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Much progress has been made in recent years in identifying genes involved in the
risk of developing Alzheimer’s disease (AD), the most common form of dementia. Yet
despite the identification of over 20 disease associated loci, mainly through genome wide
association studies (GWAS), a large proportion of the genetic component of the disorder
remains unexplained. Recent evidence from the AD field, as with other complex diseases,
suggests a large proportion of this “missing heritability” may be due to rare variants of
moderate to large effect size, but the methodologies to detect such variants are still in their
infancy. The latest studies in the field have been focused on the identification of coding
variation associated with AD risk, through whole-exome or whole-genome sequencing.
Such variants are expected to have larger effect sizes than GWAS loci, and are easier to
functionally characterize, and develop cellular and animal models for. This review explores
the issues involved in detecting rare variant associations in the context of AD, highlighting
some successful approaches utilized to date.
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INTRODUCTION
Alzheimer’s disease (AD), the most common form of demen-
tia, is a devastating and incurable condition affecting over 5.2
million individuals in the US alone (Alzheimer’s Association
Statistics, 2014). As populations across the globe age, this figure is
expected to increase vastly, posing a huge threat to public health
(Brookmeyer et al., 2007). With no cure or effective treatments
currently available, the burden of the disease will vastly increase,
yet it is thought that just delaying the onset of the condition
by a few years could significantly decrease the number of peo-
ple developing the disorder (Brookmeyer et al., 2007). However,
with our current limited knowledge of the etiology of the dis-
ease, the appropriate targets and interventions remain unclear.
Uncovering genetic loci associated with the condition gives clues
to the important pathways and mechanisms involved in the dis-
ease process, which can translate to novel targets for diagnoses and
treatments.

The rare, familial, early onset form of the condition is com-
paratively well understood, known to be caused by rare damaging
mutations inherited in a Mendelian fashion in three genes (APP,
PSEN1, and PSEN2) related to amyloid processing, which cause a
buildup of amyloid in the brain or shift the ratios of the types of
Aβ produced. The late onset form, however, is a complex disorder
with multiple genetic and environmental risk factors. Although the
heritability of the disease is estimated to be around 60–80% (Gatz
et al., 2006), our understanding of the genes and loci involved has
been limited until relatively recently.

The APOE locus was identified as a genetic risk factor for late
onset AD (LAOD) in the early 1990s via linkage studies in large
AD affected families (Pericak-Vance et al., 1991). As a genetic risk
factor for a late onset, complex disorder, APOE has an unusually
large effect size, which facilitated its discovery by these methods.

The risk associated ε4 allele conveys an increase in risk of around
2–3x in heterozygous form, and around 15x in homozygous form,
while the ε2 allele is associated with decreased risk (Farrer et al.,
1997). Even with such an effect size, the population attributable
fraction of APOE’s ε4 allele is estimated to be only 27.3% (Lam-
bert et al., 2013), so a large proportion of the heritability remained
unexplained. Despite a wealth of research over the following years,
further linkage studies as well as numerous candidate gene investi-
gations failed to find any further genetic risk loci for AD that were
robust and replicable (Ertekin-Taner, 2010).

GENOME WIDE ASSOCIATION STUDIES
The next major leap forward came about via the advent of the
genome wide association study (GWAS). GWAS enable researchers
to test for association between a given disease or trait and virtually
all loci within the human genome in a single pass. A caveat of this is
that with such a large number of tests being conducted, the sample
sizes required to give sufficient power are very large. This technique
was facilitated by the coming together of a number of crucial
factors. Firstly, international collaborative efforts such as the 1000
genomes project, which set out to catalog all common human
variation across multiple populations (Abecasis et al., 2010). This
meant in turn that genotyping arrays could be developed that
captured the vast majority of human variation in a single array.
Finally, and again through large collaborations, sample cohorts of
a large enough size to give sufficient power to these studies became
available.

The results of the first two truly large scale GWAS in AD
were published in October 2009, and brought about the first
major advance in the AD genetics field in over a decade. The
two studies collectively identified three new loci associated with
AD risk, in the genes CLU, PICALM, and CR1 (Harold et al.,
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2009; Lambert et al., 2009). Subsequently, these loci have been
extensively replicated and shown to be linked to a variety of
AD associated endophenotypes, giving extremely strong evidence
for their genuine involvement in the etiology of the condition
(Carrasquillo et al., 2010; Corneveaux et al., 2010; Jun et al., 2010;
Seshadri et al., 2010). Since then, through ever increasing sample
sizes and meta-analyses, a further 17 genes have been reported
to be associated with AD via GWAS, most recently in a “mega”-
meta-analyses featuring almost 75000 samples (Seshadri et al.,
2010; Hollingworth et al., 2011; Naj et al., 2011; Lambert et al.,
2013).

While the successes of GWAS in AD are irrefutable, there
remain some crucial limitations. Firstly, GWAS can only really
detect trait associated common variants – these are the vari-
ants included in the widely available genotyping chips used for
GWAS to date. Rare variants are poorly targeted by the design.
Secondly, although a plethora of loci associated with AD have
been identified, the variants underlying these associations remain
largely unclear. Often the strongest associated variants within an
identified locus fall in the intronic regions of genes, or even in
intergenic regions, making it unclear what the actual causative
factors in the area are. The early theory that rare, causative muta-
tions were the underlying source of the association being tagged
by common GWAS variants have fallen out of favor since in AD
as well as numerous other fields of research, extensive resequenc-
ing efforts at GWAS loci have proved largely unfruitful (Guerreiro
et al., 2010; Hunt et al., 2013). Indeed, where rare, associated vari-
ants have been detected within GWAS genes, their effects seem to
be independent of the GWAS hit, indicating that different forms
of variation within a single locus (e.g., rare coding and com-
mon regulatory) can exist and have separate effects on the trait
(Bettens et al., 2012).

Aside from not knowing the specific causative factors, the
GWAS identified loci individually do not explain a large propor-
tion of disease risk. Each of the loci identified by GWAS affects
disease risk only a small amount, so even with APOE and all 20
GWAS genes combined, there still remains a large amount of miss-
ing heritability (Manolio et al., 2009). Another limitation is the
increasingly large sample sizes required to detect the increasingly
subtle effects on disease risk that GWAS loci have. With these
ever diminishing returns, the remaining unknown heritability is
unlikely to be entirely explained by this approach.

MISSING HERITABILITY
The remaining missing heritability of AD is likely to be complex,
and unlikely to be resolvable using a single methodology. While
other common variants of low risk undoubtedly remain to be dis-
covered, the likelihood of these explaining the full heritability of
AD is low. Non-coding, regulatory variations, rare coding variants
of moderate to high effect sizes and epigenetics all likely contribute
to AD heritability. Indeed, two articles recently published have pre-
sented the findings of the first major epigenome wide association
studies in the AD field, and together identified and replicated four
loci where epigenetic alterations were associated with AD risk (De
Jager et al., 2014; Lunnon et al., 2014), and it is likely more sites
where epigenetic modifications relate to AD risk exist (Lord and
Cruchaga, 2014).

Although AD is a condition with typical onset far beyond repro-
ductive age, in general, deleterious alleles are more likely to be rare
due to the laws of purifying selection (Gibson, 2011), so high
impact alleles are unlikely to be detected by GWAS, which target
common variants. Furthermore, as rare causative alleles are dis-
covered, they are likely to have a greater explanatory power over
the etiology of complex traits than common risk variants do.

Sequencing technologies have seen huge advances in accuracy,
throughput, and cost effectiveness in recent years (Cirulli and
Goldstein, 2010). Similar to the way in which the development
of genotyping arrays facilitated the discovery of common disease
associated variants via GWAS, the rapid improvements in sequenc-
ing technologies and enrichment strategies over recent years have
paved the way for the detection of rare, disease associated variants
via exome or whole genome sequencing (WGS).

Despite the huge decrease in sequencing costs, it is still pro-
hibitively expensive for most studies to conduct WGS on large
cohorts. WGS is also problematic in terms of data handling,
storage, and interpretation. A number of possible strategies are
available to circumvent this issue, such as targeted sequenc-
ing, exome arrays, exome sequencing, and selection of highly
informative subjects, such as members of multiply affected fam-
ilies, specific populations with low heterogeneity, or extremes of
phenotypes.

Targeted sequencing, e.g., for loci identified by GWAS, is a
cheaper alternative to whole genome or whole exome sequencing
(WES), and has had some successes (Rivas et al., 2011). Although
it has been attempted for several of the early AD GWAS hits, it
proved largely unfruitful, as has been seen to be the case in other
complex disorders (Guerreiro et al., 2010; Ferrari et al., 2012; Hunt
et al., 2013).

Exome arrays offer a platform for genotyping exonic low fre-
quency and rare variants in a chip based assay, bridging the gap
between the sparse genotyping of GWAS and sequencing based
study designs. A number of commercially available exome arrays
are available, often allowing for the incorporation of custom
content to tailor the platform to specific diseases or traits. The
heterozygous concordance rate between exome sequencing data
and exome array data has been estimated to be 98.14% (Wang
et al., 2013). Exome array based studies have been shown to be
successful in identifying several loci associated with insulin lev-
els in a cohort of 8229 Finnish non-diabetic individuals (Huyghe
et al., 2013). However, there are issues with the technology, and to
date, no variants associated with AD have been published using
the exome array method. Chung et al. (2014) used the Affymetrix
Axiom Exome Genotyping Array in their study of 1005 Korean
subjects, but the only significant association signals were found
to be due to APOE. One of the reasons for this may be that the
selection of variants for exome arrays was mainly based on indi-
viduals of European origin, so their utility in other populations
may not be great. The sample size utilized here was also sig-
nificantly smaller than Huyghe et al.’s (2013) design, making it
unclear whether the lack of significant associations were due to
genetic differences in the sample population compared to the chip
design, or a simple lack of power. The inclusion of variants in
exome arrays is also dependent on their genomic context, not all
are compatible with the array type genotyping design (Do et al.,
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2012). Exome arrays also do not offer the ability to detect pre-
viously unknown variants, which targeted or exome sequencing
designs do. Exome sequencing, although only targeting 1–2%
of the genome, targets the most commonly disease associated
regions (Ng et al., 2009). Additionally, it lessens the issues asso-
ciated with data handling, processing and storage, as well as
being easier to interpret (as bioinformatics programs for pre-
diction of consequences of exonic mutations are generally more
advanced than those for non-coding changes), and is also cheaper,
enabling larger sample sizes to be utilized than would be possible
with WGS.

The power of association tests between single variants and
traits decreases as the minor allele frequency (MAF) of the vari-
ant does. This means very large samples will be needed for rare
variant association studies unless the effect size of the variant is
particularly large. It is also not clear at present what the most
appropriate way to correct for multiple tests in rare variant stud-
ies is. The typical GWAS significance threshold of 5×10−8 is
based on approximately one million independent tests being con-
ducted simultaneously. Although rare variants are unlikely to be
completely independent, there are far more rare variants than
GWAS genotyped common variants, so the required significance
threshold could be even more stringent, making attaining signif-
icance in single variant analyses problematic. Evaluating multiple
rare variants within a given region (e.g., a gene) can help com-
bat this. A number of methods have emerged over the last few
years to enable this. The simplest of these are burden tests, but
these do not account for variants in the same test unit having
opposing directions of effects, which can cancel out any meaning-
ful signals (Morris and Zeggini, 2010; Lee et al., 2014). Indeed,
recent evidence from the Alzheimer’s field suggests many loci
do have variants which both increase and decrease disease risk
(e.g., the protective alleles recently reported in APP and APOE,
both long standing AD risk loci harboring deleterious variants’
Jonsson et al., 2012; Medway et al., 2014). Combined tests, such
as SKAT-O can take in to account both risky and protective
variants within the same locus, aggregating the individual asso-
ciation signals in to a single combined association score, which
can be much more powerful than the single variant approach
(Lee et al., 2012, 2014).

Selecting extremes of the phenotypic spectrum has promise
for rare variant discovery since such individuals are likely to be
enriched for rare disease causing variants. In terms of AD, this
could be particularly severe cases or those with early onset vs.
cognitively healthy extremely old individuals. It is also possible to
use levels of biomarkers, which typically follow normal distribu-
tions, and conduct sequencing in the highest and lowest measuring
individuals. Using quantitative traits as endophenotypes has been
shown to have increased power compared to standard designs,
reducing the number of individuals to be sequenced substan-
tially (Li et al., 2011; Benitez et al., 2013b). Another potential way
to enrich subjects for genetic risk factors is to utilize individu-
als with a strong family history of the condition, since pedigrees
with multiple affected individuals are more likely to have pre-
disposing genetic variants than typical sporadic cases. Indeed,
the way in which traditional genetic linkage approaches can
be effectively used in conjunction with new technological and

analytical methods for the identification of rare, disease causing
mutations is currently being explored (Santorico and Edwards,
2014).

It is likely that, as with GWAS, combining several individually
smaller studies in to one large meta-analysis will prove an effective
way of increasing sample sizes, and may produce findings beyond
those of the separate studies alone. At present, however, there is
little standardization in the analysis of next generation sequencing
data across studies, which could make combining them prob-
lematic. Methods will need to be developed to adequately deal
with heterogeneity between studies, particularly given the high
variance in rare variant detection and quantification across dif-
ferent sequencing platforms and analysis strategies (O’Rawe et al.,
2013).

Another strategy for increasing power without affecting
costs is to utilize imputation, inferring genotypes in unse-
quenced individuals to increase effective sample size. How-
ever, the accuracy of imputation decreases as MAF decreases,
so imputation of rare variants is unreliable at present for
unrelated individuals. As more sequencing data, both whole
genome and exome, is generated, the reference panels upon
which imputations are based will become more extensive, mak-
ing an improvement in imputation accuracy for rare variants
likely in the coming years. Additionally, several methods are
being developed to infer the genotypes of rare variants in
related individuals, using sequencing data, GWAS data, and
pedigree information (Cobat et al., 2014; Saad and Wijsman,
2014).

A further complication is that rare variant studies are more
susceptible to cross population differences in allele frequency.
Rare variants, which are more likely to be recent in origin,
can show vast differences in frequencies across populations
(Raska and Zhu, 2011). Whilst this can be leveraged to be
advantageous (Hatzikotoulas et al., 2014), it also provides dif-
ficulties, since subtle underlying population substructure can
inflate false positive rates (Keen-Kim et al., 2006). Although
robust methods exist for correcting for such stratification in
GWAS data, the same cannot currently be said for rare variant
association studies (Liu et al., 2013). These matters will be dis-
cussed in the context of rare variant association studies in AD
below.

RARE VARIANTS AFFECTING AD RISK
Despite being faced with this plethora of issues, in recent years sev-
eral research groups have had success in identifying low frequency
and rare variants associated with AD, with some variants and genes
yielding protective effects, and others increasing AD risk.

TREM2
One of the first reports of AD associated rare variants utiliz-
ing the recent advances in sequencing technologies was Jonsson
et al.’s (2013) study, which found that the rare missense vari-
ant in TREM2, rs75932628 [predicted to encode the protein
change, R47H, with NHLBI Exome Sequencing Project (ESP,
http://evs.gs.washington.edu/EVS/) MAF of 0.26% in European–
Americans (EA) and 0.02% in African–Americans (AA)] conveyed
an increased risk of AD in the Icelandic population (Jonsson et al.,
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2013). From 2261 Icelandic individual’s whole genome sequence,
the group identified 191777 variants likely to be affecting pro-
tein function across the genome. These variants were imputed
in to an AD case control cohort (3550 AD, 8888 controls), and
rs75932628 was the only variant to exceed the applied Bonfer-
roni correction for multiple tests, other than those at the APOE
locus (p = 3.42 × 10−10, odds ratio (OR) = 2.92 [95% confi-
dence interval (CI) 2.09−4.09)]. The use of imputation at this
stage allowed the 191777 potentially functional variants to be nar-
rowed down to just one likely AD associated variant. In a further
four replication cohorts of European origin, the variant was seen
to convey an increased risk of AD, with a combined sample size
of 2037 AD and 9727 controls giving compelling evidence for
R47H’s involvement in AD risk [p = 0.002, OR = 2.83 (95% CI
2.16 − 3.91)].

Simultaneously with Jonsson et al.’s (2013) TREM2 rare vari-
ant report, a second report of R47H’s involvement in AD
risk was published by Guerreiro et al. (2013). This group
approached the gene as a biological and statistical candidate,
citing its relationship with the recessive early onset demen-
tia and bone cyst disease, Nasu-Hakola; the identification of
homozygous TREM2 mutations in three Turkish patients with
a frontotemporal dementia like syndrome; and evidence of a
nominally significant linkage association between a region on
chromosome 6 containing the gene and risk of AD. Using
whole exome, whole genome and Sanger sequencing data
from 1092 AD patients and 1107 control samples, the group
was able to demonstrate the presence of an excess of vari-
ants in the second exon of TREM2 in AD relative to controls
(p = 0.02), as well as a number of variants found exclu-
sively in either case or control samples. The variant encod-
ing R47H (rs75932628) showed significant association with AD
(p < 0.001). These findings were replicated by imputing the

variant in three GWAS datasets (totaling ∼5500 AD cases and
>13,000 controls, p = 0.002). In an additional replication
stage conducted by directly genotyping rs75932628 in 1887 AD
patients and 4061 controls, the variant again showed a strong,
significant association with AD [OR 4.59 (95% CI 2.49 − 8.46),
p = 1.4 × 10−7].

Jin et al. (2014) conducted a resequencing project of TREM2
in 2082 AD patients and 1648 controls of EA origin. A total
of 16 non-synonymous variants were detected in the gene, six
of which had not been reported in connection with AD previ-
ously. As well as replicating the association seen between R47H
and AD (see Table 1), an additional variant, predicted to encode
the protein change R62H was also associated with AD [OR = 2.36
(95% CI 1.47 − 3.80), p = 2.36 × 10−4]. Additional replica-
tion for the association between R47H and AD risk has been
provided in subjects of French origin (see Table 1; Pottier et al.,
2013), as well as suggestive association with R47H and R62H
in the Belgian population, where a gene based association test
attained statistical significance [relative risk = 3.01 (95% CI
1.29 − 11.44), p = 0.009; Cuyvers et al., 2014], strengthening the
evidence for TREM2’s association with AD in subjects of European
origin.

In subjects of Asian origin, the same replication has not been
seen. Two large studies in the Han Chinese population (total-
ing > 3000 samples) did not find the R47H variant (Jiao et al., 2014;
Yu et al., 2014), and no association was seen between the variant
and AD in a Japanese cohort of 2190 AD cases and 2498 controls
(see Table 1). It is not clear whether there are other variants within
TREM2 in these populations that affect AD susceptibility.

These studies demonstrate that while particular risk vari-
ants may be population specific, the same genes can harbor
different disease associated variants. Rather than genotyping asso-
ciated variants in follow up studies in different populations, a

Table 1 | Association betweenTREM2 variant R47H and AD risk.

Study Population Sample size OR (95% CI) P value

Jonsson (Jonsson et al., 2013) Icelandic 3550 AD, 8888 controls 2.92 (2.09−4.09) 3.42 × 10−10

Guerreiro (Guerreiro et al., 2013) European and European

American (EA)

1091 AD, 1105 controls 4.5 (1.7−11.9) <0.001

1994 AD, 4062 controls 5.05 (2.77−9.16) 9.0 × 10−9

Jin (Jin et al., 2014) EA 2082 AD, 1648 controls 2.63 (1.44−4.81) 9.17 × 10−4

Pottier (Pottier et al., 2013) French 726 EOAD*, 783 controls 4.07 (1.3−16.9) 0.009

Cuyvers (Cuyvers et al., 2014) Belgian 1216 AD, 1094 controls 3.01 (0.83−10.94) 0.08

Benitez (Benitez et al., 2013a) Spanish 180 EOAD*, 324 AD, 550

controls

Seven heterozygous cases

found, no heterozygous controls

0.009

Yu (Yu et al., 2014) Han Chinese 1133 AD, 1159 controls R47H not present −
Jiao (Jiao et al., 2014) Han Chinese 360 AD, 400 controls R47H not present −
Miyashita (Miyashita et al., 2014) Japanese 2190 AD, 2498 controls Not associated, three

heterozygotes found (one case,

two controls)

−

Summary of the study designs and findings from reports of R47H TREM2 variant and AD risk.
*EOAD, early onset Alzheimer’s disease.
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more appropriate approach may be to resequence the genes,
enabling the detection of population specific variants which would
otherwise be overlooked. Another notable fact is that even within
a traditionally accepted “single population,” such as Europeans,
there is substantial regional variance in allele frequency among rare
variants, which is evidenced by the widely varying ORs observed
for different cohorts of European origin in Table 1.

PLD3
Cruchaga et al. (2014) utilized a family based study design which
enabled the detection of rare variants within the PLD3 gene asso-
ciated with AD risk. The group conducted WES on individuals
from large LOAD affected families, and looked for rare vari-
ants perfectly segregating with disease status in the sequenced
members as well as additional genotyped family members, and
sought association in a large independent case-control cohort.
The selection of large families with multiple affected individ-
uals, prioritization of earlier ages of onset, and exclusion of
families where APOE allele ε4 perfectly segregated with disease
was designed to give a cohort of related samples enriched for
genetic risk factors for LOAD. The variant rs145999145 (pre-
dicted to encode a Val232Met alteration in protein sequence, ESP
MAF 0.49% in EA, 0.25% in AA) segregated with disease status
in two independent families. When the variant was genotyped
in 4998 cases and 6356 EA controls, the variant showed strong
association with disease status [OR 2.10 (95% CI 1.47−2.99),
p = 2.93 × 10−5], replicating the initial finding. In search of
further risk associated variants within the PLD3 gene, the group
sequenced the gene’s coding region in 2363 cases and 2024 con-
trols of European descent, as well as 130 cases and 172 controls of
AA descent. In the European subjects, 14 variants more common
in cases than controls were detected, including nine exclusively
found in cases. Using SKAT-O to conduct a gene based bur-
den test allowed the group to demonstrate again a significant
association with disease risk [OR 2.75 (95% CI 2.05 − 3.68),
p = 1.44 × 10−11], which remained significant when the ini-
tial variant, rs145999145, was excluded from the analysis [OR 2.58
(95% CI 1.87 − 3.57), p = 1.58 × 10−8], indicative that the locus
harbors additional variants impacting on disease risk within this
population.

In the AA samples, rs145999145 as well as another variant nom-
inally associated in European subjects (predicted to be a synony-
mous variant, Ala442Ala, affecting splicing and gene expression)
were observed in cases but not controls, with Ala442Ala showing
significant association with AD in this cohort (p = 0.03). Gene
based analyses in this cohort also revealed a significant associa-
tion between PLD3 and AD risk [OR 5.48 (95% CI 1.77−16.92),
p = 1.4 × 10−3]. Again, this highlights the heterogeneity of genetic
risk factors for AD between populations, and shows that differ-
ent variants within the same locus may have differing effects (or
differing statistical power) in different populations.

APP (PROTECTIVE)
With APP as a clear biological candidate for involvement in
AD risk, Jonsson et al. (2012) sought low frequency and rare
mutations in whole genome sequence from 1795 Icelanders, and
imputed recurrent variants in 71,743 chip-genotyped Icelanders

and 296,496 relatives of genotyped individuals. The variant show-
ing strongest significance was rs63750847, predicted to cause an
amino acid substitution (A637T, ESP MAF 0.01% in EA, not
recorded in AA) at the second position in the Aβ peptide region
of APP. The variant was reported to be significantly more com-
mon in elderly healthy controls than AD subjects (OR 5.29,
p = 4.78 × 10−7), indicative of a protective effect against the
development of AD. Furthermore, the protective A allele of the
variant was also found to be associated with increased perfor-
mance on cognitive tests in elderly cognitively normal participants
(p = 0.0021), suggesting the protective effect of the variant is not
limited to AD pathogenesis, but affects cognition in individuals
within the healthy spectrum as well.

Although there is some evidence A637T may have a protec-
tive role in the Finnish population (Kero et al., 2013), extensive
resequencing efforts in white subjects from the U.S. (>4300 indi-
viduals) as well as Asian subjects (>11,000 individuals) have found
the variant to be absent in those populations (Ting et al., 2013;
Bamne et al., 2014; Liu et al., 2014).

ADAM10
Again, pursued as a potential biological candidate due to its activity
as an α-secretase capable of blocking the amyloidogenic process-
ing of APP, Kim et al. (2009) sought association between variants
in ADAM10 and AD. Nine common “tag” SNPs within the gene
were genotyped in over 400 families (995 cases and 411 controls)
from The National Institute of Mental Health (NIMH) cohort,
with one of the variants (rs2305421) showing evidence of asso-
ciation with AD (p = 0.003). When the data was stratified by
APOE genotype, this variant’s association with the disease was
strengthened, and two further ADAM10 variants (rs605928 and
rs4775083) showed suggestive association with AD (p = 0.02
and 0.06, respectively). None of these variants are observed in
NHLBI’s ESP. Although no significant associations between the
SNPs and AD were observed in the Consortium of Alzheimer’s
Genetics (CAG) cohort, the smaller size of this sample (222 cases
and 267 controls) renders it possible the lack of association was
an issue of power. The coding regions and flanking non-coding
regions of ADAM10 were then Sanger sequenced in individuals
from 32 NIMH families where rs2305421 genotype was related to
AD status. Two rare, non-synonymous variants were detected in
exon 5 of ADAM10, which was then sequenced in the remaining
NIMH families, giving a total of three families with the pre-
dicted Q170H mutation, and two with R181G. The combined
association of these variants with AD was statistically significant
(p = 0.0043).

However, subsequent research investigating the role of
ADAM10 variants in AD did not find evidence for the gene’s
involvement (Cai et al., 2012). Additional research will be needed
to resolve the gene’s relationship with AD.

AKAP 9
Logue et al. (2014) conducted exome sequencing in seven indi-
viduals from AA families with multiple AD affected individuals.
With 88,867 variants identified, the group adopted a filtering strat-
egy, prioritizing the follow up of variants based on several factors,
including novelty (absence from dbSNP 132), the predicted nature
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of the variant (with non-synonymous changes prioritized), and
those in genes or pathways previously related to AD pathogenesis.
Of the 44 SNPs genotyped in the first follow up cohort (includ-
ing ∼400 AA cases and controls), two rare SNPs within the gene
AKAP9 showed nominally significant associations with AD in sin-
gle SNP association tests (rs144662445, with p = 0.014 and OR 8.4
and rs149979685, p = 0.037. ESP MAFs for these variants are 0.43
and 0.36% in AA, respectively, and are not observed in EA sam-
ples). These were then genotyped in a second AA cohort (1037
cases, 1869 controls) where each of the associations was repli-
cated (p = 0.0022, OR = 2.75 for rs144662445 and p = 0.0022
with OR = 3.61 for rs149979685). Bioinformatic analyses of the
two variants (using SIFT, PolyPhen2, and MutPred) suggested
rs144662445 was likely to be benign, while rs149979685 may be
a protein function altering causative mutation. The two variants
were not present in >4000 Caucasian individuals (ESP and 1000
genomes project) or >280 individuals of East-Asian origin (1000
genomes project), so whether the AKAP9 gene will harbor rare
causative variants in other populations remains to be established.

UNC5C
The approach adopted by Hunkapiller et al. (2013) used linkage
analysis in a large LOAD pedigree showing apparent autosomal
dominant inheritance to prioritize areas of the genome likely to
be harboring explanatory variants. The group conducted whole
genome and WES, each in one sample, selecting the most distantly
related individuals to minimize the shared genetic component,
and thus the number of candidate causative variants. Detected
variants were excluded if they were not within the five identi-
fied linkage areas, were non-exonic, homozygous, or fell in areas
of segmental duplication, leaving just two candidate missense
variants which were shared between the two sequenced mem-
bers, in the genes AKAP9 and UNC5C. Although, as discussed
above, AKAP9 has been identified as an AD risk gene in the AA
population, when the AKAP9 SNP rs1063242 was genotyped in
4533 cases and 20,325 controls of European origin, no evidence
of association was seen (p = 0.54). For the rare UNC5C variant,
however (rs137875858, T835M, ESP MAF 0.06% in EA, 0.02% in
AA), a second pedigree was identified in which the variant seg-
regated with disease status, leading this variant to be genotyped
in a series of independent cohorts, totaling 8050 cases and 98194
controls. In a combined analysis the variant showed significant
association with disease status [OR = 2.15 (95% CI 1.21 − 3.84),
p = 0.0095].

APOE (PROTECTIVE)
Medway et al. (2014) used an innovative approach to investigate
rare variants within the APOE locus. By identifying rare vari-
ants present in the EVS database, they were able to circumvent
the need for costly resequencing. The group identified three vari-
ants (L28P/rs769452, R145C/rs769455, and V236E/rs199768005)
with MAFs of 0.17, 0.026, and 0.12%, respectively. These were
then genotyped in up to 9114 individuals, allowing their rela-
tionship with AD to be investigated. R145C proved too rare
to be adequately tested for association with AD in the cohort,
while L28P was revealed to be in complete LD with the ε4
allele and conveyed no increase in risk beyond that of the ε4

allele itself. The third variant, V236E, although in complete LD
with the ε3 allele of APOE, gave a decrease in AD risk inde-
pendent of APOE genotype. Indeed, the group highlighted a
rare haplotype termed ε3b, which harbored this variant and was
significantly associated with a decrease in AD risk comparable
to that of the ε2 allele [ε3b OR = 0.1 (95% CI 0.02 − 0.35),
p = 2.16 × 10−3].

The approach utilized here, mining publically available
sequencing data for rare variants in disease associated loci, fol-
lowed by genotyping in a large case-control cohort proved a
powerful and cost-effective method to detect this rare, protec-
tive variant in APOE. A similar approach could be applied to other
AD associated loci, including those identified by GWAS, other
rare variant studies, or potential biological candidates. A limita-
tion of this approach is that it does rely on previously identified
and cataloged rare variants, so no new variants will be identified
by this approach. Furthermore, although the APOE locus har-
bored a small amount of rare variants, which made this study
feasible, this will not be the case for all loci, and a much greater
number of variants may be found in more variable regions of the
genome.

SORL1
SORL1 (also known as LR11) was first implicated in AD
in 2004, when Scherzer et al. (2004) demonstrated a reduc-
tion in its expression in AD relative to controls. Pottier et al.
(2012) conducted exome sequencing in 14 subjects with auto-
somal dominant early onset AD and no mutations in APP,
PSEN1, or PSEN2. Five individuals were found to have muta-
tions in SORL1 (one nonsense, four missense), which were
not present in 1500 control subjects. In a replication cohort,
featuring a further 15 individuals, an additional missense and
nonsense mutation were detected, taking the total SORL1 muta-
tion carrying individuals to 7/29. Whilst it is likely that the
utilization of an extreme phenotype form of AD facilitated
the discovery of such a high frequency of likely deleterious
mutations within SORL1 in this study, SORL1 was also one
of the genes identified as a risk factor for LOAD in the
recent GWAS meta-analysis (Lambert et al., 2013). This sug-
gests the same loci may contribute to both early and late onset
forms of the condition, and studies utilizing more extreme
forms of the disease, which have increased power, may be
informative about risk factors for the late onset, complex
form of AD.

A summary of the major findings in each of these studies is
presented in Table 2.

FINAL COMMENTS
One of the major lessons that can be learned from these rare vari-
ant association studies in AD so far is that population stratification
can have a profound affect both on findings in initial reports and
replication. Large sample sizes are required for replication in order
to distinguish whether a failure to replicate is due to a lack of power
or a lack of association. A lack of association may indicate the ini-
tial finding to be a false positive result, or highlight differences
in the etiology of the disease between the discovery population
and the replication cohort. Replication in both the same and
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Table 2 | Summary of main findings from rare variant reports in AD.

Study Design Population Sample size Variant/gene MAF %

(EA/AA)

OR (95% CI) P value

Cruchaga – PLD3

(Cruchaga et al., 2014)

Family based

WES, genotyping,

and targeted

sequencing.

EA (genotyping) 4998 cases,

6356 controls

V232M/rs145999145 0.4884/0.2497 2.1 (1.47–2.99) 2.93 × 10−5

European

(sequencing)

2363 cases,

2024 controls

Gene based N/A 2.75 (2.05–3.68) 1.44 × 10−11

AA (sequencing) 130 cases,

172 controls

Gene based N/A 5.48 (1.77–16.92) 1.4 × 10−3

Jonsson – APP

(Jonsson et al., 2012)

WGS,

variants imputed

in large cohort.

Icelandic 71,743 chip

genotyped

individuals

and 296,496

relatives

A637T/rs63750847 0.0116/ 0.0 5.29 4.78 × 10−7

Kim – ADAM10

(Kim et al., 2009)

Genotyping and

targeted

sequencing.

EA 400 families

(995 cases,

411 controls)

rs2305421 Not in EVS – 0.003

Gene based N/A 0.0043

Logue – AKAP9

(Logue et al., 2014)

Family based

WGS,

Genotyping.

AA 1037 cases,

1869 controls

rs144662445 0.0/0.4312 2.75 0.0022

rs149979685 0.0/0.3631 3.61 0.0022

Hunkapiller – UNC5C

(Hunkapiller et al., 2013)

Family based

WGS and WES,

Genotyping.

EA 8050 cases,

98194

controls

T835M/rs137875858 0.0581/0.0227 2.15 (1.21–3.84) 0.0095

Medway – APOE

(Medway et al., 2014)

EVS database,

Genotyping.

EA/ European 4128 cases,

4986 controls

V236E/rs199768005 0.1188/0.0 0.1 (0.03–0.45) 7.5 × 10−5

Pottier – SORL1

(Pottier et al., 2012)

WES in EOAD European origin 29 cases,

1500 controls

7/29 AD carried variants, no controls did

Summary of the study designs and major findings from the discussed rare variant association studies in the AD field. WGS, whole genome sequencing; WES, whole
exome sequencing; EOAD, early onset Alzheimer’s disease; EA, European American; AA, African American; MAF, minor allele frequency. MAFs taken from NHLBI’s
Exome Sequencing Project (EVS, Exome Variant Server; http://evs.gs.washington.edu/EVS/, accessed September 2014).

alternative populations is crucial, particularly at the gene rather
than variant level, since associated variants can differ between
populations.

The overriding aim of all of these studies is to better understand
the etiology of AD. Identification of new genes and variants asso-
ciated with AD will bring new targets for disease diagnostics and
treatments. A number of major resequencing efforts are being
undertaken in AD, with significant insights into disease biology
likely from their results.
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