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REVIEW Open Access

Prospects for a novel ultrashort pulsed laser
technology for pathogen inactivation
Shaw-Wei D Tsen1, Tzyy Choou Wu2,3,4,5, Juliann G Kiang6,7,8 and Kong-Thon Tsen9*

Abstract

The threat of emerging pathogens and microbial drug resistance has spurred tremendous efforts to develop new
and more effective antimicrobial strategies. Recently, a novel ultrashort pulsed (USP) laser technology has been
developed that enables efficient and chemical-free inactivation of a wide spectrum of viral and bacterial pathogens.
Such a technology circumvents the need to introduce potentially toxic chemicals and could permit safe and
environmentally friendly pathogen reduction, with a multitude of possible applications including the sterilization of
pharmaceuticals and blood products, and the generation of attenuated or inactivated vaccines.

Review
Despite the myriad antimicrobial methods that have been
developed to combat infectious disease, microbial pathogens
continue to evolve and acquire resistance. In addition, emer-
ging pathogens such as Human Immunodeficiency Virus
(HIV) [1] in the 1980s and more recently West Nile Virus
(WNV) [2] continue to pose threats before testing and con-
tainment strategies are in place. Therefore, new and more ef-
fective pathogen inactivation strategies are urgently needed.
Use of Ultrashort pulsed (USP) lasers for selective dis-

infection has emerged as a potentially attractive anti-
microbial strategy. USP laser treatment has been shown
to inactivate a variety of viruses including HIV, Influenza
virus, Human Papillomavirus (HPV), Murine Noro-
viruses, Hepatitis A Virus (HAV), Encephalomyocarditis
Virus (EMCV), Tobacco Mosaic Virus (TMV) and M13
bacteriophage, as well as bacteria such as E. coli, Salmonella
spp, and Listeria [3-11].
The USP laser technology has the following advantages

over the current methods of disinfection of pathogens:

(1)With conventional pharmaceutical antiviral and
antibacterial treatments, a new drug is usually
required to combat new or mutated strains of
microorganisms. In contrast, the USP laser method
is effective for the inactivation of enveloped and
non-enveloped, single-stranded, double-stranded

DNA, RNA viruses, and gram-positive and gram-
negative bacteria [3-11], suggesting that the USP
laser technique could represent a general method
for inactivating viral and bacterial pathogens
regardless of their structural composition or
mutation status. For the inactivation of a virus, the
USP laser method excites mechanical vibrations of
the capsid of a virus and targets the weak links of
the viral protein coat, leading to its loss of
infectivity; for the inactivation of a bacterium, the
USP laser technique relaxes the super-coiled double-
stranded DNA causing damage and subsequent
death of the bacterium. This is demonstrated by the
results in Table 1 [3-11] in which a variety of viruses
and bacteria have been shown to be efficiently
inactivated by the USP lasers.

(2)Existing disinfection methods such as irradiation of
ultraviolet (UV) light, gamma-ray, UV/photochemicals,
microwave absorption, and pharmaceutical antiviral
and antibacterial treatments are not selective; as a
result, severe side effects may accompany the
treatments. On the other hand, the USP laser method
has been shown [3,6,9] to inactivate undesired
microorganisms like viruses and bacteria while leaving
desired materials such as mammalian cells and proteins
unharmed; i.e., the USP laser technique is capable of
selective disinfection and therefore has minimal
potential side effects. Table 2 shows experimental
results on the selectivity of a near-infrared USP laser
on a variety of microorganisms. The intriguing feature
worthwhile mentioning is that there exists a
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therapeutic window in laser power density between 1
GW/cm2 and 10 GW/cm2 which allows the
inactivation of a variety of pathogens while leaving
mammalian cells unharmed. The existence of this
window enables selective inactivation of
microorganisms.

(3)Because of the nature of USP laser inactivation, the USP
laser technique is sensitive to the global oscillation of
the capsid but not to minor changes caused by nucleic
acid mutation in the pathogens; as a result the USP
laser technology can be used to inactivate both wild-
type and mutated/drug-resistant strains of
microorganisms. An example is given for M13
bacteriophages in which both wild-type and engineered
strains are efficiently inactivated by the irradiation of
USP lasers [9]. This intriguing feature makes the USP
laser technique particularly suitable for the disinfection
of rapidly evolving or drug-resistant viral and bacterial
species such as HIV and MRSA, respectively.

(4)Currently available pathogen reduction methods for
blood components usually involve the addition of
potentially toxic or carcinogenic chemicals. Residual
amounts of these chemicals can remain within the
transfusion products and then be transfused. In
addition, it is likely that in some cases these
chemicals may interact with the product itself,

potentially altering its structure or function. The
potential side effects due to the introduction of such
chemicals during the pathogen reduction process is
a major concern from the FDA standpoint [12] On
the other hand, the USP laser technology is
chemical-free; in other words, it does not involve
introducing chemicals during pathogen reduction.
This makes the USP laser method safe and
environmentally friendly, and advantageous for
treating products such as blood products,
pharmaceuticals, therapeutics, vaccines, and other
agents that are used in humans.

Basic mechanism of inactivation of pathogens by
ultrashort pulsed lasers

Inactivation of a virus by ultrashort pulsed lasers
We take M13 as an example for demonstration. Figure 1
shows plaque forming units (pfu) as a function of laser power
density for M13 bacteriophages excited by a near-infrared
Ti-sapphire cw mode-locked laser [4,5,7] The intriguing fea-
ture of these assay results is the rapid cut-off of the pfu of
M13 bacteriophages at around 60 MW/cm2. A similar fea-
ture (which is not shown here) is also found when a visible
USP laser is used for inactivation. This unique feature of in-
activation upon laser power density indicates the emergence
of a new virus inactivation mechanism for M13 bacterio-
phages by the irradiation of USP lasers – impulsive stimu-
lated Raman scattering (ISRS) – which is elucidated below.
The atomic force microscope (AFM) images from the

control and laser treated M13 bacteriophage samples
provide an important clue for the inactivation mechan-
ism. The AFM images of a M13 bacteriophage sample
before and after the visible USP laser irradiation are
shown in Figure 2(a) and 2(b), respectively [10]. The
relatively smooth worm-like features having a diameter
of about 6 nm and about 850 nm in length in Figure 2(a)

Table 1 Killing efficacy for a variety of microorganisms using A 425 nm- femtosecond pulsed laser (laser exposure time =
3.6 seconds)

Microorganism Properties Load reduction

Human Immunodeficiency Virus (HIV) Enveloped, single-stranded RNA 104

Influenza Virus Enveloped, single-stranded RNA 105

Encephalomyocarditis virus (EMCV) Non-enveloped, single-stranded RNA 103

Murine norovirus (MNV) Non-enveloped, single-stranded RNA 103

Hepatitis A virus (HAV) Non-enveloped, single-stranded RNA 103

Human Papillomavirus (HPV) Non-enveloped, double-stranded DNA 105

M13 bacteriophage Non-enveloped, single-stranded DNA 105

Escherichia coli Gram negative 104

Salmonella typhi Gram negative 105

Listeria monocytogenes Gram positive 103

Enterobacter Sakazakii Gram negative 103

Table 2 Threshold laser power density for inactivation of
viruses and cells

Viruses and Cells

M13 TMV HPV HIV Human
red
blood
cell

Human
Jurkat
T-cell

Mouse
dendritic
cell

Threshold
Laser
Power Density
for inactivation
(GW/cm2)

0.06 0.85 1.0 1.1 15 22 12
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revealed the presence of M13 bacteriophages in the con-
trol. Figure (b) showed, in contrast to Figure 2(a), the ap-
pearance of many small structures which were about 6
nm in diameter after laser irradiation. As discussed later,
these small structures were consistent with the size of
individual α-helix protein units of which the protein
capsid of the M13 bacteriophage is composed. As a re-
sult, these small structures are attributed to individual
α-helix protein units of the M13 bacteriophage. In
addition, some zigzagged worm-like features (encircled
by artificially drawn black curves for the sake of clarity)
were observed. The fact that its length was about 850
nm and that it was in a zigzagged structure indicated

that these zigzagged structures were naked viral gen-
omic DNAs from M13 bacteriophages. The observation
of the naked DNAs in the laser-irradiated M13 bacterio-
phage sample indicated that irradiation of the visible
USP laser severely altered the structural integrity of the
protein shell of the M13 bacteriophages, potentially
causing the DNA to “leak out”.
By taking into account the size of small structures

about 6 nm in diameter in the AFM images of M13 bac-
teriophages after USP laser irradiation in Figure 2(b),
the resolution of the tip of AFM used in the imaging,
and the actual size of the α-helix protein unit which
forms the capsid of a M13 bacteriophage, we have
found that the small structures observed in Figure 2(b)
are consistent in size with those of the α-helix protein
units of the capsid of M13 bacteriophages. This analysis
further supports our conclusion that USP laser irradi-
ation under our experimental conditions does not dam-
age individual protein units in M13 bacteriophages.
Figure 3 shows the result from agarose gel electro-

phoresis on single-stranded DNAs from M13 bacter-
iophages (control) and from M13 bacteriophages
irradiated with a visible USP laser [10]. The laser-irra-
diated M13 bacteriophage sample showed a single
dark band similar in width to and located at the same
position as that of the control sample. Therefore,
these experimental results indicated that, within ex-
perimental uncertainty, irradiation of a visible USP
laser caused no severe structural change of single-
stranded DNAs of M13 bacteriophages. In other
words, the gel electrophoresis results of Figure 3 on the
single-stranded DNAs of M13 bacteriophages indicate

Figure 2 Atomic Force Microscope images of M13 bacterioaphages (a) without laser irradiation and (b) with laser irradiation by a
visible femtosecond laser. For clarity, the black curves in (b) were drawn to encircle the bare DNAs. See text for discussions (with publisher’s
permission).
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Figure 1 Number of pfu as a function of laser power density
for M13 bacteriophages excited by a near-infrared Ti-sapphire
cw mode-locked laser. See text for discussions.
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that irradiation of a visible USP laser does not signifi-
cantly alter the structure of single-stranded DNA.
The luminescence, excitation, and circular dichroism

(CD) spectra from amino acids of proteins are very sen-
sitive to the structural changes of proteins. Therefore,
these optical characterization methods were employed to
detect the primary and secondary structural changes of
proteins before and after the visible USP laser irradi-
ation. Figures 4(a), 4(b), 4(c) show our preliminary
results for bovine serum albumin (BSA) proteins in buf-
fer solution with and without irradiation with an USP
laser [10]. In Figure 4(a), the excitation spectrum corre-
sponded to the broad structure centered around 280
nm. The luminescence spectrum represented the broad
peak around 340 nm. Each spectrum contained 4 curves
in which two of them were control and two were laser-
irradiated samples, as indicated. The two control sam-
ples and two laser-irradiated samples had 60 μM,
300μM of BSA proteins, respectively. For clarity, the
spectra shown were normalized to the concentration of
BSA proteins. In Figure 4(b), the far UV CD contained
four curves, in which two of them were control and two
were laser-irradiated samples. The two control samples
and two laser-irradiated samples had 60μM, 300μM of
BSA proteins, respectively. For clarity, the spectra shown
were normalized to the concentration of BSA proteins. In
Figure 4(c), the near UV CD included four curves in which
two of them were control and two were laser-irradiated
samples. The two control samples and two laser-irradiated
samples had 60 μM, 300 μM of BSA proteins, respectively.

For clarity, the spectra shown were normalized to the con-
centration of BSA proteins. The experimental results show
that, within experimental uncertainty, the luminescence,
excitation spectra and circular dichroism of BSA proteins
remained practically the same before and after the laser ir-
radiation, indicating minimal or no structural changes in
BSA proteins after irradiation with a visible USP laser.
Therefore, these experimental results on the optical
characterization of BSA proteins suggest that there is vir-
tually no structural change in BSA proteins upon USP
laser irradiation. Because BSA is primarily made up of α-
helix proteins, and the capsid of a M13 bacteriophage is
mostly composed of α-helix protein units, these results
suggest that the visible USP laser irradiation will not dam-
age the individual protein units that comprise the protein
capsid of M13 bacteriophage.
Thus, the AFM images of Figure 2 together with the

DNA gel electrophoresis results of Figure 3 and optical
results of BSA proteins of Figure 4 are consistent with
our model: that irradiation with a USP laser alters the
structural integrity of the protein capsid of M13 bac-
teriophages by disrupting weak interactions between
proteins without damaging either the viral genomic
single-stranded DNA or the individual protein units of
M13 bacteriophage capsid.
Irradiation with an intense ultrashort pulsed laser such

as a femtosecond laser can deposit laser energy onto the
protein capsid of a viral particle by the excitation of low-
frequency acoustic vibrations on the capsid of a virus.
This process, known as impulsive stimulated Raman

Figure 3 Gel electrophoresis experiments on single-stranded DNAs of M13 bacteriophages (control) and the laser-irradiated M13
bacteriophages after treatment with the visible femtosecond laser, operated at 425 nm, at a repetition rate of 80 MHz, average power
of 100 mWs, laser spot size of about 100 micron, and laser irradiation for 1 hr. For clarity, on the laser irradiated sample, an additional band
resulting from the α-helix protein units of M13 bacteriophages, which appears on a different scale, is not shown (with publisher’s permission).
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scattering (ISRS), has been used to deposit laser energy
to solid state systems as well as to biological molecules
[13-20].
The ISRS process can be understood as follows:
The vibrational mode of a macromolecule such as a

virus excited by the laser is represented by normal co-
ordinate Q. If we ignore dispersion in the index of re-
fraction and assume that the incident electric field from
the excitation laser is not depleted by the stimulated
scattering, the equation of motion for Q can be written
as [21,22]

@2Q
@t2

þ 2γ
@Q
@t

þ ω0
2Q ¼ f tð Þ ð1Þ

whereω0 is the angular frequency of vibration, γ is
the damping constant and f tð Þ is the impulsive driv-
ing force produced by the excitation laser and is
described next.

The electric field E~L of the laser induces a polarization
on the molecule due to its polarizability α as P~¼ αE~L ,
where for simplicity we neglect the tensor properties of
α. The polarizability has a static part that produces elas-
tic Rayleigh scattering, and a part that is modulated by
the oscillating displacement Q. It is this modulated con-
tribution that produces the Raman effect and the ISRS
process in the macromolecule. The polarizability α,
expanded in a Taylor series in Q, is

α Qð Þ ¼ α0 þ α0
0
Qþ 1

2
α0

00
Q2þ

higher order terms in Q (2); where α0 is the zero order

term α0
0
Q � @α

@Q

� �
0
Q is the first order term resulting

in the first order Raman scattering processes;
1
2 α0

00
Q2 � 1

2
@2α
@Q2

� �
0
Q2 is the second order term, etc.

The potential energy stored in an induced polarization
is U Q; tð Þ ¼ � 1

2P
~Q; tð Þ⋅E~L tð Þ . If we keep up to the first

Figure 4 (a): Excitation and luminescence spectra of BSA proteins; (b): Far UV circular dichroism spectra of BSA proteins; (c): Near UV
circular dichroism spectra of BSA proteins (with publisher’s permission).
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order term and neglect the second order and higher
order terms in the polarization expansion in Eq, (2), the

generalized driving force f tð Þ ¼ � @U Q;tð Þ
@Q on the right

hand side of Eq. (1) becomes

f tð Þ ¼ 1
2
α

0
0E

2
L ð3Þ

Equation (1) with f tð Þ given by Eq. (3) can be solved
by using Green’s function method to determine the nor-
mal coordinate Q(t) [13,23]. In particular, for excitation
by a single-beam ultrashort laser having a pulse width

of τL , and intensity I tð Þ ¼ I0⋅e� t2=τ2Lð Þ , assuming small
damping, the displacement is Q tð Þ ¼ Q0e�γt sin ω0t Þ:ð
Of greatest importance in Q tð Þ ¼ Q0e�γt sin ω0tð Þ is the
amplitude Q0 of the displacement away from the equi-
librium position of the molecule produced by ISRS
process, which is given by [13,23]

Q0 ¼
ffiffiffi
π

p
2

n
cKE0

α
0
0
τL
ω0

⋅I0⋅e� ω0
2τL2=4ð Þ: ð4Þ

Here I0 is the peak intensity of the excitation laser, α
0
0

is the polarizability derivative proportional to the ampli-
tude of the Raman scattering cross section, n is the
index of refraction, c the speed of light, and KE0 the per-
mittivity of the dielectric medium.
Therefore, in this ISRS process, the deposited laser en-

ergy on the protein capsid of a viral particle is propor-
tional to the square of the laser intensity and to the
Raman scattering cross section. If the deposited laser en-
ergy or the amplitude of the excited resonance mode on
the capsid of a viral particle is large enough, it can break
the weak links (for example, hydrogen bonds or hydro-
phobic contacts) between the proteins, damage to the
capsid of the virus occurs, leading to the viral
inactivation.
In the ISRS process, operated in near-infrared/visible

wavelength range to which water is transparent, one way
of selective killing of microorganisms is by varying the
laser power density; the other way of selective killing of
microorganisms in biological systems is by controlling
the range of spectral content of an ultrashort pulsed
laser. For a transform-limited pulsed laser, by using Hei-
senberg uncertainty principle, it is equivalent to control-
ling the laser pulse width. The presence of the factor

e�ω0
2τL2=4 in Eq. (4) indicates that in order to excited sig-

nificantly large amplitude Q0 of a vibrational frequency
ω0 in a microorganism for damaging effect, the excita-
tion laser pulse width τL has to be chosen so that ω0τL
≤1. Because each microorganism has its own characteris-
tic resonance vibrational frequency ω0 , by choosing the
proper pulse width of an ultrashort pulsed laser, the

amplitude of this resonance mode can be excited so high
as to damage and inactivate the microorganism.
We note that cw (continuous wave) laser cannot excite

the resonance mode ω0 of a microorganism through an
ISRS process. Because τL ¼ 1 for a cw laser, Eq. (4)
therefore indicates that the amplitude of the excited vi-
brational mode is zero. A Q-switched laser cannot excite
the resonance mode ω0 of a typical microorganism
through ISRS process either. This is because each micro-
organism has a characteristic resonance vibrational fre-
quency ω0 which typically is in the range of 100 GHz;
[24-29] for example, helix-shaped M13 bacteriophage is
around 300 GHz [27-29] and icosahedral viruses of 30
nm in size like murine norovirus is around 65 GHz [24]
and if we use a viral frequency of 100GHz and the fact
that a typical Q-switched laser has a pulse width of
about 100 nanosecond, from Eq. (4), the factor

e� ω0
2τL2=4ð Þ becomes vanishingly small. Therefore, the

amplitude of vibrations a Q-switched laser will excite is
negligibly small.
The rapid switch from non-inactivation to inactivation

at the laser power density of 60 MW/cm2 shown in
Figure 1 for M13 bacteriophages can be explained by
the ISRS process. When the laser power density is
small (<60MW/cm2), the excited amplitude of vibra-
tion on the capsid of M13 bacteriophage is not large
enough to break the weak links and no inactivation is
observed; however, as the laser power density increases
to and beyond 60 MW/cm2, the excited amplitude of
vibration becomes large enough to break the weak
links on the capsid of the M13 bacteriophage, leading
to the inactivation of M13 bacteriophage.
To further support our argument that viral particles

are inactivated by the irradiation of USP lasers through
an ISRS process, we show experimental results of the in-
activation of M13 bacteriophages as a function of laser
pulse widths/spectral widths in Table 3 [4-7] while the
laser intensity is kept constant. The abrupt change from
inactivation to no inactivation observed in the experi-
ments when the pulse width of the laser changes from
500 fs to 800 fs is consistent with the prediction of Eq.
(4) by using the Raman mode frequency of 10cm−1which
was measured by Raman spectroscopy for M13 bacterio-
phages [27-29].
Therefore, schematically, this is what is happening in

our model for USP laser inactivation of viruses such as

Table 3 Dependence of the status of M13 bacteriophage
on laser pulse width

Pulse Width (fs) 80 250 500 800 1000

Spectral Width (cm–1) (80) (25) (12) (6.5) (5)

Status Inactivation (Yes or No) Yes Yes Yes No No

(The excitation laser intensity is kept at 5.6 × 10–6J/cm2).
(The numbers with in the brackets indicate the spectral width in cm–1).
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the M13 bacteriophage: The electric field from a femto-
second laser produces an impulsive force through the
induced charge polarization on the virus, as shown in
Figure 5(A). This mechanical impact coherently excites
Raman-active vibrational modes on the capsid of the
virus, as depicted in Figure 5(B). Figure 5(C) demon-
strates that if the pulse width/spectral width and inten-
sity of the USP laser are appropriately chosen, the
vibrational modes can be excited to such high energy
states as to break off the weak links on the capsid of the
virus, damaging/disintegrating the capsid and leading to
the inactivation of the virus.

Inactivation of bacteria by ultrashort pulsed lasers
We take Salmonella typhimurium as an example. To ob-
tain insight into the inactivation mechanisms, we have
performed inactivation of a mutant Salmonella typhi-
murium by a visible USP laser. The mutant is deficient
in RecA proteins which are responsible for the repair of
damaged DNA. In other words, the mutant is very sensi-
tive/vulnerable to the damage of DNA. Figure 6 [10]
shows the inactivation of both the wild-type and mutant

Salmonella typhimurium by a visible USP laser as a
function of the laser fluence. In general, the log – load
reduction factor at a given laser dose has be found to be

Figure 5 Diagrams showing how the M13 bacteriophage is inactivated by an USP laser. (A) The electric field from a femtosecond laser
produces an impulsive force through the induced charge polarization on the virus; (B) The resultant mechanical impact coherently excites
Raman-active vibrational modes on the capsid of the virus; (C) If the pulse width/spectral width and intensity of the USP laser are appropriately
chosen, the vibrational modes can be excited to such high energy states as to break off the weak links between proteins in the capsid of the
virus, damaging/disintegrating the capsid and leading to the inactivation of the virus.

Figure 6 Log-kill factor as a function of laser fluence for the
wild, mutant Salmonella typhimurium, as indicated (with
publisher’s permission).
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higher for the mutant than for the wild strain. In par-
ticular, our experimental results indicate that by using
the USP laser, with laser dose of about 800 J/cm2, a log -
load reduction factor of about 5 for mutant Salmonella
typhimurium was observed; however, by employing the
same laser parameter, a log-kill factor of only 0.5 for the
wild Salmonella typhimurium was found. Because the
only difference between these two strains of Salmonella
typhimurium is the RecA proteins which are in charge
of the repair of damaged DNA, these experimental
results indicate that irradiation of a visible USP laser
causes DNA damage and subsequent inactivation of the
Salmonella typhimurium.
Figure 7 demonstrates our preliminary results for iso-

lated double-stranded DNAs in buffer solution before
and after irradiation by a visible femtosecond laser, as
detected by the agarose gel electrophoresis method [10].
The control sample (labeled No. 1) revealed the presence
of three dark bands corresponding to circular, linear, and
super-coiled double-stranded DNA, respectively. Sample
No. 2 showed that stirring the sample slightly changed
the relative darkness of the bands. On the other hand,
the laser-irradiated sample (labeled No. 3) showed that
the relative darkness of the three bands was greatly

altered. These data suggest that the effects of visible
femtosecond laser irradiation primarily caused relaxation
of the supercoiled double-stranded DNA to produce
relaxed circular double-stranded DNA. Because forced
changes in the supercoiling status of DNA can disrupt
cellular metabolism, which can lead to the death of the
cell, one mechanism which can contribute to the inacti-
vation of Salmonella typhimurium by the irradiation of a
visible USP laser is relaxation of supercoiled DNA in the
bacteria.
It has been known that photo-stimulation of endogen-

ous intracellular porphyrin molecules in the bacteria by
continuous wave visible light irradiation may result in
the production of reactive oxygen species (ROS), pre-
dominantly singlet oxygen, and consequently, damage to
the DNA and the death of bacteria [30-35]. Therefore,
the other mechanism which can contribute to the inacti-
vation of Salmonella typhimurium by a visible USP laser
is the photo-production of ROS.

Prospects of the selective disinfection of pathogens by
USP lasers
In the following sections, we discuss a few of the potential
applications we envision for this USP laser technology.

Decontamination of blood products for transfusion
Millions of red blood cell, platelet, plasma and coagula-
tion factor transfusions are performed every year in the
United States alone. Implementation of specific donor
screening criteria together with nucleic acid and im-
munologic testing have significantly reduced the risk of
transmission of blood components through transfusion
for a number of pathogens. This system, however, does
not solve all problems posed by pathogens. This is be-
cause (1) not all recognized threats have been adequately
addressed; (2) there exists a “window period” for a donor
during which the infection cannot be detected by testing
but during which the donor may be infectious; and (3)
screening and tests can only be performed for those
pathogens that have been recognized and for which tests
are available. Unknown/emerging pathogens will remain
as a threat as evidenced by the emergence of HIV and
WNV in the past [36]. Therefore, from the transfusion
recipient’s viewpoint, the ideal strategy for ensuring
transfusion safety of blood components should be to im-
plement a preemptive pathogen reduction (PR) technol-
ogy, which can universally eliminate microbes in a blood
product without chemicals and without adversely affect-
ing the function of the blood product itself. For details
of all the currently available PR techniques for the disin-
fection of blood components, please refer to [37-42]. PR
technique in plasma components are dominated by solv-
ent detergent treatment [43], methylene blue method
[44] and UV-activated photochemical method [45-47]

Figure 7 Gel electrophoresis experiments on double-stranded
DNAs. #1 is the control without magnetic stirring showing the
presence of super-coiled, linear and circular DNAs; #2 is another
control with magnetic stirring; #3 is the laser-irradiated sample with
magnetic stirring. The visible femtosecond laser is operated at 425
nm, at a repetition rate of 80 MHz, with an average power of 100
mWs, laser spot size of about 100 micron, and laser irradiation time
of 1 hr.

Tsen et al. Journal of Biomedical Science 2012, 19:62 Page 8 of 11
http://www.jbiomedsci.com/content/19/1/62



such as using amotosalen and riboflavin. Although these
are effective in pathogen reduction, some concerns still
exist. Several PR treatments have been developed for
platelets. Because these treatments share the use of UV
light, although at different wavelengths, possible damage
to the blood product and/or microbial resistance
becomes a concern. Techniques for PR in red blood cells
are largely still under development. A significant con-
cern of the above-mentioned techniques is the addition
of foreign chemicals which cannot be completely
removed after the treatments. These residual chemicals
may have short or long term adverse effects on patients
who require frequent transfusion of blood components.
In contrast, the chemical-free USP laser technology

has been shown to kill 3–5 log10 of a variety of patho-
gens (see Table 1), and more importantly, it exhibits se-
lectivity for microbes over desirable proteins and
mammalian cells (see Table 2). Therefore, the USP laser
technology represents a plausible pathogen inactivation
technology for pathogen reduction of blood products.

Sterilization of biologicals and pharmaceuticals
Biologicals and pharmaceuticals used in the clinic as well
as reagents or cell cultures used in research laboratories
can be contaminated with microbes such as Mycoplasma
spp., viruses and bacteria, which can affect their safety
profile and their biological function. Traditionally, envel-
oped viruses or bacteria can be killed by the addition of
detergent or alcohol-based chemicals. Non–enveloped
viruses are harder to kill and are usually inactivated by
either heating or using bleach; however, either the heat-
ing process or the addition of such chemicals raises the
concern of potential side effects. Filtration is an effective
way of removing pathogens; however, it is not applicable
when the size of undesired pathogen(s) is comparable to
that of the desired product. In these cases, a technique
that can non-invasively sterilize a solution containing a
desired reagent, cell culture, or pharmaceutical without
changing the product’s structure or function is desirable.
In this regard, USP laser technology represents a

plausible method for accomplishing sterilization of bio-
logicals, pharmaceuticals, cell cultures, and reagents.
Our preliminary results suggest that a visible USP laser
can be used to inactivate viral particles and bacteria,
without altering the structure of individual protein units
[10]. Therefore, USP laser technology could conceivably
be useful for sterilizing biologicals, pharmaceuticals, cell
cultures, and reagents.

Generation of efficient and safe vaccines
The use of killed or attenuated whole microorganisms is
an attractive strategy for the development of immuno-
genic vaccines for many diseases including tuberculosis
and malaria [48]. Whole organism vaccines include most

of the relevant antigens and retain many of the immu-
nostimulatory components necessary to induce a strong
and specific immune response. Various techniques have
been applied to this end, including chemical killing, [49]
UV/psoralen treatment [48] and gamma-ray irradiation
[50]. Chemical methods such as the application of for-
malin have the advantages of being simple and cost ef-
fective; however, it is not as efficient as other methods.
Furthermore, the addition of chemicals raises concerns
of potential side effects. UV/psoralen treatment has been
shown to be promising in generating killed but metabol-
ically active pathogen vaccines in mouse models; how-
ever, the added chemicals are very difficult to remove
completely. This raises the concern of potential adverse
effects when applied in the clinic. Gamma ray irradiation
has been demonstrated to be effective in generating
inactivated vaccines in mouse models; however, the
gamma-ray photon is high-energy ionizing radiation
which will break any chemical bonds in its path includ-
ing covalent, ionic, and hydrogen bonds in the micro-
organism. As a result, the use of gamma-ray treated
vaccines raises concerns that “new chemical species”
may be created that may have adverse effects in humans.
We envision that the use of USP lasers to generate

whole inactivated vaccines could be advantageous over
current methods, partly because the technique kills the
organism efficiently with potentially minimal changes to
antigenic and/or immunostimulatory structures, [3-10]
and partly because no potentially toxic chemicals are
added or created. As a matter of fact, our preliminary
results (not shown here) with a USP laser-inactivated
H1N1 flu vaccine demonstrates vaccine-induced T-cell
responses and protection against challenge in a mouse
model.

Potential experimental layout
One possible approach of using the USP laser technol-
ogy for selective PR of blood components and pharma-
ceuticals, and for vaccine production described above is
to use a syringe pump to channel the samples through
narrow tubing for laser irradiation (see Figure 8).

Figure 8 Potential experimental setup for use of USP laser
technique in pathogen reduction of blood products.
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If an intense USP laser system is available, an alterna-
tive experimental setup involving a magnetic stirrer such
as that in Figure 9 can be used.

Conclusion
The emergence of drug-resistant microbes and new,
heretofore-unknown pathogens has renewed the search
for effective antimicrobial technologies. The recently
developed USP laser technique for microbial load reduc-
tion could represent a universal, non-invasive, and envir-
onmentally friendly method for selective inactivation of
microbes without the use of clinically toxic or environ-
mentally damaging agents. We predict that the USP
laser technology will be used for (1) Decontamination of
blood products for transfusion; (2) Sterilization of biolo-
gicals, pharmaceuticals, cell cultures, and reagents; and
(3) Generation of efficient and safe vaccines in the near
future.
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