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The Rgg family of transcription regulators is widely distributed among gram-positive bacteria, yet how these
proteins control transcription is poorly understood. Using Streptococcus pyogenes RopB as a model, we dem-
onstrated that residues invariant among Rgg-like regulators are critical for function and obtained evidence for
a mechanism involving protein complex formation.

The Rgg-like regulators constitute a conserved family of
proteins that modulate transcription in gram-positive bacteria.
This group is widely distributed, and the members occur in
both pathogenic and commensal species and include Rgg of
Streptococcus gordonii, which is required for extracellular glu-
cosyltransferase expression (29, 30); GadR of Lactococcus lac-
tis, which is required for glutamate-dependent acid tolerance
(27); MutR, which is required for expression of the mutacin
lantibiotic, MutA, of Streptococcus mutans (23); and the plas-
mid-encoded LasX protein of Lactobacillus sakei, which regu-
lates the synthesis of and immunity to the lantibiotic lactocin S
(25, 28). Additional uncharacterized Rgg-like proteins are en-
coded by the genomes of Streptococcus pneumoniae (31), Strep-
tococcus agalactiae (13), Streptococcus oralis (10), Streptococcus
sanguis (34), Streptococcus equi (http://www.sanger.ac.uk), and
Listeria monocytogenes (12), and some genomes, like those of
S. pyogenes (9), S. gordonii (15, 33), S. pneumoniae (31), and S.
mutans (1), contain multiple rgg-like genes.

How the members of this extensive family function to reg-
ulate gene expression is not well understood. Rgg-like proteins
have a helix-turn-helix motif in the amino terminus of the
polypeptide, which is a conserved DNA-binding domain found
in other families of transcription regulators (17). Only recently
has it been established that any Rgg-like proteins bind specif-
ically to DNA to regulate transcription. For example, associa-
tion with nucleic acid has been demonstrated for Rgg of S.
gordonii (35), RopB (21), and LasX (24), but there is only a
weak consensus binding site (24). The absence of a conserved
regulatory motif in the promoter regions of genes regulated by
Rgg-like proteins and the functional diversity of the regulated
gene products suggest that Rgg-like proteins interact with ad-
ditional regulatory networks to alter gene expression. Experi-
mental data supporting this hypothesis were obtained in an
analysis of the speB regulatory program in S. pyogenes, where

RopB is necessary but not sufficient for activation of transcrip-
tion (21) and may influence gene expression via its ability to
influence the expression of other regulators (5). The integra-
tion of Rgg pathways with other regulatory pathways could also
be established through protein-protein interactions. For exam-
ple, RopB has been shown to associate with a negative regu-
lator, LacD.1, which may be a mechanism for maintaining
temporally controlled expression programs (16a).

Although the members of the Rgg family have been adapted
to individual regulatory programs, it is likely that these pro-
teins have a common structure and mechanism of action. Thus,
an understanding of how any individual member functions may
provide crucial insight into the general way that members of
this family function. In S. pyogenes, RopB (also referred to as
Rgg) influences the production of proteins during the transi-
tion to the stationary phase (3, 6), including the production of
the secreted cysteine protease, SpeB (4, 18). Protease expres-
sion is dependent on RopB transcriptional activation (4, 18),
and its activity is readily detectable, providing a convenient
assay for modeling Rgg family function. The present genetic
and biochemical studies were undertaken to determine if
amino acids that are universally conserved throughout the Rgg
family contribute to the ability of RopB to regulate speB ex-
pression in S. pyogenes. The results confirmed the importance
of these invariant residues and provided insight for under-
standing the functional domains of RopB and related tran-
scription factors.

Conserved Rgg residues are essential for RopB function. A
recent influx of genomic information has revealed that the
Rgg-like proteins constitute a large conserved family of regu-
lators unique to gram-positive bacteria. To obtain insight into
the common structure and mechanism of action that have been
adopted by this group of proteins, the primary amino acid
sequences of all predicted Rgg-like proteins for which protein
sequence data were available were aligned by the Clustal W
method (32). Proteins were considered candidates for this
analysis if they were significantly homologous (E-value,
�0.001) to the prototype protein from S. gordonii (accession
number AAA26968) as determined by a BLAST analysis (8) of
the GenBank database of microbial genomes (blastp; http:
//www.ncbi.nlm.nih.gov/sutils/genom_table.cgi). If sequence
data were available for multiple isolates of a species, only one
isolate was selected for analysis in order to avoid redundancy.
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This search returned 57 open reading frames, and the align-
ment revealed numerous highly conserved and very similar
amino acids, including three amino acids that were invariable
(Fig. 1A; see the supplemental material).

We reasoned that because these residues were the most

conserved, they might make an important contribution to the
structure and/or function of Rgg-like regulators. To test this
hypothesis, each of the invariant residues in RopB (G4, R11,
and W142) (Fig. 2) was targeted for site-directed mutagenesis,
and the ability of the mutant protein to function as an activator
of speB transcription was assessed using protease indicator
plates and a quantitative assay for activity in culture superna-
tants, as described previously (16, 18, 21). An expression vector
encoding wild-type RopB with a C-terminal hemagglutinin
(HA) epitope tag was used as the template for inverse PCR
with the primers described in Table 1 to construct mutant
derivatives with alanine substitutions (RopBG4A, RopBR11A,
and RopW142A) or a more conservative mutation at W142
(RopBW142F). The resulting plasmids were used to transform
wild-type S. pyogenes strain HSC5 (14) or a RopB� mutant
derivative (MNN100 [21]) to generate the strains described in
Table 2.

As noted above, RopB is required for speB expression (4,
18); therefore, a strain with a deletion in ropB produced only
background levels of proteolytic activity compared to the wild-
type strain (Fig. 1, compare the RopB� strain with no plasmid
to the wild-type strain with no plasmid). When wild-type ropB
was introduced into the RopB� strain on a plasmid, the pro-
tease activity was restored to wild-type levels (Fig. 1B and C,
compare the RopB� strain with the wild-type allele to the
wild-type strain with no plasmid). The behavior of a RopB�

strain expressing RopBG4A was similar to that of the wild-type
complemented strain (Fig. 1B, compare the RopB� strain with
the wild-type allele to the RopB� strain with the G4A allele)

FIG. 1. Mutation of invariant residues results in functional defi-
ciency and a dominant-negative phenotype. (A) Schematic diagram of
RopB. The putative N-terminal helix-turn-helix (HTH) motif is
shaded, and the invariant residues are indicated by arrows; the num-
bering is based on the RopB sequence (accession number NP_269988).
(B) Proteolytic activities of various strains. The strains compared were
the wild-type and ropB deletion (RopB�) strains (as indicated on the
left) with no plasmid (none) or expressing a RopB allele (as indicated
at the top). The results for a montage of colonies patched onto pro-
tease indicator plates are shown, and protease activity is indicated by
a clear zone surrounding bacterial growth. (C) Quantitative protease
activity with a fluorescein isothiocyanate-casein substrate in 8-h culture
supernatant fluids. The activity is expressed as a percentage of the
activity obtained for the wild-type strain with no plasmid, and the data
are the means and standard deviations of at least three independent
experiments with samples analyzed in triplicate. Statistically significant
differences from the wild-type allele for the RopB� and wild-type
strains were calculated by using the unpaired Student t test and are
indicated by asterisks (P � 0.001) and number signs (P � 0.02),
respectively. WT, wild type.

FIG. 2. Mutant RopB proteins are defective for activation of speB
transcription. The transcript abundance of ropB or speB in RopB�

bacteria expressing the RopB alleles indicated was determined by
real-time reverse transcription-PCR performed as described previ-
ously (2). Bacteria were grown to the onset of the stationary phase in
C medium for sample collection. The transcript abundance is ex-
pressed relative to the abundance in the wild-type strain with no
plasmid, and the data are means and standard deviations of three
independent experiments with samples analyzed in triplicate. An as-
terisk indicates a significant difference (P � 0.01) from the RopB�

strain expressing the wild-type allele; the arrows indicate a comparison
of the speB transcript abundance in the RopB� strain expressing the
wild-type allele and the speB transcript abundance in the strain ex-
pressing the G4A allele (P � 0.01). WT, wild type.
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and was indistinguishable from that of the wild-type strain (Fig.
1C, compare the RopB� strain with the G4A allele to the
wild-type strain with no plasmid). In contrast, strains express-
ing RopB alleles modified at the arginine (R11A) and trypto-
phan (W142A or W142F) residues were completely nonfunc-
tional when they were examined on protease indicator plates
(Fig. 1B, compare the RopB� strain with the R11A, W142A,
or W142F allele to the RopB� strain with the wild-type allele)
and quantitatively (Fig. 1C) (P � 0.001).

When the relative transcript abundance of ropB and speB
was determined by real-time reverse transcription-PCR per-
formed as described elsewhere (2) using the primers listed in
Table 1, we found that ropB transcription from a plasmid was
increased relative to expression from the chromosome. How-
ever, the magnitudes of ropB overexpression were similar in all
of the complemented RopB� strains (Fig. 2), and there was a
correlation between protease activity and speB transcript abun-
dance. In the strains that did not exhibit protease activity (e.g.,

TABLE 1. Primers used in this study

Function Primer Sequencea

RopB G4A mutagenesis JLP47 ATGGAAATTGCTGAGACCGTTGAATTCATTAGGC
JLP48 ATTCAACGGTCTCAGCAATTTCCATATGTCAAG

RopB R11A mutagenesis JLP49 TTCATTGCGCATTCAAAAAACATTTCG
JLP50 TTGAATGCGCAATGAATTCAACGG

RopB W142A mutagenesis JLP51 CTTATTAATATTGAGACCGCGAGTCACTATGAGACTG
JLP52 GACTCGCGGTCTCAATATTAATAAGATAGTTTG

RopB W142F mutagenesis JLP53 TTATTAATATTGAGACCTTTAGTCACTATGAGACTG
JLP54 CATAGTGACTAAAGGTCTCAATATTAATAAG

RopB-HA expression JLP1 CATTCAACTGGTCTCGAATTAGGTACATGC
JLP103 AAGCTCTGCAGTTAAGCATAATCTGGAACATCATATGGATA

GGACAGTTTATGTTTAATG

Primers for pGEX-2TK/RopB JLP99 GGCTGGATCCATGGAAATTGGTGAAACC
JLP100 TTAAGGATCCTCAGGACAGTTTATGTTTAATGGC

Real-time primers for recA JLP32 AAGCCCTTGATGATGCTTTG
JLP33 GGATAACCACCAGCTCCAAG

Real-time primers for speB JLP17 GTCGGTAAAGTAGGCGGACA
JLP18 GCCACCAGTACCAAGAGCTG

Real-time primers for ropB JLP29 TGAACGGTGTTGTGTGTCTTT
JLP30 TGGATCGTTTTGCAATTGAG

a Engineered restriction sites are underlined. The sequence for the influenza hemagglutinin epitope tag is indicated by boldface type.

TABLE 2. Strains used in this studya

Strain Genotype Plasmid Description Source or reference(s)

E. coli strains
JL135 BL21(DE3) pJL58 Expression of GST-RopB This study
JL143 BL21(DE3) PGEX Expression of GST Amersham 27-4587-01

S. pyogenes strains
HSC5 Wild-type None Wild type 14
JL364 Wild type pLZ12 HSC5 (vector) This study
JL187 Wild type pJL77 HSC5(pRopB-HA) This study
JL189 Wild type pJL79 HSC5(pRopB G4A-HA) This study
JL191 Wild type pJL92 HSC5(pRopB R11A-HA) This study
JL193 Wild type pJL83 HSC5(pRopB W142A-HA) This study
JL216 Wild type pJL105 HSC5(pRopB W142F-HA) This study
MNN100 HSC5 ropB�6-274 none In-frame deletion of ropB 21
JL410 HSC5 ropB�6-274 pLZ12 MNN100 (vector) 21; this study
JL139 HSC5 ropB�6-274 pJL60 MNN100(pRopB-HA; Kmr) This study
JL207 HSC5 ropB�6-274 pJL77 MNN100(pRopB-HA) This study
JL209 HSC5 ropB�6-274 pJL79 MNN100(pRopB G4A-HA) This study
JL211 HSC5 ropB�6-274 pJL92 MNN100(pRopB R11A-HA) This study
JL213 HSC5 ropB�6-274 pJL83 MNN100(pRopB W142A-HA) This study
JL218 HSC5 ropB�6-274 pJL105 MNN100(pRopB W142F-HA) This study

a Gene designations are based on annotation of the SF370 genome of S. pyogenes.
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the RopB� strains with the R11A, W142A, and W142F alleles)
the level of the speB transcript was reduced nearly 100,000-fold
compared to the level in the wild type (Fig. 2). Thus, these data
indicate that the mutations rendered RopB incompetent as a
transcriptional activator. Although RopBG4A was competent
for promoting the production of protease activity, the allele
was not as efficient at promoting speB transcription as the
wild-type allele, as shown by a twofold decrease when the
complemented RopB� strain with the G4A allele was com-
pared to the wild type (Fig. 2) (P � 0.01) or the fivefold
decrease observed when the RopB� strain complemented with
RopBG4A was compared with the RopB� strain complemented
with RopBWT (Fig. 2) (P � 0.01). The relative expression and
stability of the wild-type and mutant epitope-tagged proteins in
the RopB� strain were assessed by Western blotting of whole-
cell extracts (26) using polyclonal anti-HA antiserum (Sigma).
This analysis revealed that RopBW142A was probably unstable;
however, substitution of another aromatic amino acid at posi-
tion 142 and alanine substitutions at other positions were tol-
erated (Fig. 3A), indicating that the tryptophan contributes to
both the stability of RopB and its ability to regulate gene
expression. Introduction of alanine at position 142 did create a
rare codon (7), raising the possibility that the reduced level of
detectable RopBW142A in streptococcal extracts was the result
of translational inefficiency rather than protein instability. This
interpretation is less likely, however, since expression of
RopBR11A, which used the same rare codon, was efficient.
Furthermore, a Western blot analysis of E. coli extracts was
consistent with the S. pyogenes data (not shown), indicating
that failure to detect RopBW142A was due to a general problem
rather than codon bias. Taken together, these data demon-
strate that the conserved arginine (R11), tryptophan (W142),
and, to a lesser extent, glycine (G4) are required for fully active
RopB and are thus likely to be important for other Rgg-like
regulators.

Expression of nonfunctional RopB mutants inhibits native
RopB function. To obtain insight into the mechanism of RopB
regulation, we examined whether the various mutants were
dominant negative when they were expressed in trans. The

RopB expression plasmids were used to transform the wild-
type strain, and SpeB activity was measured on protease indi-
cator plates (Fig. 1B) and quantitatively (Fig. 1C). As ex-
pected, overexpression of functional RopB had no significant
effect on protease expression (Fig. 1B and C, compare the
wild-type strain with no plasmid to the wild-type strain with the
G4A and wild-type RopB alleles). In contrast, the presence of
stable, nonfunctional RopB (R11A, W142F) was dominant
negative, resulting in significantly reduced SpeB activity (Fig.
1C) (P � 0.02). The stability of the dominant-negative proteins
was confirmed by Western blot analysis (Fig. 3B). Taken to-
gether, these data suggest that RopB monomers may oligomer-
ize or interact with another protein(s) in order to promote
activation of speB transcription.

Evidence for RopB dimerization in vitro. The dominant-
negative phenotype indicated that there was a potential for
RopB-RopB interaction. This was not surprising, as it is typical
for the functional unit of DNA-binding transcriptional regula-
tors to be a dimer (17). It has been shown previously that RopB
specifically interacts with DNA in the speB promoter that con-
tains inverted repeats (21). In addition, analysis of conserved
domains in the RopB primary amino acid sequence revealed a
putative DNA-binding helix-turn-helix motif at the N terminus
(20). Plasmid pJL58 encoding a glutathione S-transferase
(GST) fusion to the N terminus of RopB, was constructed and
expressed in E. coli using the pGEX-2TK expression vector
(Amersham) and the primers described in Table 1. For expres-
sion and purification of the recombinant fusion protein and
GST alone we followed the recommendations of the manufac-
turer (Amersham).

The fusion protein was used as bait for an interaction with
proteins in a whole-cell extract (26) prepared from S. pyogenes
expressing epitope-tagged RopB (RopB-HA). Glutathione-
Sepharose beads were incubated with the GST-RopB fusion
protein or GST and washed twice with phosphate-buffered
saline prior to addition of streptococcal extracts. The extracts
were incubated with the GST-fusion protein-coated beads and
washed three times with phosphate-buffered saline, and bound
proteins were eluted with reduced glutathione (10 mM) and
subjected to immunoblotting with polyclonal antisera recog-
nizing GST (1:10,000 dilution; Amersham) or HA (1:5,000
dilution; Sigma). In contrast to GST alone, the GST-RopB
bound a protein which was the size of RopB-HA that reacted
specifically with the anti-HA sera, indicating that there was a
specific interaction between the two differentially tagged RopB
derivatives (Fig. 4A). Western blot analysis showed that strep-
tococcal extracts in the absence of RopB-HA did not react with
the anti-HA antisera used in these studies (Fig. 3). Further
characterization of purified GST-RopB and extracts contain-
ing RopB-HA demonstrated that a product with a molecular
weight consistent with a dimer was detectable by Western blot
analysis of unheated samples, and this product disappeared
when samples were heated in sample buffer prior to sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) (Fig. 4B and data not shown). Taken together, these
data provide evidence that RopB forms homodimers in vitro,
consistent with data for other proteins that bind DNA via a
helix-turn-helix motif. These data also support a model of
RopB dimer-dimer interaction or another oligomeric complex
that includes a RopB-RopB interaction.

FIG. 3. Conserved tryptophan contributes to RopB protein stabil-
ity and regulation: Western blot analyses of ectopically expressed
RopB in S. pyogenes whole-cell lysates. The strains used were the
strains described in the legend to Fig. 1; two independent isolates of
the strains expressing RopBW142A were analyzed. Equivalent amounts
of total protein were loaded in the lanes. WT, wild type.
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Implications for the Rgg protein family. In the present re-
port, we show that common Rgg-like sequence motifs are es-
sential for RopB function, which may indicate a common
mechanism used by members of the Rgg-like family to process
regulatory signals. The mechanism of Rgg family regulation
has yet to be fully elucidated, but the data indicate that it likely
involves interaction with both DNA and other proteins. For
example, two of the invariant residues, G4 and R11, are lo-
cated within the predicted DNA-binding domain. While the
role of glycine has not been well studied, structural analysis of
other XRE-type helix-turn-helix domains has revealed that
arginine in this position contributes to the stability of the
DNA-protein complex through formation of a fold-stabilizing
salt bridge with a conserved glutamic acid residue (22) or side
chain contacts with phosphate groups in target DNA (11, 36–
38). Invariant tryptophan residues are often involved in pro-
tein-protein interactions (19), and W142 may localize to the
interface of a critical RopB-protein complex. Substitution of a
nonhydrophobic residue can interfere with complex formation,
resulting in an unstable protein. In this context, the decreased
stability of RopBW142A is not surprising. Also consistent with
this, we obtained evidence that RopB forms protein complexes
in vivo through generation of dominant-negative mutant al-
leles and in vitro through pull-down assays with purified pro-
tein. These studies provide a foundation for investigation of
the molecular mechanism of speB regulation and general in-
sights into the specificity and functional domains of the family
of Rgg-like proteins.

We thank M. Neely for providing strain MNN100 (21). We also
thank Travis Jewett and L. David Sibley for providing reagents and
technical advice.

This work was supported by Public Health Service grant AI4643303
to Michael G. Caparon.
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