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YtxR, a Conserved LysR-Like Regulator That Induces Expression of

Genes Encoding a Putative ADP-Ribosyltransferase Toxin
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Grace L. Axler-DiPerte,' Virginia L. Miller,” and Andrew J. Darwin'*

Department of Microbiology, New York University School of Medicine, New York, New York 10016," and Departments of

Molecular Microbiology and Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110

Received 29 July 2006/Accepted 8 September 2006

Yersinia enterocolitica causes human gastroenteritis, and many isolates have been classified as either “American”
or “non-American” strains based on their geographic prevalence and virulence properties. In this study we describe
identification of a transcriptional regulator that controls expression of the Y. enterocolitica ytxAB genes. The ytxAB
genes have the potential to encode an ADP-ribosylating toxin with similarity to pertussis toxin. However, a ytxAB
null mutation did not affect virulence in mice. Nevertheless, the ytxx4AB genes are conserved in many Y. enferocolitica
strains. Interestingly, American and non-American strains have different ytx4B alleles encoding proteins that are
only 50 to 60% identical. To obtain further insight into the yrx4B locus, we investigated whether it is regulated as
part of a known or novel regulon. Transposon mutagenesis identified a LysR-like regulator, which we designated
YtxR. Expression of ytxR from a nonnative promoter increased ®(ytxA-lacZ) operon fusion expression up to 35-fold.
YtxR also activated expression of its own promoter. DNase I footprinting showed that a His,-YtxR fusion protein
directly interacted with the ytx4 and y&xR control regions at similar distances upstream of their probable transcrip-
tion initiation sites, identified by primer extension. Deletion analysis demonstrated that removal of the regions
protected by His-YtxR in vitro eliminated YtxR-dependent induction in vivo. The ytxAB locus is not present in most
Yersinia species. In contrast, ytxR is conserved in multiple Yersinia species, as well as in the closely related organisms
Photorhabdus luminescens and Photorhabdus asymbiotica. These observations suggest that YtxR may play a conserved

role involving regulation of other genes besides ytxAB.

Three of the species that make up the genus Yersinia are
widely accepted as organisms that are pathogenic to humans.
Y. pestis is the etiological agent of plague, whereas Y. pseudo-
tuberculosis and Y. enterocolitica usually cause intestinal dis-
ease. Y. enterocolitica is the species most frequently isolated
from humans (6, 7), and infections are commonly acquired
through ingestion of contaminated food or water (4). During a
typical Y. enterocolitica infection the bacteria travel to the ter-
minal ileum and penetrate the M cells overlaying the Peyer’s
patches. They multiply within the Peyer’s patches before drain-
ing into and infecting the mesenteric lymph nodes. Disease
usually manifests as self-limiting gastroenteritis and mesenteric
lymphadenitis but can progress to septicemia, especially in
patients with complicating conditions (6, 9).

Pathogenic Y. enterocolitica strains have been divided into
two broad groups, based on serological typing and pathogenic-
ity (7). The high-pathogenicity, so-called “American” strains
are associated with large-scale outbreaks and more severe dis-
ease than their low-pathogenicity “non-American” counter-
parts (6). The variable pathogenicity of Y. enterocolitica is
probably attributable to multiple factors, including the high-
pathogenicity island that encodes an iron acquisition system
unique to American serotypes (for a review, see reference 5).

An approximately 70-kb virulence plasmid is common to the
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three pathogenic Yersinia species (36). This plasmid encodes the
Ysc type III secretion system and the Yop effector proteins that it
exports, which disarm some features of the host innate immune
response (8). This plasmid is necessary but not sufficient for vir-
ulence (7, 21). Chromosomal loci important for invasion of epi-
thelial cells (48, 50), a stress response (11), and an additional type
IIT secretion system (20) also play roles in virulence (for a review,
see reference 37). There may be additional chromosomally en-
coded virulence factors that can be characterized.

Relatively common virulence factors of enteric pathogens
are enterotoxins, which fall into two classes. Heat-stable ente-
rotoxins are small peptides that induce fluid secretion from
host cells (32). Heat-labile enterotoxins also play a role in
inducing fluid secretion and are exemplified by cholera toxin of
Vibrio cholerae and the heat-labile toxins of Escherichia coli
(45). Each toxin consists of two different proteins associated in
an A,B; stoichiometry. The B pentamer binds to the host cell
and triggers endocytic uptake of the complex. The A subunit is
responsible for enzymatic modification of host cell proteins.
The A subunits of both cholera toxin and the heat-labile toxins
of E. coli are ADP-ribosyltransferases that modify the a sub-
unit of a subset of heterotrimeric G proteins. This causes an
increase in intracellular cyclic AMP levels, ultimately resulting
in increased fluid secretion into the intestinal lumen (45).

Many bacterial genes are tightly regulated to ensure that
they are expressed only in appropriate environments. This is
especially true for virulence factors. For example, the V. chol-
erae ctxAB operon, which encodes cholera toxin, is subject to
complex regulation in concert with several other members of
overlapping regulons (for reviews, see references 35 and 43).
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In Yersinia species the Ysc-Yop regulon is also regulated by
several proteins, some of which control many other genes (e.g.,
YmoA [23]).

Virulent Y. enterocolitica strains produce a heat-stable entero-
toxin (Yst) that has been implicated as the cause of diarrhea in a
rabbit model of infection (13, 14) but whose role in pathogenesis
remains controversial (41). To date, genes with the potential to
encode a heat-labile enterotoxin have not been described for Y.
enterocolitica. Here we describe the ytxAB genes, which are con-
served in several Y. enterocolitica strains and could encode a
heat-labile enterotoxin. The role of these genes remains un-
known, but we found that a previously uncharacterized member
of the LysR family of transcriptional regulators, which we desig-
nated YtxR, positively regulates the yt&x4 promoter by direct in-
teraction. The y&xR gene is conserved in many Yersinia species and
in at least two members of the closely related genus Photorhabdus.
In contrast, the ytxAB genes are not present in most Yersinia
species or in any other genus. This suggests that YtxR regulates
other genes besides ytxA4B.

MATERIALS AND METHODS

Bacterial strains, plasmids, and routine growth conditions. Bacterial strains
and plasmids used in this study are listed in Table 1. Y. enterocolitica strains were
routinely grown at 26°C in Luria-Bertani (LB) (Miller) broth or on LB agar
plates (29). Antibiotics were used as described previously (27).

Southern hybridization analysis. Chromosomal DNA was digested with
HindIII, resolved by electrophoresis on a 0.8% agarose gel, and transferred to
nitrocellulose by the method of Southern (44). Approximately 300-bp “ytx4”
probe fragments were generated by PCR using primers that annealed to the
central region of ytx4 from strains JB580v and MC22. Labeling, hybridization,
and detection were done with the ECL direct nucleic acid labeling and detection
system (GE Healthcare Life Sciences).

PCR amplification of the sapA-pspF intergenic region. The following primers
annealed to the 5’ end of sap4 and the 3’ end of pspF, incorporating BamHI and
Xbal sites, respectively (underlined): 5'-CGCGGATCCCCACTGACACAATA
GACAAAACCGCGCTGAC (sapA primer) and 5'-GGCTCTAGAATTGGCT
GCATAATAGTGAATATCAGATGCT (pspF primer).

The primers were used in PCRs with chromosomal DNA from various Y.
enterocolitica strains. The products were cloned into plasmid pHG329, and their
DNA sequences were determined.

Transposon mutagenesis. Transposon mutagenesis of Y. enterocolitica strain
YVM619 was performed exactly as described previously (27). Mutants with
increased ®(yxA-lacZ) expression were identified as described in the Results.
Southern blotting was done to ensure that each mutant contained a single
transposon insertion, and the transposon-chromosome junctions were isolated
and their DNA sequences were determined as described previously (27).

Strain and plasmid construction. To construct a ytx4B deletion mutant, two
DNA fragments were amplified from Y. enterocolitica strain JB580v chromo-
somal DNA by PCR. One fragment had a BglII site followed by the first 10
codons of ytx4 and approximately 1 kb of upstream DNA. The other fragment
had a BglII site followed by the last 22 codons of ytxB and approximately 1 kb of
downstream DNA. These fragments were ligated at the BgllI site and cloned into
plasmid pEP185.2. The BamHI kanamycin resistance gene fragment from mini-
Tn5 Km2 (15) was then cloned into the unique BglII site. The resulting plasmid,
pAJD213, was integrated into the JB580v chromosome, and Km" Cm® exconju-
gants were isolated. The AyxA4B::kan mutation was confirmed by Southern hy-
bridization analysis (data not shown).

To construct ®(ytxA-lacZ) and P (yxR-lacZ) single-copy operon fusion strains,
ytxA or ytxR control region fragments were amplified from strain JB580v chro-
mosomal DNA by PCR. The fragments were cloned into plasmid pFUSE or
pKN8 and integrated into the chromosome by homologous recombination (2) or
were cloned into plasmid pAJD905 and integrated into the ara locus exactly as
described previously (28).

A AyxR in-frame deletion mutant (AJD239) was constructed with the X Red
recombinase gene replacement system (12), adapted for use in Y. enterocolitica
(27). Briefly, a AytxR::kan mutation was made using allelic exchange mediated by
Red recombinase. The kanamycin resistance gene was removed by FLP recom-
binase-mediated excision, and the in-frame deletion was confirmed by Southern
hybridization, colony PCR, and DNA sequencing (data not shown).

J. BACTERIOL.

araBp-ytxR expression plasmids were constructed by amplifying fragments from Y.
enterocolitica strain JB580v genomic DNA and cloning them into pBAD18-Km or
pBAD33. To construct an araBp-Hiss-yixR expression plasmid, ayiR™ fragment was
amplified by PCR and cloned into plasmid pQE30 (QIAGEN Inc.). It was then
excised as an EcoRI-Sall fragment and cloned into pBAD18-Km to obtain plasmid
PAJD679.

B-Galactosidase assays. To determine the effect of transposon insertions on
D(yxA-lacZ) expression, saturated cultures were diluted into 4 ml of LB broth
containing appropriate antibiotics in 18-mm-diameter test tubes so that the
optical density at 600 nm was approximately 0.08. Cultures were grown on a
roller drum at 26°C for 3 h. Then 1 mM (final concentration) isopropyl-B-p-
thiogalactopyranoside (IPTG) was added, and the cultures were returned to the
roller drum for an additional 2 h.

To determine the effects of an araBp-yixR™ plasmid, saturated cultures were
diluted as described above into 4 ml of LB broth containing appropriate anti-
biotics. The cultures were grown on a roller drum at 26°C for 2 to 3 h (optical
density at 600 nm, approximately 0.2 to 0.4), and then 0.2% (final concentration)
arabinose was added. Cells were then grown for an additional 2 to 2.5 h at 26°C.

B-Galactosidase activity was determined at room temperature (approximately
22°C) using permeabilized cells (26). Activities were expressed in arbitrary units,
which were determined using the formula described by Miller (29). Individual
cultures were assayed in duplicate, and the activities reported below are the
averages from three independent cultures.

RNA isolation and primer extension analysis. Total RNA was isolated from Y.
enterocolitica strains with a single-copy chromosomal ®(ytxA-lacZY) operon fu-
sion (AJD1299) or a ®(ytxR-lacZY) operon fusion (AJD1300) and araBp-ytxR™
plasmid pAJD654. Cultures were grown as described above for the B-galactosi-
dase assay experiments to determine the effect of an araBp-ytxR™ plasmid. RNA
was isolated using an RNeasy mini kit (QIAGEN). End labeling of the oligonu-
cleotide and primer extension reactions were done with the Primer Extension
System avian myeloblastosis virus reverse transcriptase (Promega). The primer
used was 5'-TCATCGGTTGTCGGATCGGA, which corresponds to a region in
the template strand 60 bp downstream of the cloning site in the lacZ fusion
plasmid pAJD905. The primer was labeled at the 5" end with [y->>P]JATP and
used in extension reaction mixtures containing 5 pg of RNA. To generate size
markers, the same primer was used in DNA sequencing reactions with the
pAID1062 (ytxAp) or pAID1065 (yxxRp) template using the finol DNA cycle
sequencing system (Promega). Samples were resolved by denaturing 8% poly-
acrylamide—urea electrophoresis and visualized by autoradiography.

Purification of Hiss-YtxR. A 1-liter culture of E. coli strain BL21-CodonPlus
containing plasmid pAJD679 was grown at 30°C to an optical density at 600 nm
of approximately 0.9. Arabinose (final concentration, 0.2%) was added, and the
culture was incubated for an additional 3 h. Bacterial cells were collected by
centrifugation, frozen at —20°C, and then resuspended in 20 ml of a solution
containing 50 mM NaH,PO,, 300 mM NaCl, 10 mM imidazole, 5 mM B-mer-
captoethanol, 0.1% Tween 20, and 5 mM MgCl, (pH 7.5) containing 1X Com-
plete protease inhibitor (Roche) and 1.25 mg/ml lysozyme. Cells were incubated
on ice for 30 min and disrupted by sonication. The soluble and insoluble fractions
were separated by centrifugation, and the soluble extract (supernatant) was
mixed with 4 ml Ni-nitrilotriacetic acid-agarose (QIAGEN) for 1 h at 4°C and
then poured into a column. The column was washed with 20 ml of a solution
containing 50 mM NaH,PO,, 300 mM NaCl, 20 mM imidazole, 5 mM B-mer-
captoethanol, 0.1% Tween 20, and 5 mM MgCl, (pH 7.5). Hisg-YtxR protein was
eluted with 10 ml of a solution containing 50 mM NaH,PO,, 300 mM NacCl, 250
mM imidazole, 5 mM B-mercaptoethanol, 0.1% Tween 20, and 5 mM MgCl, (pH
7.5) and collected in 1-ml fractions, which were used directly in DNase I foot-
printing assays. Protein concentrations were estimated using NanoDrop ND-
1000 spectrophotometer A,g, measurement and a bovine serum albumin stan-
dard in the Hisgs-YtxR elution buffer.

Preparation of probes for DNase I footprinting. The ytx4 control region
fragment was generated from plasmid pAJD610 using M13 reverse primer and a
primer that annealed approximately 450 bp upstream of ytxx4 position +1 and
incorporated an EcoRI site. The product was digested with BamHI, which
cleaved downstream of ytxA position 1, and was dephosphorylated with calf
intestinal alkaline phosphatase (Promega). The bottom (template) strand was
labeled at the 5’ end with [y->*P]ATP using T4 polynucleotide kinase (Promega).
Unincorporated [y->*P]ATP was removed with the Promega Wizard SV gel and
PCR cleanup system. To eliminate any label from the other end of the DNA
fragment, the product was digested with EcoRI and cleaned again with the
Promega Wizard SV gel and PCR cleanup system.

A ytxR control region fragment was generated from plasmid pAJD1252 using
a primer that annealed to the cloning site of the plasmid (downstream of ytxRp
position +1) and a primer that annealed approximately 550 bp upstream of yxxR
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TABLE 1. Strains and plasmids

Strain or plasmid Genotype or features Source or reference

Escherichia coli B BL21-CodonPlus ompT gal [dem] [lon] hsdSB (rg~ mg~) NDE3 lysogen pRIL Stratagene

Yersinia enterocolitica 8081 strains
(serogroup O:8, American strains)®

JB580v AyenR (r” m™) pYV* 24
YVM619 D(ytxA-lacZYA) This study
YVM707 AytxAB::kan This study
AJD239 AyxR This study
AJD199 D(yxA-lacZYA) P([TnMod-RKm'-lacI%acp]l-ytxR) This study
AJD200 D(ytxA-lacZYA) ®([TnMod-RKm'-lacI%acpl-ytxR) This study
AJD254 AytxR D(yixA-lacZYA) This study
AJD378 AytxR ®(ytxR-lacZYA) This study
AJD1296 AyxR AaraGFB:[®(ytxA-lacZY)] (A110 construct) This study
AJD1297 AytxR AaraGFB:[®(yxA-lacZY)] (A52 construct) This study
AJD1299 AytxR AaraGFB::[®(ytxA-lacZY)] (A485 construct)” This study
AJD1295 AyxR AaraGFB:[®(ytxR-lacZY)] (A150 construct) This study
AJD1300 AytxR AaraGFB::[D(ytxR-lacZY)] (A500 construct)” This study
AJD1303 AytxR AaraGFB:[®(yxR-lacZY)] (A86 construct) This study
AJD1304 AyxR AaraGFB:[®(ytxR-lacZY)] (A21 construct) This study
Y. enterocolitica CDC reference strains®
657-83 Serogroup O:20, American strain CDC
658-83 Serogroup O:21, American strain CDC
655-83 Serogroup O:18, American strain CDC
634-83 Serogroup 0:4,32, American strain CDC
637-83 Serogroup 0:5,27, non-American strain CDC
661-83 Serogroup O:27, non-American strain CDC
Y. enterocolitica clinical isolates
MC5 Biogroup 1, serogroup 0:6,30, Crohn’s disease M. Cafferkey
MC7 Biogroup 1, serogroup O:9, colitis with perforation M. Cafferkey
MC8 Biogroup 1, serogroup O:9, septicemia M. Cafferkey
MC17 Biogroup 1, serogroup O:3, acute diarrhea M. Cafferkey
MC22 Biogroup 3, serogroup O:3, acute appendicitis M. Cafferkey
MC33 Biogroup 3, serogroup O:3, acute colitis M. Cafferkey
MC28 Biogroup 4, serogroup O:3, acute diarrhea M. Cafferkey
McCo6 Biogroup 4, serogroup O:3, mesenteric adenitis M. Cafferkey
MCs1 Biogroup 4, serogroup O:3, acute terminal ileitis M. Cafferkey
Other Yersinia strains
Y. pseudotuberculosis YPIII pYV* 18
Y. pseudotuberculosis K286 Clinical isolate 30
Y. kristensenii Walter Hill, FDA?
Y. frederikensenii Walter Hill, FDA
Y. frederikensenii MC31 Clinical isolate (chronic diarrhea, weight loss) M. Cafferkey
Y. rohdei 3022-83 Dog stool isolate CDC
Y. rohdei 3435-85 Human stool isolate CDC
Y. aldovae 670-83 Isolated from water CDC
Y. intermedia Walter Hill, FDA
Plasmids
pFUSE Cm*, mob™* (RP4), R6K ori, lacZYA™ operon fusion vector 2
pKN8 BgllII linker in Smal site of pFUSE 17
pBAD18-Km Km', araBp expression vector, Col E1 ori 19
pBAD33 Cm" araBp expression vector, p15A ori 19
pEP185.2 Cm', mob™ (RP4), R6K ori 24
pWSK129 Km', low-copy-number cloning vector, pSC101 ori 49
pHG329 Amp', cloning vector, pBR322 ori 46
pQE30 Ap*, Col E1 ori, T5p expression vector for Hisy fusion proteins QIAGEN
pAJD213 AytxAB::kan in pEP185.2 This study
pAJD593 araBp-ytxR in pBAD18-Km This study
pAJD610 yixA full-length control region in pHG329 This study
pAJD654 araBp-ytxR in pBAD33 This study
pAJD679 araBp-Hisg-ytxR in pBAD18-Km This study
pAID905 Cm", R6K ori, mob™ (RP4), sacBI™, lacZY operon fusion vector 28
pAJD1060 A110 ytxAp fragment in pAJD905 This study
pAJD1061 AS3 yxAp fragment in pAJD905 This study
pAJD1062 A485 (full length) yrxAp fragment in pAJD905 This study
pAJD1065 AS500 (full length) ytxRp fragment in pAJD905 This study
pAJD1057 A150 ytxRp fragment in pAJD905 This study
pAJD1058 A110 ytxRp fragment in pAJD905 This study
pAJD1059 A21 ytxRp fragment in pAJD905 This study
pAJD1252 ytxR control region (positions —552 to 40) in pWSK129 This study

“ All Y. enterocolitica 8081 strains are derivatives of strain JB580v.

b The ®(ytxA-lacZY) A485 and ®(ytxR-lacZY) A500 constructs represent the full-length control regions (all noncoding upstream DNA) upstream of the lacZY operon.
¢ CDC, Centers for Disease Control and Prevention.

4 FDA, Food and Drug Administration.
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FIG. 1. ytxAB locus encodes a putative ADP-ribosylating toxin. (A) Diagram of the arrangement of the yxx4B genes in the sapA-pspF intergenic
region of Y. enterocolitica strain JB580v (8081). (B) CLUSTALW alignment of the YtxA protein with the catalytic subunit of pertussis toxin (PtxA;
GenBank accession number P04947). The signal sequences (predicted for YtxA) are underlined. Identical, strongly similar, and similar residues
are indicated by vertical lines, colons, and periods, respectively, between the sequences. Three conserved sequences characteristic of ADP-
ribosyltransferases, including the catalytic glutamic acid residue, are indicated by boldface type (10, 16, 33). Residues important for full
ADP-ribosyltransferase activity of PtxA are indicated by bullets below the sequence. Cysteine residues that form a disulfide bond in PtxA are

indicated by arrows below the sequence.

position +1 and incorporated an Xbal site. The product was digested with BamHI,
which cleaved downstream of y&xR position +1, and dephosphorylated. The bottom
(template) strand was labeled as described above, except that an Xbal digest was
used to eliminate any label from the other end of the DNA fragment.

DNase I footprinting assays. Labeled ytxA or ytxR control region probes (ap-
proximately 2 nM) were mixed with Hiss-YtxR protein in a buffer containing 400
pg/ml salmon sperm DNA (Sigma-Aldrich), 100 mM HEPES (pH 7.6), 50 mM
(NH,),S0,, 5 mM dithiothreitol, 1% (vol/vol) Tween 20, and 150 mM KClI (total
reaction volume, 50 wl). The reaction mixtures were incubated at 32°C for 15
min, and then 53 pl of a solution containing 5 mM CaCl,, 10 mM MgCl,, and
0.005 U/l DNase I was added. Then the mixtures were incubated for 2 min, and
digestion was stopped by adding 25 pl of a solution containing 2 M ammonium
acetate, 250 mM EDTA, 100 pg/ml salmon sperm DNA, and 1 mg/ml glycogen.
The DNA was precipitated with ethanol and resuspended in formamide loading
dye. To generate a size marker, the pAJD610 (ytxAp) or pAJD1252 (ytxRp)
plasmid was used in DNA sequencing reactions with the fimol DNA cycle se-
quencing system (Promega). The sequencing primers annealed downstream of
the position +1 sites and had 5’ ends that corresponded exactly to the labeled
ends of the fragments used in the footprint reactions. Samples were resolved by
denaturing 8% polyacrylamide—urea electrophoresis and visualized by autora-
diography.

Control region deletion analysis. Truncated yxx4 and yxR control region
fragments were generated by PCR using a common downstream primer that
annealed within the 5" ends of the coding regions and primers that annealed at
various distances upstream. Xbal and BglII restriction sites were incorporated
for the ytxAp fragments. Xbal and BamHI restriction digestion sites were incor-
porated for the yixRp fragments. The fragments were cloned into pAJD905, and
the DNA sequences were confirmed. The operon fusions were integrated into
the ara locus and confirmed by colony PCR as described previously (28).

Nucleotide sequence accession numbers. The nucleotide sequence data gener-
ated in this study have been assigned the following GenBank accession numbers:
AY008264 for the yrxAB locus from Y. enterocolitica strain 8081(serotype O:8)

and AY183120 for the ytxAB locus from Y. enterocolitica strain MC22 (serotype
0:3).

RESULTS

Description of the ytxAB locus. During characterization of
the Y. enterocolitica phage shock protein (psp) locus (11) we
identified two adjacent open reading frames (ytxAB) (Fig. 1). A
BLASTP search revealed homology between YtxA and the
catalytic subunit of pertussis toxin (PtxA; E = le-16). Notably,
YtxA has the three conserved motifs characteristic of bacterial
ADP-ribosylating toxins (ADPRT) (10, 16, 33), including the
catalytic glutamic acid residue (Fig. 1). Other amino acids
important for full catalytic activity of pertussis toxin (for a
review, see reference 25) are also mostly conserved in YtxA
(Fig. 1). Therefore, ytxA might encode an ADPRT. Two cys-
teine residues that form an important PtxA disulfide bond (31)
are also present in YtxA, and YtxA is predicted to have a
sec-dependent signal sequence.

A BLASTP search with YtxB revealed no significant homol-
ogy (E < 10) to previously characterized proteins. YtxB is
small, as are the B subunits of cholera toxin and the heat-labile
enterotoxins of E. coli, and alignment of YtxB with the B subunit
of cholera toxin revealed some similarities (data not shown). YtxB
is also predicted to have a sec-dependent signal sequence.

A yxAB deletion mutant was assessed using oral infection of
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A = JB580v (serotype O:8 American)

B = MC22 (serotype O:3 non-American)

C =657-83 (serotype 0:20 American)

D = 658-83 (serotype O:21 American)

E = 655-83 (serotype O:18 American)

F = 634-83 (serotype 0:4,32 American)

G = J637-83 (serotype 0:5,27 non-American)

H = 661-83 (serotype O:27 non-American)

| = MC5 (serotype 0:6,30 non-American)
J = MC7 (serotype O:9 non-American)

K = MCS8 (serotype O:9 non-American)

L = MC17 (serotype O:3 non-American)

M = MC33 (serotype O:3 non-American)
N = MC28 (serotype O:3 non-American)
O = MC6 (serotype O:3 non-American)

P = MC51 (serotype 0O:6,30 non-American)

FIG. 2. Southern hybridization analysis of ytx4 conservation in Y. enterocolitica. Chromosomal DNA from various Y. enterocolitica strains was
digested with HindIIl, separated by electrophoresis on a 0.8% agarose gel, and transferred to nitrocellulose. In separate experiments the same
nitrocellulose membrane was hybridized with a labeled ytx4 fragment from American strain JB580v and with a labeled ytx4 fragment from
non-American strain MC22. The approximate positions (in kb) of size markers in the original agarose gel are indicated on the left. The lower panel

shows the lane assignments for the chromosomal DNA samples.

6- to 7-week-old female BALB/c mice essentially as described
previously (34). The 50% lethal doses of yixAB™ and ytxAB null
strains were indistinguishable, as were the bacterial loads of
these strains in different tissues over time (data not shown).
From these experiments, we concluded that the ytxAB locus is
not required for virulence in an adult mouse model of acute
infection. This does not rule out a role for this putative toxin,
perhaps a role that is limited to the intestinal stage of disease
and/or is host species specific. We also attempted to overex-
press the YtxA protein. However, the overexpressed protein
was completely insoluble (data not shown), and we were un-
able to detect ADP-ribosyltransferase activity.

American and non-American strains have divergent ytx4B
alleles. The ytxAB locus might have been acquired recently
because its G+C content (39%) is much lower than the aver-
age G+C content of the chromosome (47%) (http://www
.sanger.ac.uk/Projects/Y_enterocolitica/). Therefore, to investi-
gate yixAB conservation, a Southern hybridization experiment
was done using a probe that encoded the central region of the Y.
enterocolitica strain JB580v ytxA gene.

In addition to chromosomal DNA of the strain that it was
derived from (serotype O:8), the ytx4 probe hybridized to
chromosomal DNA of Y. enterocolitica strains belonging to
serotypes 0:20, O:21, and O:4,32 (Fig. 2). These strains are all
American strains (note that the probe did not hybridize to
DNA from one American strain, a serotype O:18 strain). The
probe did not hybridize to DNA from any non-American Y.
enterocolitica strain (Fig. 2) or to DNA from any other Yersinia
species listed in Table 1 (data not shown). Furthermore, a
BLAST search of Y. pestis genomes, which were not included in
this hybridization experiment, did not reveal any homology to

ytxAB. Therefore, it appeared that the ytx4 gene (and presumably
yxB) is present only in some American strains of Y. enterocolitica.

To confirm the absence of ytxAB from non-American Y.
enterocolitica strains, we amplified the sapA-pspF intergenic
region (Fig. 1) of one of them by PCR. As a control, we also
amplified an approximately 2.3-kb yixdB™ fragment from the
chromosome of Y. enterocolitica strain JB580v (data not
shown). Unexpectedly, the non-American Y. enterocolitica
strain (strain MC22 [Table 1]) produced a PCR product that
was a similar size (data not shown). The DNA sequence of this
fragment revealed genes that encoded proteins with 53% and
62% identity to the YtxA and YtxB proteins, respectively, of
strain JB580v (data not shown). Despite the significant diver-
gence of these ytxAB genes, residues predicted to be important
for ADPRT activity of YtxA were conserved. Strikingly, al-
though there was such a major difference between the yxA4B
coding regions, the same was not true for the noncoding DNA
sequences extending 200 bp upstream of the American and
non-American ytxA initiation codons, which were 97% identi-
cal (data not shown).

The Southern hybridization experiment was repeated with a
non-American strain ytx4 probe. This probe hybridized to
DNA from Y. enterocolitica strains belonging to serotypes
0:5,27, 0:27, 0:6,30, and O:3 (Fig. 2), all of which were non-
American strains (note that the probe did not hybridize to
DNA from two non-American strains, both belonging to sero-
type 0:9). The probe also hybridized to DNA from the only
American Y. enterocolitica strain that did not hybridize to the
ytxA probe from American strain JB580v (serotype O:18) (Fig.
2). The probe did not hybridize to DNA from any other Yer-
sinia species listed in Table 1 (data not shown).
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0:8
0:9 TTCCAGTGTTTTTTAAGCCAGCTCGGGTGCTGGCTTTTTTTTTGCCTGCTATAAAGCTATCCAGCTAATCTCGCCT
0:8 AGAAGTTGCCGTAGTACTACAGCCACCATTTCCCTTTTATATATTATGTGTACTGCTATCTGTTCACCATTTAACT
019 mmmm
0:8  TTAAATGATAATGATATTTATCATGTATGTGTCCAGATATTTTGAATTATGGCATCAATATATCTATTGCTATATT
019 mmmm
ytxA ytxB
start stop
0:8 TATCTCTGAGGTAAATGAGTGATGGAGCTATATTTATATATTATTGGGGGGGGGTATG-—- -~ ytxAB----- TGA
019 mmmm

———————————————— TTACTGCTGATCATTTTCTCCTGCC

pspF
stop

0:8 AATATTGAGTGTTTTTTCAACATGCCACGTAATTGGTGGTAGGTTAGCCCCAGTAAGCTGGCTGCCTTGCGTTGATT
0:9 AGCATGGCATGTTTTTTTAGCATGCCGCGTAATTGATGGTATGTCAGACCCAGCAGACTCGCCGCCTTACGCTGATT

FIG. 3. Comparison of sapA-pspF intergenic region DNA sequences from Y. enterocolitica strains JB580v (serotype O:8, yoxAB™) and MC7
(serotype O:9, no ytxAB locus). Only part of each intergenic region is shown. The DNA sequence in boldface type is unique to strain JBS80v (ytxAB
gene sequences were omitted for clarity). Bullets above the sequences indicate differences between the regions conserved in both strains. The ytxA
start codon, ytxB stop codon, and pspF stop codon (complementary strand) are labeled and underlined.

These data indicate that there are two versions of ytxAB in Y.
enterocolitica. One is present only in American strains, and the
other is present primarily in non-American strains.

DNA sequence analysis identified a ytxAB cassette. Two
clinical isolates belonging to non-American Y. enterocolitica
serotype O:9 (strains MC7 and MC8 [Table 1]) are the only Y.
enterocolitica strains tested that do not have a ytxAB locus. This
conclusion was based on the failure of chromosomal DNA
from these strains to hybridize to either probe (Fig. 2) and on
the small size of their sapA-pspF intergenic region PCR frag-
ments (data not shown).

The DNA sequence of the relatively small sapA-pspF inter-
genic region PCR fragment from one of these Y. enterocolitica
serotype O:9 strains was compared to that from the yrxAB™
strain JB580v (Fig. 3). This revealed the extent of the unique
region present in the yixAB™ strain. In addition to the yixAB
genes and the 48-bp intergenic region (not shown in Fig. 3),
there are 207 bp of upstream DNA and 52 bp of downstream
DNA. The non-American Y. enterocolitica strain MC22 has a
region that is a similar length and has a similar sequence
upstream of its ytxAB genes (data not shown). Therefore,
strains with any version of the ytxAB locus probably contain a
unique region that includes approximately 200 bp of noncoding
upstream DNA. We hypothesized that this region probably
contains the ytx4 promoter and any important regulatory se-
quences. This hypothesis was investigated in the series of ex-
periments described below.

A LysR-like transcriptional regulator induces ytx4B expres-
sion. Understanding whether yxxAB expression is regulated
and, if it is, the underlying mechanism(s) might provide insight
into its role. To begin to investigate this, a single-copy ®(ytxA4-
lacZ) operon fusion strain was constructed. The level of B-ga-
lactosidase activity expressed from this fusion was relatively
low at 26°C or 37°C (less than 100 Miller units), suggesting that
ytxA was poorly expressed under standard laboratory condi-
tions. We hypothesized that yxx4B might be expressed only
under specific conditions and that control is mediated by a

regulatory protein interacting with the unique region upstream
of yrxA (Fig. 3). Therefore, a genetic screen was devised to
identify regulatory proteins, even if they were poorly expressed
in our standard growth conditions.

The screen relied on a transposon encoding the E. coli lac
repressor (lacl) and an outward-facing fac promoter (27). This
transposon causes null mutations by insertion (e.g., a ytxA
repressor) and/or IPTG-dependent overexpression of down-
stream genes (e.g., a ytxA activator). Approximately 40,000
transposon mutants of a ®(ytxAd-lacZ) operon fusion strain
were screened after growth at 26°C in the presence of IPTG on
LB indicator agar containing 5-bromo-4-chloro-3-indolyl-B-p-
galactopyranoside (X-Gal). Mutants with increased ®(ytxA-
lacZ) expression were identified as dark blue colonies and were
later confirmed by B-galactosidase assays (data not shown).
Any mutants with transposon insertions immediately upstream
of ®(ytxA-lacZ) were identified by Southern hybridization
analysis and eliminated from further analysis.

The screen did not identify any mutants with an IPTG-
independent increase in ®(yx4-lacZ) expression. However, we
identified six mutants that exhibited severalfold IPTG-depen-
dent increases in ®(ytxA-lacZ) expression, suggesting that this
expression was caused by overexpression of a gene downstream
of the transposon. Southern hybridization analysis indicated
that all six mutants had a single transposon insertion in the
same chromosomal region (data not shown). Two of these
mutants (designated strains AJD199 and AJD200) were ran-
domly selected for further analysis. These mutants exhibited
14- to 20-fold IPTG-dependent induction of ®(ytxA-lacZ) ex-
pression (Fig. 4).

The DNA sequences of the transposon-chromosome junc-
tions from the two mutants revealed that the transposon had
inserted 186 bp (AJD199) and 156 bp (AJD200) upstream of
the same open reading frame (YE2253), in an orientation that
would direct its expression from the fac promoter of the trans-
poson. YE2253 is located on the complementary strand be-
tween nucleotides 2461446 and 2462306 of the Y. enterocolitica

sIno7 1S ul Alsianiun uolbuiysepn Aq #10z ‘0T |Udy uo /Bio wse qly/:dny wol) papeojumog


http://jb.asm.org/
http://jb.asm.org/

VoL. 188, 2006

>

1400

1200

1000

B-Galactosidase Sp. Act. (Miller units)

G —
-+ -+ -+ IPTG
Strain ~ YVM619 AJD199 AJD200

YERSINIA YtxR REGULATOR 8039

(-Galactosidase Sp. Act. (Miller units)

= + o +
ytoR* AyteR

araBp-ytxR+

Genotype

FIG. 4. Increased y&xR expression induces a ®(ytxA-lacZ) operon fusion. (A) Expression of ®(yx4-lacZ) in the presence (+) or absence (—)
of IPTG in a strain without a transposon (YVMG619) or two mutants with tacp transposon insertions upstream of y&xR (AJD199 and AJD200).
(B) Expression of ®(yxA-lacZ) in yxR* (YVM619) or AytxR null (AJD254) strains with either araBp-ytxR™ expression plasmid pAJD593 (+) or
the pBAD18-Km control vector (—). Cultures were grown and -galactosidase activities were determined as described in Materials and Methods.
The data are averages from three independent cultures, and the error bars indicate the standard deviations from the means. Sp. Act., specific

activity.

chromosome (http:/Awww.sanger.ac.uk/Projects/Y_enterocolitica/). It
is predicted to encode an uncharacterized member of the fam-
ily of LysR-type transcriptional regulators (LTTRs) (for a re-
view, see reference 40). We designated YE2253 the ytxR gene.

Finally, we checked whether ytxR overexpression alone was
responsible for increasing ®(ytxA-lacZ) expression. The ytxR
gene was cloned into the araBp expression plasmid, pBAD18-
Km. Expression of yxR from this plasmid induced ®(ytxA4-
lacZ) expression approximately 35-fold (Fig. 4). This did not
occur for unrelated lacZ operon fusions studied in our labo-
ratory (data not shown). A y&vR in-frame deletion mutant was
also constructed. However, there was no difference in ®(ytxA-
lacZ) expression between yixR™ and yixR null strains (Fig. 4).
This suggests that the yxxR gene is not significantly expressed
from its own promoter under standard laboratory conditions.
Taken together, all of these data show that expression of ytxR
from a nonnative promoter is sufficient to induce ®(ytxA-lacZ)
expression.

YtxR is an autoregulator. Most LTTRs act as autoregula-
tors, enhancing or repressing their own transcription (40). To
test whether this is the case for YtxR, a single-copy ®(y&xR-
lacZ) operon fusion was constructed in a strain with a AyxR
mutation. When yt&xR was expressed from araBp expression
plasmid pAJD593, it induced ®(ytxR-lacZ) expression approx-
imately 100-fold (data not shown). This indicates that YtxR is
a positive autoregulator.

Determination of ytx4 and ytxR 5 mRNA ends. Next we
wanted to characterize the ytx4 and ytxR promoters and their
control by YtxR at the molecular level. An important first step
was to locate the 5" ends of the y&x4 and ytixR mRNAs. There-
fore, RNA was isolated separately from ®(ytxA-lacZ) and
d(ytxR-lacZ) strains containing an araBp-ytxR™* expression
plasmid and analyzed by primer extension (see Materials and
Methods).

A single yrxA 5" end was detected that corresponded to 50
nucleotides upstream of the probable ytx4 ATG start codon
(Fig. 5 and data not shown). This result was confirmed by 5’

rapid amplification of cDNA ends using a different ytx4 tem-
plate (data not shown). This 5 mRNA end may have origi-
nated from a o’%-dependent promoter because putative —10
and —35 sequences were identified upstream (Fig. 5).

In the case of ytxR the 5" mRNA end corresponded to 237
nucleotides upstream of the probable ATG start codon (Fig.
5). No other smaller products of the primer extension reaction
were detected (Fig. 5 and data not shown). Therefore, y&xR has
an unusually long 5" untranslated region. However, this is not
unprecedented, even for genes that encode LTTRs (39). Once
again, sequences with some similarity to —10 and —35 ele-
ments were detected upstream of the position corresponding
to the 5" mRNA end.

DNase I footprint analysis of Hiss-YtxR interaction with the
ytxA and ytxR control regions. The simplest hypothesis to ex-
plain how yt&xR overexpression induces ®(ytxA-lacZ) and
O (ytxR-lacZ) expression is that YtxR directly binds to the ytxA/
ytxR control regions. To test this hypothesis, a Hiss-YtxR fu-
sion protein was purified [we first confirmed that production of
His,-YtxR was able to induce ®(ytxA-lacZ) in vivo (data not
shown)]. Hise-YtxR protected nucleotides in both the ytxx4 and
ytxR control regions from DNase I cleavage (Fig. 6). In both
cases the protected regions were centered at approximately
position —75. This is in good agreement with the binding site
locations of other members of the LTTR family (40). An align-
ment of the protected regions revealed significant sequence
similarity (Fig. 7). Similar concentrations of the Hiss-YtxR
protein produced clearly observable DNase I footprints of the
ytxA and ytxR control regions, suggesting that the binding af-
finities were comparable. These data demonstrate that Hisg-
YtxR interacts with defined regions upstream of ytxA and ytxR
in vitro. Therefore, YtxR probably activates ytxA and ytxR
transcription directly in vivo. Further support for this conclu-
sion came from the set of experiments described below.

5" Deletion analysis of the ytx4 and ytxR control regions.
The final series of experiments was designed to test whether
the regions protected by Hise-YtxR in vitro were required for
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FIG. 5. Primer extension analyses of the ymA4 and y&xR control
regions. RNA was extracted from Y. enterocolitica strains with either
D(ytxA-lacZ) (A) or ®(yrxR-lacZ) (B) single-copy operon fusions and
the arap-yixR™ expression plasmid pAJD654. Lane PE, primer exten-
sion reaction; lanes G, T, A, and C, DNA sequencing reactions. The
nucleotide sequences surrounding the putative transcription initiation
sites are shown below the panels. Nucleotides corresponding to the 5’
mRNA end sites are indicated by boldface type and labeled “+1 >.”
Putative —10 and —35 elements are underlined and labeled.

YtxR-dependent regulation in vivo. A set of single-copy
P (ytxA-lacZ) and P(ytxR-lacZ) operon fusion strains was con-
structed with progressive 5’ deletions of their control regions
(Fig. 7). These strains were grown with or without ytxR expres-
sion from an arabinose-inducible plasmid, and B-galactosidase
activities were determined (Table 2).

Deletion of sequences upstream of position —110 did not
affect YtxR-dependent induction of ®(ytxA-lacZ) expression
(Table 2). However, deletion to position —52 completely elim-
inated YtxR-induced activity without affecting the basal
(YtxR-independent) activity. Therefore, the region between
positions —110 and —52 is essential for YtxR-dependent in-
duction in vivo. This is in agreement with the region identified
by DNase I footprinting in vitro (Fig. 6 and 7).

In the ®(yxR-lacZ) deletion analysis, two different phenom-
ena were observed. First, deletion of the region from position
—500 to position —150 significantly elevated both YtxR-inde-
pendent expression and YtxR-dependent expression, while the
ability of YtxR to activate expression was maintained (Table
2). The next deletion, from position —150 to position —86, did
not have any additional effect on ®(ytxR-lacZ) expression.

J. BACTERIOL.

However, deletion to position —21 eliminated YtxR-depen-
dent induction. Once again, these results are in agreement with
the region identified by DNase I footprint analysis.

Conservation of ytxR. Southern hybridization analysis (Fig.
2) and BLASTP searches (data not shown) indicated that the
YtXAB genes are not present in most Yersinia species and in all
other genera. The ytxR gene (YE2253) is not linked to yxAB
(YE2124 and YE2123), and so we were interested in investi-
gating ytxR conservation. We performed BLASTP searches
with the predicted YtxR protein sequence. This analysis re-
vealed that y«xR is intact and conserved (more than 90% amino
acid identity) in the seven Yersinia species whose genome se-
quences are available (http://www.ncbi.nlm.nih.gov), including
several different Y. pestis genomes (e.g., YPO2169 in Y. pestis
CO92 [data not shown]). We confirmed this conservation by
successfully amplifying an internal “y&xR” fragment from the
chromosomes of all the strains tested in the yzxA hybridization
analysis (Fig. 2) except Y. aldovae 670-83 (data not shown). As
a negative control, the PCR failed to amplify a fragment from
the AytxR strain AJD239 (Table 1). Besides Yersinia, BLASTP
searches also revealed that yxR is conserved in the insect
pathogen Photorhabdus luminescens and also in Photorhabdus
asymbiotica (more than 60% amino acid identity and the same
chromosomal context). These observations suggest that YtxR
probably regulates genes besides yx4B and may play an im-
portant conserved role in the closely related genera Yersinia
and Photorhabdus.

DISCUSSION

Multiple Y. enterocolitica strains have genes (yixAB) that
have the potential to encode an ADPRT. YtxA is a member of
a large family of proven and putative bacterial ADPRTSs (33),
but a ytx4B null mutant is virulent in an adult mouse model of
acute infection. However, YtxAB could play a role limited to
the intestinal stage of disease and/or be host specific. For
example, the Y. enterocolitica heat-stable enterotoxin Yst had
no detectable role in mice (41) or gnotobiotic piglets (38) but
did affect diarrhea, weight loss, and death in young rabbits
(13). In an attempt to obtain more insight into the ytxAB locus,
we have begun to investigate the regulation of its expression.
Here we report identification of YtxR, an LTTR that induces
expression of ytxAB and also of its own gene. This regulation is
mediated by direct interaction of YtxR with the ytx4 and y&xR
control regions.

We discovered two different versions of the ytxAB locus in Y.
enterocolitica. One version is specific to American strains, and
the other is specific to non-American strains. An exception is
American serotype O:18, which has the non-American version
of ytxAB. Hybridization analysis with fragments of the ail gene
also distinguished between American and non-American
strains (30). However, the ail hybridization pattern of the same
0:18 serotype strain placed it with the other American strains.
We also found a third version of the ytxAB locus in a Y.
intermedia isolate provided by the Food and Drug Administra-
tion (Darwin and Miller, unpublished data). The genome se-
quence of an American Type Culture Collection Y. intermedia
strain is also now available (http://www.ncbi.nlm.nih.gov), and
the genome contains genes similar to ytxAB in the sapA-pspF
intergenic region. Y. intermedia, like several other Yersinia spe-
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FIG. 6. DNase I footprint analysis of the yxx4 and ytxR control regions. Labeled ytx4 (A) or yxxR (B) control region fragments were incubated
with different concentrations of Hise-YtxR protein as indicated above the lanes and then treated with DNase 1. Lanes G, A, T, and C show the
results for sequencing reactions for each control region and are calibrated with respect to the number of base pairs from the transcription start
site. Brackets indicate the approximate region of DNase I protection. Asterisks indicate sites hypersensitive to DNase I cleavage in the presence

of Hiss-YtxR.

cies, is considered nonpathogenic. However, it has been sug-
gested that some of these species may sometimes cause disease
by using uncharacterized virulence proteins (47).

The ytxAB locus has a G+C content of 39%, which is much
lower than the average G+C content of the chromosome
(47%). Perhaps the ytxAB locus was acquired by horizontal
transfer. Furthermore, genome sequence analysis revealed that
in Y. pestis CO92 there is an insertion element instead of yrx4B
between sapA and pspF. In Y. pseudotuberculosis and some
other Yersinia species there do not appear to be any coding
regions between sapA and pspF. Strikingly, like ytxAB, the
unlinked ytxR gene encoding their regulator also has an ex-
tremely low G+C content (33%).

The divergence of the two different versions of ytxAB in Y.
enterocolitica is surprising. The two YtxA versions and two
YtxB versions are only 53% and 62% identical, respectively.
This contrasts with the 95% amino acid identity between Ail
proteins from American and non-American Y. enterocolitica
strains (3). However, despite the significant dissimilarity be-
tween the ytxA coding regions of the two American and non-
American strains that we studied in detail, the 200 bp of non-
coding DNA upstream of their ytxA start codons is 97%
identical. This suggests that genetic drift may not explain the
divergence and that different ytxAB cassettes might have been
introduced two or more times into the genus Yersinia. Of

course, we cannot rule out the possibility that a single yxxA4B
locus was acquired by an ancestral strain and strong selective
pressures resulted in marked divergence of only the coding
sequences.

Many bacterial genes are expressed only weakly in normal
laboratory growth conditions. For example, the cholera toxin
genes of V. cholerae El Tor require highly specialized condi-
tions for expression outside the host (22). Similarly, a ®(ytxA-
lacZ) operon fusion was expressed only weakly in the labora-
tory, which led to the screen that identified ytxR. Like the
majority of LTTRs, YtxR is an autoregulator. Most LTTRs are
negative autoregulators (40), but YtxR falls into a smaller
group whose members activate their own expression (for ex-
ample, see reference 1). Another common feature of most (but
not all) LTTRs is regulation of a gene divergently transcribed
a short distance immediately upstream (40). The divergently
transcribed xthA gene (YE2254) is located upstream of ytxR.
However, it is separated from y&xR by almost 800 bp, and a
D (xthA-lacZ) operon fusion is not regulated by YtxR (Axler-
DiPerte and Darwin, unpublished data).

Most LTTRs are activated by an interaction with a small
coinducer molecule (40). However, our experiments suggested
that a coinducer may not be required for YtxR because in-
creased expression of yixR is sufficient to activate its target
promoters. The Nac protein of Klebsiella aerogenes is an exam-
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A

ytxA control region

J. BACTERIOL.

A110

-159 GGCTTTTTTTTTGCTTGCCTACAGCCACCATTTCCCTTTTATATATTATGTGTACTGCTA

As2
\

-99 TICTGTTCACCATTTAACTTTAAATGATAATGATATTTATCATGTATGTGTCCAGATATTT

+1>

-39 TGAATTATGGCATCAATATATCTATTGCTATATTTATCTCTGAGGTAAATGAGTGATGGA

-35

ytxR control region

A150

-10

-159 TTGCTAGCAACCCATTTCACTTATTTTTTTGGGCGGTAAATGCTACAGGCATTTCCATTT

Ass
|

-99 ITTTCTATTAGAAAGCGTTAACTGATTTTGTCACGTGAAGAATAAAAAATAGTTATTTGA

A21
[

+1>

-39 TATCATAGATCTACATTTAAAACTCTGTTAAAAATATGTGCAATGTTAAGGCGATAATAC

-35

C

ytxa -110
ytxkR -111

* * * Kk k 0k * *

-10

GTGTACTGCTATCTGTTCACCATTTAACTTTARATGATAATGATATTTATCATGTATGTG
GCATTTCCATTTTTTTCTATTAGAAAGCGTTAACTGATTTTGTCACGTGAAGAATAAAAA

* k kkkk kkk*k * * * * * *

FIG. 7. Important features of the yzx4 and yt&xR control regions. (A) yx4 control region. (B) y&xR control region. The numbering is relative to
the putative transcriptional start sites, indicated by boldface type and labeled “+1>.” Putative —10 and —35 elements are underlined and labeled.
Regions protected from DNase I cleavage in the presence of His,-YtxR are double underlined. Deletion endpoints of constructs used in this study
are indicated. (C) CLUSTALW alignment of the protected areas of both control regions. Asterisks indicate identical nucleotides.

ple of an LTTR that does not require a coinducer molecule.
Like expression of YtxR, increased expression of nac from an
IPTG-inducible promoter is sufficient to allow it to regulate
target promoters (42). If YtxR does not need a coinducer, then

TABLE 2. Effects of control region deletions on ®(ytxA-lacZ)
and ®(ytxR-lacZ) expression

B-Galactosidase sp act”

Control region?

Without YtxR¢ With YtxR

D(yxA-lacZ)

A485 32+5 950 = 80

A110 404 2,120 = 320

AS52 47+ 4 48 £ 6
O(ytxR-lacZ)

A500 23+6 1,030 = 340

A150 310 = 120 2,140 = 560

A86 510 = 60 1,810 = 610

A21 420 = 32 400 = 100

¢ Each strain has a ®(ytxA-lacZY) or ®(ytxR-lacZY) fusion integrated on the
chromosome with a different amount of DNA upstream of the transcription
initiation site, as shown in Fig. 7.

b B-Galactosidase specific activity was determined as described in Materials
and Methods and is expressed in arbitrary (Miller) units. The values are averages =
standard deviations.

¢ Strains with the araBp vector pBAD33 (without YtxR) or the araBp-yixR™
expression plasmid pAJD654 (with YtxR) were grown in the presence of 0.2%
arabinose as described in Materials and Methods.

activation of the YtxR regulon might be initiated by upregu-
lation of ytxR expression. We do not yet know the environmen-
tal conditions that allow this to occur. However, we are begin-
ning to obtain some clues about a possible mechanism. First,
deletion analysis has suggested that a region far upstream of
the ytxR promoter negatively regulates its expression (Table 2).
Primer extension analysis also revealed that ytxR has a long 5’
untranslated region. Therefore, we speculated that yt&xR regu-
lation is complex and that the untranslated region may play a
pivotal role in activation of the YtxR regulon.

The ytxR gene is conserved in all Yersinia and Photorhabdus
species that have been sequenced, most of which do not have
the yixAB genes. This strongly suggests that there are probably
other unidentified YtxR target promoters. However, we cannot
yet ascribe a function to the YtxR regulon. We have not dis-
covered a robust phenotype for a Y. enterocolitica ytxR null
mutant, including in a mouse model of acute infection (Axler-
DiPerte and Darwin, unpublished data). Our favored working
hypothesis is that the regulon might be activated in an envi-
ronment outside the host and then deactivated soon after in-
fection. Therefore, even if the regulon primes Y. enterocolitica
for stages early in infection, a phenotype in animals would not
be apparent if bacteria were not grown in this YtxR-activating
environment prior to infection. Another equally plausible pos-
sibility is that activation of the YtxR regulon occurs during
infection but that it is host specific. Finally, YtxR may play an
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environmental role unrelated to host interaction. Uncovering
environmental conditions that activate the YtxR regulon, and
especially identifying all of the YtxR target promoters, should
considerably increase our understanding of the role of the
regulon in Y. enterocolitica physiology. Addressing these ques-
tions will be the major goal of our future investigations. An-
swering them could provide significant insight into the two very
important and well-studied genera Yersinia and Photorhabdus.
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