals. Interestingly, the ERG also revealed that at any age
studied, the knockout photoreceptor responses did not elicit a
rod bipolar cell-driven depolarizing b-wave due to a presyn-
aptic deficit [10]. By conducting a gene-dosage study in which
trkB was varied from 0-100% in steps of 25%, we confirmed
that the knockout of trkB expression altered rod development
not because of alternative indirect mechanisms, but because
this gene product is essential for normal rod maturation [19].

Rod photoreceptor structure and function are susceptible
to systemic variations such as blood flow [20,21]. In order to
determine whether differences can be seen in photoreceptor
development at longer time points and in the absence of sys-
temic effects caused by the lack of trkB, we have grown wild
type and trkB deficient retinas in organ culture for 21 days
postnatal. No difference in overall structure of the retina and
photoreceptor survival could be detected between wild type
and trkB-/- mice. However, the shortened OS was maintained
under in vitro conditions, arguing again for a true role for trkB
signaling in photoreceptor development.

METHODS
Organ culture:  Animals were handled in accordance with in-
stitutional guidelines and the ARVO Statement for the Use of
Animals in Ophthalmic and Vision Research. Retinas were
harvested and established in organ culture as previously de-
scribed [22]. Briefly, neonatal mice were anesthetized on ice,
their eyes were enucleated within the first 24 h after birth,
incubated in Dulbecco’s Modified Eagle’s Media (DMEM,
Gibco 11965, Rockville, MD) with 0.5% proteinase K
(Boehringer Mannheim, Indianapolis, IN) for 7 min followed
by a rinse and removal of the sclera, choroid and anterior seg-
ment. The retina was subsequently incubated in DMEM with
10% fetal calf serum (FCS, Summit Biotechnology, Ft. Collins,
CO) and 1.25 µg/mL Fungizone (Sigma, St. Louis, MO) for
30 min at 37 °C, and then separated from the RPE. The iso-
lated retina was placed photoreceptor side down on a Millicell-
CM culture insert (Millipore, Bedford, MA). The media
(DMEM, 10% FCS, and 1.25 µg/mL Fungizone) was main-
tained at the level of the membrane interface. Organ cultures
were grown at 37 °C, 5% CO

2
 for up to 29 days in complete

darkness. We found it unnecessary to provide cyclic light, as
we have determined previously that light-conditions do not
influence photoreceptor development or outer segment length
in culture (Mosinger-Ogilvie J., et al. Survival of photorecep-
tors in organ cultures of rd mouse retina. Invest. Ophthalmol.
Vis. Sci. 1996; 37(Suppl):S624).

Histology:  For quantitative analysis, organ cultures were
harvested at P29. Tissue was fixed in 2.5% glutaraldehyde
and 2% paraformaldehyde overnight, postfixed in 1% osmium
tetroxide followed by 1% uranyl acetate, rinsed, dehydrated

and embedded in Epon-Araldite. One micron sections were
stained with toluidine blue.

For immunohistochemical analysis, organ cultures (har-
vested at postnatal day 21) were fixed in 4% paraformalde-
hyde, rinsed, cryoprotected in 30% sucrose overnight, frozen
in OCT (Sakura, Torrance, CA) and cut into 8-10 µm cryostat
sections. Immunohistochemistry was performed as published
previously [10], using the following primary antibodies: glial
fibrillary acidic protein or GFAP (1:1000; Sigma), recoverin
(1:5000; a generous gift by A. Dizhoor, University of Wash-
ington, Seattle, WA, [23]), tyrosine hydroxylase or TH (1:200;
Pelfreeze, Rogers, AR), calbindin (1:2000; Swant, Bellinzona,
Switzerland) and rhodopsin (1:10000; Robert Molday, Uni-
versity of British Columbia, Vancouver, BC, Canada, [24]).
For visualization of single antigens, we used the peroxidase
method, whereas for double labeling immunohistochemistry,
fluorescently labeled secondary antibodies were used [10].
Each staining was performed on at least two slides, which
contain 4-6 different sections throughout the entire organ cul-
ture (WT: n=3; trkB-/-: n=3).

Sections were photographed using a Nikon microscope
equipped with a digital camera and Axioscope software.
Double-labeled fluorescent images were examined by confo-
cal microscopy (Olympus Fluoview) and images were false-
colored and superimposed using the Fluoview software.

Data Analysis:  Quantitative analysis was performed by
a trained observer, blind to the experimental conditions, using
a grid reticule at 40x magnification as previously described
[22]. Briefly, the thickness of the outer nuclear layer (ONL)
was determined by averaging the number of ONL cells in a
vertical column touching a single grid line on the reticule for
5 columns in each of 2 randomly selected regions. The total
number of ONL nuclei within the 2 regions was also counted
to determine the density of cells/10 µm length of ONL. Statis-
tical significance for thickness and density was determined
using a Student t-test. In all cases, density corresponded to the
thickness of the ONL. Inner and outer segment development
was ranked on a scale of 0-3, where 3 represented healthy
inner segments (IS) with numerous, elongated outer segments
(OS); 2 represented IS and some, shorter OS; 1 represented
shortened IS with no OS; and 0 represented very few or no IS
(Figure 1). Statistical significance was determined using a
Mann-Whitney test.

RESULTS
 TrkB-/- mice have a maximum lifespan of approximately 18
days postnatal. The gross histological appearance of the in
vivo retina in these animals is similar to that of wild type lit-
termates; however, development appears to be delayed such
that outer segments appear significantly shortened at P16 in
trkB mutants compared to wild type littermates [10]. Although
recent experiments have suggested that this delay is unrelated
to the overall poor health of the mutant animals [19], we wished
to determine whether differences could be seen in photore-
ceptor development at longer time-intervals without systemic
effects, by growing trkB-/- retinas in organ culture for 21 days
postnatal.

© 2003 Molecular VisionMolecular Vision 2003; 9:18-23 <http://www.molvis.org/molvis/v9/a4>
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Retinas in organ culture maintained their structural in-
tegrity, despite a thinning of all nuclear and plexiform layers
(Figure 2), when compared to retinas developed in the intact
animal [22]. Wild type retinas in organ culture maintained an
ONL thickness of 5.7±1.7 cells and a density of 13.6±4.8 cells/
10 µm length of ONL (n=8). No significant difference was
seen in the ONL of the trkB deficient retinas with a thickness
of 5.5±1.8 cells and a density of 11.5±5.2 cells/10 µm length
of ONL (n=7). Evaluation of IS/OS development, however,
did show a significant deficit in trkB deficient retinal organ
cultures. IS/OS development was ranked on a scale of 0-3,
where 3 represents the best morphology with healthy IS and
elongated OS, and 0 represents a retina that has very few or
no IS (see Methods for more details and Figure 1). According
to this ranking scale, IS/OS development of trkB-/- retina or-
gan cultures scored at 1.6±0.4 (mean±SD) compared to wild
type (2.5±0.2; p=0.046). This observation suggests that the
shortened OS seen in vivo at P16 is not due to systemic ef-
fects in vivo, but rather is a true indicator of a role for trkB
signaling in photoreceptor development.

Retinas collected from both wild type and trkB-/- animals
were compared using antibodies specific for different identi-
fied retinal cell types to further analyze the overall organiza-
tion of the retina in organ culture and secondly to examine
whether changes originally described in vivo [10] could be
confirmed in vitro (Figure 3). GFAP, a marker for reactive
Mueller cells, was found to stain both wild type and trkB-/-

retinas when grown in organ culture (Figure 3A), consistent
with previous observations of reactive Mueller glial cells in
organ culture [25]. The calbindin antibody, a marker for hori-
zontal cells (located in the outer half of the INL), amacrine
(located in the inner half of the INL), and displaced amacrine
cells (located in the RGC layer) in the mouse retina [26], pro-
duced similar labeling in the knockout and wild type organ
cultures. In the ONL, the calbindin-labeling revealed horizontal
cell dendritic sprouting in both genotypes, which appeared

more pronounced in the culture from the trkB-/- animals (Fig-
ure 3B, arrows). Dopaminergic amacrine cells, which express
trkB receptors and depend on BDNF stimulation for mainte-
nance of their phenotype ([27]; unpublished observation), were
identified, using an antibody against tyrosine hydroxylase
(TH). TH staining identified cells in the inner-half of the inner
nuclear layer of the wild type retina, but staining was com-
pletely eliminated in trkB-/- retina organ cultures (Figure 3C).
Finally, we had reported that one class of bipolar cells, the
recoverin-positive cone OFF-bipolar cells failed to express
recoverin in the trkB-/- mouse in vivo [10]. The anti-recoverin
antibody, which labels rod photoreceptors and the cell bodies
and dendrites of cone OFF-bipolar cells [10], revealed strong
rod photoreceptor staining in both wild type and knockout
organ cultures. In addition, a few immunopositive cell bodies
were labeled in the INL, but not their respective dendrites (Fig-
ure 3D). In order to examine whether these cell bodies are
misplaced rod photoreceptors or cone OFF-bipolar cells, we
used double-labeling immunohistochemistry with antibodies
against recoverin (which labels both rod and cone OFF-bipo-
lar cells) and rhodopsin (which only labels rods). The double-
labeling experiment, however, revealed that in all cases these
recoverin-positive cell bodies in the INL belong to recoverin-
positive bipolar cells and thus are not misplaced rod nuclei, as
they failed to co-label with rhodopsin (Figure 3D).

© 2003 Molecular VisionMolecular Vision 2003; 9:18-23 <http://www.molvis.org/molvis/v9/a4>

Figure 2. Representative plastic sections of retina organ cultures.
Outer segment development was perturbed in the trkB-/- mice, as dem-
onstrated by the significantly shorter outer segment lengths (B) when
compared to those of their age matched littermates (A). Scale bar
represents 10 µm. The ganglion cell layer (GCL), inner plexiform
layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL),
outer nuclear layer (ONL), inner segments (IS), and outer segments
(OS) are labeled.

Figure 1. Inner and outer segment development ranking scale.  Pho-
toreceptor inner and outer segments were ranked on a scale of 0-3.
Healthy inner segments (IS) with numerous, elongated outer seg-
ments (OS) were given a rank of 3. Healthy IS with some, shorter OS
were given a rank of 2. Shortened IS with no OS were given a rank of
1. Photoreceptor with very few or no IS were given a rank of 0. Scale
bar represents 10 µm. The outer nuclear layer (ONL) is labeled.
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DISCUSSION
 The goal of this study was to address whether retinal changes
reported for trkB-/- mice in vivo could also be seen under cul-
ture conditions and thus under conditions in which potential
systemic effects were eliminated, and consequently to
strengthen our understanding of trkB in retinal and/or photo-
receptor development. We report here that, first rod outer seg-
ment development from trkB-/- mouse retinas was found to be
perturbed under culture conditions, further supporting our pre-
vious suggestion that trkB activity plays an important role in
the developmental maturation of mouse rod photoreceptors.
Secondly, we confirmed previous in vivo results that trkB ex-
pression is necessary for the maintenance of the TH-positive
phenotype of a subset of amacrine cells; and thirdly, we found
evidence that unlike the intact trkB-/- retina, recoverin-posi-
tive OFF-cone bipolar cells are being generated in the trkB-/-

retina culture.
Since the beginning of the development of transgenic ani-

mals, it has become clear that the phenotype in a particular
organ may not be due to the loss of the gene that was knocked-
out, but rather due to deficits in other organs or brain regions
[28]. And thus, the changes seen in the retina of the trkB-/-

mice may not be caused by a direct effect on retinal cells, but
may be due to alterations in the circulatory system or poor
nutrition, which are known to affect retinal function [20,29],
or changes in retrograde signaling [30,31]. To eliminate the
presence of confounding variables, and to isolate the direct
effects of the gene knockout, retinas obtained from 1-day-old
littermates (trkB-/- or wild type) were cultured under identical
conditions.

As reported previously [10], the developmental sequence
leading to the layered organization of the retina does not ap-
pear to be perturbed in the trkB-/- mouse retina. Retina organ
cultures analyzed at P21 demonstrated that the number of rows
of photoreceptors and photoreceptor packing density is simi-
lar in wild type and trkB-/- retinas. While rod outer segment
lengths were reduced by about 2.5-fold in the knockout mouse
in vivo at P16, they were short or absent by P21 in the organ
culture. These results support our original hypothesis that rod
outer segment development requires trkB. Furthermore, they
suggest the RPE is an unlikely candidate for the trkB-positive
cell(s) that control photoreceptor development and matura-
tion, as our cultures are grown after the removal of the retinal
pigmented epithelium. However, residual RPE cells divide and

© 2003 Molecular VisionMolecular Vision 2003; 9:18-23 <http://www.molvis.org/molvis/v9/a4>

Figure 3. Analysis of retinal organization in retina organ cultures.  Retinal layers are indicated on the Toluidine blue stained section in the
upper right panel. Retinas grown in organ culture expressed an elevated level of glial fibrillary acid protein in the radial Mueller glial cells (A),
irrespective of the genotype of the animal. Calbindin-antibodies (B) identified amacrine (inner half of the INL), displaced amacrine (RGC
layer) and horizontal cells (outer half of the INL), and revealed sprouting of horizontal cell dendrites into the outer nuclear layer (arrows).
Dopaminergic amacrine cells were identified by tyrosine hydroxylase immunohistochemistry in the wild type retina, but were absent from the
knockout retina (C). Recoverin-antibodies labeled both photoreceptors and some cell bodies in the INL (arrows) in trkB+/+ and trkB-/- retinas
with equal intensity (D). To distinguish whether the cell bodies in the INL belong to cone OFF-bipolar cells or to migrating rod photoreceptors,
double labeling immunohistochemistry with antibodies against rhodopsin (FITC; rod specific) and recoverin (Texas Red; recoverin is ex-
pressed in both rods and cone OFF-bipolar cells) confirmed that these cell bodies were indeed bipolar cells (color inset of D). Scale bar
represents 20 µm. The ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer
nuclear layer (ONL), inner segments (IS), and outer segments (OS) are labeled.
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begin to regrow by 21 DIV, signifying that RPE cannot be
completely eliminated from consideration. Our results leave
open the possibility that dopaminergic interplexiform cells,
which provide paracrine feedback to the photoreceptor cells
[32-34], could contribute to the development of the rod phe-
notype. While one of us has shown that dopamine depletion
blocks photoreceptor degeneration in the rd mouse [35], mak-
ing dopamine not a likely candidate to contribute to outer seg-
ment elongation, it has been reported that dopamine stimula-
tion is required for normal disc shedding [36], Na+, K+-AT-
Pase activity [37], modulation of photoreceptor calcium cur-
rents [38], or regulation of photoreceptor cAMP metabolism
[39], all of which when misregulated could contribute to outer
segment loss. Finally, the results from the recoverin-positive
OFF-cone bipolar cells support the warning summarized by
Lathe [28] and voiced by others, that an observed phenotype
(i.e., the lack of recoverin staining in bipolar cells of the P16
trkB-/- retina) may not be due to the genotype (i.e., trkB-/-), but
due to confounding circumstances (i.e., deficits in other or-
gans or brain regions). Alternatively, the presence of serum in
the organ culture medium could stimulate alternate pathways
leading to recoverin expression in bipolar cells.

In summary, the present study demonstrated trkB-depen-
dent deficits in rod outer segment development in retina or-
gan cultures, and localized the trkB-positive cell within the
retina. These experiments lend further support to the notion
that complex phenotypes, which affect multiple target organs,
can be addressed in gene knockout mice, if precautions are
taken to eliminate confounding variables. Future experiments,
using cell-specific Cre-recombinase (e.g., [40]) together with
floxed trkB mice [19,41], will allow further characterization
of the retinal circuits that control photoreceptor development
and function.
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