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Making connections between novel transcription
factors and their DNA motifs
Kai Tan,1 Lee Ann McCue,2 and Gary D. Stormo1,3

1Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri 63110, USA; 2The Wadsworth Center,
New York State Department of Health, Albany, New York 12201-0509, USA

The key components of a transcriptional regulatory network are the connections between trans-acting transcription
factors and cis-acting DNA-binding sites. In spite of several decades of intense research, only a fraction of the
estimated ∼300 transcription factors in Escherichia coli have been linked to some of their binding sites in the genome.
In this paper, we present a computational method to connect novel transcription factors and DNA motifs in E. coli.
Our method uses three types of mutually independent information, two of which are gleaned by comparative
analysis of multiple genomes and the third one derived from similarities of transcription-factor–DNA-binding-site
interactions. The different types of information are combined to calculate the probability of a given
transcription-factor–DNA-motif pair being a true pair. Tested on a study set of transcription factors and their DNA
motifs, our method has a prediction accuracy of 59% for the top predictions and 85% for the top three predictions.
When applied to 99 novel transcription factors and 70 novel DNA motifs, our method predicted 64
transcription-factor–DNA-motif pairs. Supporting evidence for some of the predicted pairs is presented. Functional
annotations are made for 23 novel transcription factors based on the predicted transcription-factor–DNA-motif
connections.

[Supplemental material is available online at www.genome.org.]

To a large extent, gene expression programs depend on the rec-
ognition of specific promoter sequences (transcription-factor-
binding sites) by transcriptional regulatory proteins (transcrip-
tion factors, TFs). Studies designed to identify these binding se-
quences and regulatory proteins, and determine the correct
connections between them, provide the data necessary to build a
model of the transcriptional regulatory network of an organism
(Shen-Orr et al. 2002; Bar-Joseph et al. 2003; Liao et al. 2003; Kao
et al. 2004). While traditional experimental methods (e.g., elec-
trophoretic mobility shift and nuclease protection assays) have
identified only a fraction of the transcription regulatory interac-
tions of Escherichia coli (Martinez-Antonio and Collado-Vides
2003), modern high-throughput methods such as chromatin im-
munoprecipitation coupled with promoter microarrays (ChIP-
chip experiments) (Ren et al. 2000) have the potential to rapidly
associate many TFs with their cognate binding sites in the ge-
nome, and thus provide the genome-scale interaction data nec-
essary to model the E. coli regulatory network. However, in order
for ChIP-chip to work, the growth conditions under which the
TFs are active need to be known before experiments are con-
ducted, and determining these growth conditions will undoubt-
edly be a challenging task. Furthermore, cloning a large number
of epitope-tagged TFs (including many novel factors) remains a
labor-intensive process that would likely face unforeseeable tech-
nical difficulties. Another approach was described by Segal et al.
(2003), who addressed the problem of connecting a group of TFs
with their regulated genes in yeast using only microarray expres-
sion data. Their method relies on the assumption that TFs are
themselves transcriptionally regulated such that their expression
profiles correlate with their target genes. This assumption prob-

ably holds true for many TFs, but is violated in cases where other
types of regulation are involved, such as post-translational modi-
fication and binding of small molecule effectors. In addition, the
expression level of some transcription factors may be too low to
be reliably detected with current microarray technology.

Fueled by the ever-increasing number of completely se-
quenced genomes, comparative genomics has proven to be a
powerful tool to address a large variety of biological questions
(Marcotte et al. 1999; Overbeek et al. 1999; Pellegrini et al. 1999;
Korf et al. 2001; McCue et al. 2001, 2002; Rivas and Eddy 2001;
Blanchette and Tompa 2002; Rajewsky et al. 2002; Ji et al. 2004).
In particular, computational methods such as phylogenetic foot-
printing have been applied to the E. coli genome, allowing the
discovery of many novel TF-binding sites (McCue et al. 2001,
2002; Rajewsky et al. 2002). Furthermore, clustering of phyloge-
netic footprints has yielded inferences on the sets of coregulated
genes (regulons), generating DNA motif models for unknown TFs
as well as many previously characterized TFs (van Nimwegen et
al. 2002; Qin et al. 2003). Complete genomic sequence has also
allowed the prediction of the full repertoire of TFs in E. coli using
standard computational sequence analysis techniques (Perez-
Rueda and Collado-Vides 2000; Babu and Teichmann 2003).
Thus, computational predictions have already provided substan-
tial data sets for each of the two necessary components of a regu-
latory network for E. coli: the binding sites and the TFs. In this
paper, we describe an in silico approach that harnesses the power
of comparative genomics to make connections between TFs with
their cognate binding sites in the E. coli genome.

We hypothesize that information concerning the connec-
tion of a TF to its cognate DNA motif is carried in the genomes
and can be extracted by comparing multiple genomic sequences
and available structural data. Specifically, our method takes ad-
vantage of three types of information in order to assign a DNA-
binding motif to a given TF: (1) a distance constraint between a

3Corresponding author.
E-mail stormo@genetics.wustl.edu; fax (314) 362-7855.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.3069205. Article published online ahead of print in January 2005.

Methods

312 Genome Research
www.genome.org

15:312–320 ©2005 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/05; www.genome.org

 Cold Spring Harbor Laboratory Press on January 21, 2014 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://genome.cshlp.org/
http://www.cshlpress.com
http://www.cshlpress.com


TF and its closest binding site in the genome (Dmin information),
(2) the phylogenetic correlation between TFs and their regulated
genes (PC information), and (3) a binding specificity constraint
for TFs having structurally similar DNA-binding domains (FMC
information). For a given TF and DNA motif, the three types of
information are combined to calculate the probability that such
a TF ↔ DNA-motif pair is a true pair. We demonstrate the
method using a study set of known TFs and their cognate DNA-
binding motifs, and further apply the method to predict connec-
tions between novel TFs and DNA motifs from E. coli. In addition,
for functionally unannotated TFs, we are able to infer their target
cellular processes based on the overrepresented functional cat-
egories of their regulons. Our results demonstrate the value of
combining heterogeneous data types to solve a challenging com-
putational problem.

Results

Distance constraint between a TF and its closest binding site
in the genome, Dmin information

Bacterial TFs are often autoregulatory; 55% (58 of 105) of all
known E. coli TFs in the database RegulonDB are autoregulated
(Martinez-Antonio and Collado-Vides 2003). Besides autoregula-
tion, it has been noticed in many cases (Dickson et al. 1975;
Eichler et al. 1996; Palacios and Escalante-Semerena 2000; Torres
et al. 2003) that TFs and the genes they regulate are near each
other in the genome. Both phenomena imply a distance con-
straint between the TF and its closest binding site in the genome.
In the first case, the distance constraint is due to the requirement
for autoregulation. In the second case, the distance constraint
may be the result of horizontal gene transfer because it would not
be advantageous to acquire a new operon conferring a new func-
tion if the operon is not expressed correctly (Lawrence 1999;
Martinez-Antonio and Collado-Vides 2003). To use this distance
constraint information, we introduced the quantity Dmin. Two
types of Dmins can be considered: Dmin_self is the distance between
a TF gene and its closest binding site in the genome. Dmin_cross is
the distance between a TF gene and the closest binding site for a
different TF. Owing to the existence of a distance constraint be-
tween a TF and its own closest site in the genome, we expect
Dmin_self to be smaller than Dmin_cross for most other TFs. In Figure
1A, we plot the distributions of Dmin_self and Dmin_cross for the
study set of 35 TFs. The mean of the Dmin_self distribution is
significantly smaller than the mean of the Dmin_cross distribution
(p = 4.8 � 10�7). Thus, we can use distance constraint informa-
tion to connect novel TFs with their cognate DNA motifs. For any
pair of transcription factor TFj and DNA motif Mi, we can calcu-
late the probability that they are a true pair given their Dmin value
Dij

min, P(TFj ↔ Mi|Dij
min � x) (Supplemental Fig. 4A).

Phylogenetic correlation between TFs and their regulated
genes (regulons), PC information

TFs and their regulated genes tend to evolve concurrently (Miro-
nov et al. 1999; Gelfand et al. 2000; Tan et al. 2001). Thus, we can
connect TFs and DNA motifs through correlation between their
occurrences in a comparative analysis of multiple species. The
“regulon” refers to the set of genes directly regulated by a com-
mon TF. If the TF is not known, such as in our problem, the
“regulon” can also be defined as the set of genes controlled by a
common DNA motif belonging to the as yet unknown TF. For a

given DNA motif Mi and a species Gk, we can build a GRik

→
vector

(see Methods) to represent the putative regulon controlled by the

DNA motif Mi in species Gk. Each element of GRik

→
denotes the

probability that a gene is controlled by Mi. An alternative to GRik

→

is a binary vector whose elements indicate whether or not or-
thologs in species Gk are controlled by Mi by imposing a binding
site cutoff. However, a binary vector contains no information
about the number or quality of the binding sites in front of a

gene (regulation strength by Mi), whereas the GRik

→
vector does. In

pilot studies, we found that GRik

→
gave a better performance than

binary vectors (data not shown). We then computed the Pear-

son’s correlation coefficient between the E. coli GRik

→
vector (k = E.

coli) and the GRik

→
vector for each of the other species considered.

This measures the degree of conservation of the E. coli regulon
determined by Mi in species Gk. When multiple species are con-

Figure 1. Three types of information. (A) Two types of normalized Dmin
distributions. Dmin_self: the distance between a TF gene and its closest
binding site in the genome. Dmin_cross: the distance between a TF gene
and the closest site for a different TF. (B) Two types of phylogenetic
correlation (PC) distributions. PC_true: PC for true TF–DNA-motif pairs.
PC_false: PC for false TF–DNA-motif pairs. (C) Distribution of average
similarity scores for motifs from the same family and from different fami-
lies. Motifs were aligned using an ungapped Smith-Waterman algorithm
and scored using the ALLR statistic.
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sidered, the GRik

→
vector correlation coefficients form a new vec-

tor, RCi

→
, which described the evolutionary changes of the E. coli

Mi regulon in other species. We then compared the RCi

→
vector

with the TFj

→
vector that describes the phylogenetic profile of TFj

in the various genomes. We expect that there will be no strong
correlation in those species that have lost TFj. For example, using

the TF trpR, Table 1 shows the vector for its conservation TFtrpR

→

and the vector for its regulon conservation RCtrpR

→
in 13 �-proteo-

bacteria. As can be seen, only those species that have an ortholog
to E. coli trpR (with a 1 in the TF column) also have a large

positive value in the RCtrpR

→
vector, meaning conservation of the

regulon. We can use this phylogenetic correlation information to
connect novel TFs with their cognate DNA motifs based on the
difference in PC values between true and false TF–DNA-motif
pairs (p = 2.12 � 10�4) (Fig. 1B). For any pair of transcription
factor TFj and DNA motif Mi, we can calculate the probability
that they are a true pair given their PCij value P(TFj ↔ Mi|PCij � y)
(Supplemental Fig. 4B).

Binding specificity constraint for TFs having structurally
similar DNA-binding domains, FMC information

TFs that are more similar to one another are expected to bind to
sites that are more similar to each other than to dissimilar pairs.
For instance, the DNA motifs of many TF family members are
often similar (Luscombe et al. 2000; Rigali et al. 2002; Sandelin
and Wasserman 2004). Using the study set of 35 TFs, we exam-
ined this issue in more detail by studying the relationship of the
DNA-binding domain (DBD) of TFs within a family and similari-
ties in their DNA motifs. The database SUPERFAMILY (Madera et
al. 2004) contains hidden Markov models (HMMs) for DBDs be-
longing to different structural families. We used the database to
classify the 35 TFs into seven structural families based on the
similarity between our query DBDs and the DBD HMMs in the
database. For these seven TF families, we calculated the average
pairwise similarities of their corresponding DNA motifs. Figure
1C shows the distributions of average pairwise similarity scores
for motifs belonging to the same family and motifs from differ-
ent families. The mean intrafamily pairwise similarity score is
significantly larger than the mean interfamily pairwise similarity

score (p = 0.003). This result further confirmed the hypothesis
that TFs with similar DBDs tend to have similar DNA-binding
motifs. To use this binding constraint information, we intro-
duced the quantity FMC (familial motif conservation), which
measures the average similarity between a query DNA motif and
a family of DNA motifs. FMC serves as an estimate of the mem-
bership of a query motif to a family of motifs. For any pair of
transcription factor TFj and DNA motif Mi, we can calculate the
FMC between Mi and the DNA motif family of which TFj’s motif
is a member. We can then calculate the probability that they are
a true pair given their FMC value FMCij, P(TFj ↔ Mi | FMCij � z
(Supplemental Fig. 4C).

Making TF → DNA-motif connections by combining three
types of information

Given a set of TFs and DNA motifs, we calculate the probabil-
ity that a TF↔DNA-motif pair is true for all possible pairs.
We can calculate three types of probabilities for each pair
based on the three types of information described before:
P ( T F j ↔ M i | D i j

m i n � x ) , P ( T F j ↔ M i | P C i j � y ) , a n d
P(TFj ↔ Mi|FMCij � z). Since the different types of information
are independent of each other, the joint probability
P(TFj ↔ Mi|Dij

min � x, PCij � y, FMCij � z) considering all types of
information can be calculated using the three conditional prob-
abilities mentioned above (see Methods). By combining different
information, the probabilities of true connections could be raised
much higher above the background probabilities of false connec-
tions. This increase in signal-to-noise ratio can be illustrated us-
ing the P_true/P_avg ratio (Table 2), the probability ratios be-
tween the true connections (P_true) and the average of all con-
nections for a given TF (P_avg). On average, the P_true/P_avg
ratios were 2.18, 4.03, and 6.48 after one, two, and three types of
information were used, respectively.

Assessment of the algorithm using the study set

To test the performance of our algorithm, we assembled a set of
35 well-characterized transcription factors and their correspond-
ing DNA-binding motifs. These 35 TFs regulate a large variety of
cellular processes in response to many different stimuli. Based on
the number of binding sites, information content, and E-value of
the motif models (Supplemental Fig. 5), these 35 DNA motifs are
fairly representative of all DNA motifs discovered in E. coli so far.
The study set of 35 TFs and their DNA motifs was used to evaluate
the prediction accuracy of our algorithm in three different ways.
First, we use only the study set of 35 motifs and TFs and we
determine how accurately we make correct assignments using

Table 1. An example of phylogenetic correlation between the
transcription factor trpR and its regulon

Species TF Regulon conservation

E. coli 1 1.0000
H. influenzae 1 0.3953
P. multocida 1 0.5237
P. aeruginosa 0 �0.0399
P. putida 0 0.0297
P. syringae 0 0.0507
S. oneidensis 0 0.0866
S. typhi 1 0.9721
V. cholerae 1 0.9664
V. parahaemolyticus 1 0.3588
V. vulnificus 1 0.8106
X. campestris 0 �0.0495
Y. pestis 1 0.2105

“1” indicates the existence of a trpR ortholog in the given species, “0”
otherwise. The degree of regulon conservation is calculated using E. coli
as the reference species (see Methods for calculation). The phylogenetic
correlation is PCtrpR = 0.8016.

Table 2. Probability increase for true TF–DNA motif pairs using
different combinations of information

Type of information Average P_true/P_avg

No information 1
FMC 2.48
PC 1.33
Dmin 2.74
FMC-Dmin 5.38
FMC-PC 3.21
PC-Dmin 3.49
FMC-PC-Dmin 6.48

Probabilities calculated using the study set of TFs and their DNA motifs.
P_true: the probability of the true TF–DNA motif pair. P_avg: the average
probabilities of all TF–DNA motif pairs for a given TF.

Tan et al.
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different combinations of information. In Figure 2, the cumula-
tive frequency of the true connection ranks was plotted. As can
be seen, combining different information improves prediction
accuracy. By combining the three types of information, 63% of
the true connections were ranked first out of the 35 possible
connections for each TF, and 85% of the true connections were
ranked in the top three. In comparison, only 3% of the true
connections would be ranked first and 9% ranked in the top
three if we didn’t have any information and made our predic-
tions by random guessing.

In a second test we evaluated our prediction accuracy on the
study set after combining the study set with the set of novel TFs
and DNA motifs. There are 134 TFs and 105 DNA motifs in this
combined set. Now, the probability of success by random guess-
ing is three times smaller than using the study set alone. As
illustrated in Figure 3, the prediction accuracy only dropped
slightly (59% of the true connections were ranked first, and 81%
of the true connections were ranked in the top three), suggesting
that our algorithm still works well in a larger search space.

In the third test we did a fivefold cross-validation with the
combined study set and novel set, as described for the previous
test. For each cross-validation, 28 TF and DNA motif pairs from
the study set were used to derive the probability distributions,
and the remaining seven TF and DNA motif pairs were used to
assess the accuracy. As described above, we combined the test set
of seven pairs with the novel set of TFs and DNA motifs when
making predictions. The prediction accuracy measurement is the
same as described in Figure 1 (fractions of true pairs ranked in the
top three). The average prediction accuracy based on the five
rounds of cross-validation is similar to that shown in Figure 1:
64.7% of the true pairs ranked as number one, 15.2% of the true
pairs ranked as number two, and 10.4% of the true pairs ranked
as number three. This demonstrates that the accuracy remains
high for known pairs that were not used to determine the three
probability distributions.

Predicted connections between novel TFs and DNA motifs

For all 6930 TF–DNA-motif pairs in the novel set, we calculated
their probabilities of being a true pair using all three types of
information. From these posterior probabilities, we can make two
types of predictions. The first type of prediction is the top three
DNA motifs for each TF ranked by their probabilities, the top-
three-pick (TTP) method. However, since there are more TFs than
DNA motifs, this forces DNA motifs to be associated with TFs
whose cognate motifs are not present in the set of motifs con-
sidered. This also allows two or more TFs to share motifs. Al-
though it is possible for paralogous TFs to have highly similar

DBDs and DNA motifs, we expect such cases to be rare. To resolve
those issues, we resort to the maximal weighted matching algo-
rithm (MWM) to make a set of unique predictions (Cary and
Stormo 1995). Using the table of probabilities as input, the MWM
algorithm predicted 64 unique TF–DNA-motif pairs, leaving six
motifs with no associated TFs (Supplemental Table 7). Most of
the predictions by MWM are ranked in the top three out of the 70
possible motifs that can be associated with each TF, indicating a
good overlap between the MWM predictions and the TTP pre-
dictions. Specifically, among the MWM predictions, 28 TFs have
a predicted DNA motif ranked as number one, 11 TFs have a
motif ranked as number two, and 13 TFs have a motif ranked as
number three. In total, 81% of the 64 TFs have a predicted DNA
motif ranked in the top three.

Assessment of the algorithm on the novel predictions

The three TFs in the novel set with fewer than five known bind-
ing sites (ntrC, pdhR, xylR) provided a means to assess the per-
formance of our algorithm. Both pdhR and xylR were correctly
associated with their known DNA motifs, but ntrC was left un-
associated by the MWM algorithm. However, ntrC’s motif was
ranked in the top three by the TTP method. This result is very
interesting because it provides an independent validation for our
algorithm. We also searched the literature for additional support-
ing evidence for our predictions. Of the 64 predicted TFs, 15 have
known target genes discovered via genetic analysis, but no bind-
ing sites have been reported. If our method makes correct pre-
dictions, there should be high-scoring sites for the predicted mo-
tif in the regulatory region for the known target genes. We
searched the regulatory regions of these genes for binding sites of
the predicted DNA motif for each TF. For nine out of these 15
cases, a binding site (scored above the site cutoff) was identified
in the regulatory region of the target gene (Table 3), eight pre-
dicted by both the TTP and MWM algorithm and one by the TTP
algorithm alone. For all reported sites in Table 3, the probability
of occurring by chance is significantly smaller than 0.05. Thus, it
is likely that those nine DNA motifs are truly recognized by the
predicted TFs.

Cellular target processes of novel transcription factors

Once a TF is connected to a DNA motif, we can infer the target
cellular process of the TF by studying the enrichment of func-
tional categories of the regulated genes. We made use of 21 COG
(Tatusov et al. 1997) functional categories assigned to the 4279
genes in the E. coli K-12 genome (Blattner et al. 1997). The 32
DNA motifs (nine known, 23 novel) whose regulons contain at
least one overrepresented COG functional category are listed

Figure 3. Prediction accuracy on the study set using all three types of
information. Size of search space: 134 TFs � 105 motifs. The connec-
tions are ranked according to P(TF ↔ M).

Figure 2. Prediction accuracy on the study set using different combi-
nations of information. Size of search space: 35 TFs � 35 motifs. The
connections are ranked according to P(TF ↔ M).
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in Table 4 along with their corresponding TFs. Of the 13 known
DNA motifs in the McCue et al. (2002) prediction set, nine have
regulons with enriched COG functional categories. All enriched
functional categories are consistent with the known cellular
process controlled by the associated TFs. We also associated tar-
get cellular process(es) for 10 TFs whose DNA motifs were un-
known before this study but some knowledge about their target
genes were known. Some of the associated processes are consis-
tent with the current knowledge about the TFs. For instance, the
TF baeR regulates several transmembrane proteins (mdtABC) that
form a hetero-multimeric drug efflux pump (Nagakubo et al.
2002). This is consistent with the target cellular process predicted
by functional category enrichment: cell envelope biogenesis,
outer membrane. Another example is the TF ascG, which regu-
lates genes involved in carbon source metabolism (Postma et al.
1993). The remaining 13 predictions are for putative TFs without
any functional annotation. Thus, our study provided the first
description of the cellular processes that these putative TFs may
regulate.

Discussion

One of the grand goals for post-genomic re-
search is to understand the organization of
the transcriptional regulatory network in an
organism. Fundamental requirements for
this goal are the delineation of a network’s
architecture, its wiring diagram, and estima-
tion of the parameters of its components.
To do this, one can take a bottom-up ap-
proach in which the parts list of TFs and
DNA motifs in a genome can be identified
first. Subsequently, these two sets of ele-
ments can be connected, resulting in a set
of primary connections in the genetic net-
work. These primary connections then can
serve as a scaffold upon which the entire
regulatory network containing higher-order
interactions can ultimately be built. Shen-
Orr et al. (2002) has taken the first step to
identify higher-order connections in the
regulatory network of E. coli based on a col-
lection of known primary connections.
They found three types of network motifs
(higher-order connections) that are signifi-
cantly overrepresented in the E. coli net-
work. However, this network is far from
complete because of our limited knowledge
about the connections between TFs and
DNA-binding sites. Thus, identifying pri-
mary connections between TFs and DNA-
binding sites represents a major bottleneck
for modeling transcriptional regulatory net-
works. In this paper, we have taken the first
step to address this problem through com-
putational means.

We hypothesize that information con-
cerning the connection of a TF to its DNA
motif is carried in the genome sequences,
and we can extract this information by
comparing multiple genomic sequences.
TFs and their binding sites are often in simi-
lar genomic locations (Dmin information),

and they tend to evolve concurrently with their regulated genes
(PC information). We explored both types of information to
identify TF–DNA-motif connections. Both Dmin and PC informa-
tion were derived from a comparative analysis of multiple ge-
nomes. Using a comparative genomics approach has both advan-
tages and drawbacks. On one hand, it increases our confidence in
the predictions as our inference is based on reinforced signals
from multiple genomes. On the other hand, this also means the
success of our method depends on a wise choice of species. It has
been observed that phylogenetic distance, similarity of habitat,
genome size, and the number of shared genes are important fac-
tors in the selection of species for phylogenetic footprinting (Mc-
Cue et al. 2002). Since we are also studying transcriptional regu-
latory systems using comparative genomics, we expect the same
factors to be important for species selection. However, we have
the additional concern that the species should have enough
variation in their regulatory networks to provide our method
with the signals necessary to distinguish true DNA-motif ↔ TF
connections from background. Taking both considerations into

Table 3. Predicted TF-DNA motif pairs with known target genes.

All pairs were predicted by both MWM and TTP except for dsdC and ntrC (labeled with a star)
which are predicted only by TTP. P-value of a site having the observed score was calculated as the
tail probability of a normal distribution for all possible scores in the genome.
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account, we chose the seven species used by McCue et al. (2001,
2002) for discovering novel DNA motifs in E. coli and added six
more �-proteobacterial species (Supplemental Table 5). This set of
species provides a good balance of conservation and variation for
our analyses.

We also took advantage of the observation that TFs from the
same structural family tend to have similar DNA motifs. The 248
TFs in E. coli fall into 12 families based on the structural similarity
of their DBDs. Based on binding data from RegulonDB and
DPinteract, DNA motif models can be constructed for 77 TFs in
these 12 families. Some of the motif models are less accurate since
they are built from a very small number of known sites (<5). As the
amount of binding site data increases for various families of TFs, the
utility and accuracy of the FMC information will be enhanced.

We have shown the value of combining heterogeneous in-
formation to connect novel TFs and DNA motifs. All three types
of information provided evidence for particular connections be-
tween TFs and DNA motifs. None of these three types of infor-
mation alone is highly specific and still maintains reasonable
sensitivity. But by combining the evidence of each type we were
able to achieve good prediction accuracy, as shown in Figures 2
and 3. In addition, the flexibility of our approach allows new and
diverse types of information to be incorporated easily because
the order of the information is not important. With the avail-
ability of multiple finished genomes for many bacterial groups,

our approach can also be applied to other bacterial species with
large numbers of neighbors, such as the Gram positive bacterium
Bacillus subtilis and the environmentally significant bacterium
Shewanella oneidensis.

Methods

Genomic sequences
All Genomic sequences were downloaded from the NCBI RefSeq
database (Pruitt and Maglott 2001). The genomes used in our
study are E. coli K-12 MG1655, Haemophilus influenzae Rd, Pas-
teurella multocida, Pseudomonas aeruginosa PAO1, Pseudomonas
putida KT2440, Pseudomonas syringae pv. tomato, Shewanella
oneidensis MR-1, Salmonella typhi CT-18, Vibrio cholerae El Tor,
Vibrio parahaemolyticus RIMD 2210633, Vibrio vulnificus CMCP6,
Xanthomonas campestri pv. campestri, and Yersinia pestis CO92.

Two gene sequences were deemed orthologous if they satis-
fied the following three criteria simultaneously (Huynen and
Bork 1998; Tan et al. 2001): (1) They were the most similar se-
quences for each other between the two genomes. (2) Their
BLASTP E-value was lower than 10�10. (3) Their BLASTP align-
ment extended to at least 60% of one of the sequences.

Study set transcription factors and their DNA-binding motifs
TF-binding sites obtained through footprinting experiments
were extracted from the databases RegulonDB v3.2 (Salgado et al.

Table 4. Enrichment of regulons for genes within COG functional categories

DNA motif ID TF COG functional category
�log10

(P-value)

Known TF–DNA motif pairs
c1373_e crp Carbohydrate transport and metabolism; energy production and conversion 10.03, 3.38
c2225_o fadR Lipid metabolism 5.03
c594_e fnr Energy production and conversion 6.06
c577_e fruR Carbohydrate transport and metabolism 8.06
c583_e lexA DNA replication, recombination and repair; cell division and chromosome partitioning 10.54, 4.53
c590_e metJ Amino acid transport and metabolism 5.06
c591_e mlc Energy production and conversion; carbohydrate transport and metabolism 3.42, 3.19
c582_e purR Nucleotide transport and metabolism 9.28
c595_e trpR Amino acid transport and metabolism 4.27

Novel TF–DNA motif pairs
c4574 ascG Carbohydrate transport and metabolism 5.44
c352_o baeR Cell envelope biogenesis, outer membrane 3.33
c580_e cadC Energy production and conversion; nucleotide transport and metabolism 3.60, 2.65
c489_o hydG Transcription 3.33
c6105_o idnR Energy production and conversion 5.14
c7434_o lrhA Amino acid transport and metabolism 3.12
c645_o nlp Nucleotide transport and metabolism; translation, ribosomal structure and biogenesis 4.82, 5.14
c646_o ntrC Amino acid transport and metabolism 3.11
c648_o pdhR Energy production and conversion 5.55
c647_o xylR Carbohydrate transport and metabolism 4.47
c417_e yagA Carbohydrate transport and metabolism 3.25
c419_o ycfQ Signal transduction mechanisms 2.74
c428_o ydcN Energy production and conversion 4.35
c428_e ydfH Energy production and conversion 2.73
c6271_e ydhB Energy production and conversion; cell envelope biogenesis, outer membrane 2.91, 3.19
c571_e yfeR Lipid metabolism; cell envelope biogenesis, outer membrane 3.51, 3.00
c581_e yfeT Nucleotide transport and metabolism 2.77
c477_o yfhH Energy production and conversion 2.79
c3037_o yhjC Translation, ribosomal structure and biogenesis 9.94
c498_o yidZ Translation, ribosomal structure and biogenesis 2.65
c474_o yjfQ Translation, ribosomal structure and biogenesis 3.39
c467_o ynfL Coenzyme metabolism 3.32
c641_o yqhC DNA replication, recombination and repair 3.06

P-values were calculated as the tail probability of the hypergeometric distribution for finding at least k genes from a particular COG functional category
in a regulon of size n. Since we considered 21 functional categories, 2.4 � 10�3 was chosen as the P-value cutoff to give an overall significance level
of 0.05 for each regulon. Associations of TFs and DNA motifs are made according to the MWM method.
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2004) and DPinteract (http://arep.med.harvard.edu/dpinteract/
index.html). After removing redundant sites for the same TF, 35
TFs have at least five experimentally verified binding sites. The
average number of binding sites per TF is 20. Weight matrix
models for DNA-binding sites were constructed for these 35 TFs
using the multiple sequence alignment program CONSENSUS
(Hertz and Stormo 1999). In this paper, DNA motifs refer to these
weight matrix models. The TFs are araC, arcA, argR, cpxR, crp,
deoR, dnaA, fadR, flhD, fnr, fruR, fur, galR, glpR, gntR, hipB, ilvY,
lexA, lrp, malT, marA, metJ, metR, mlc, modE, nagC, narL, narP,
ompR, phoB, purR, soxS, torR, trpR, and tyrR.

Full sets of TFs and DNA motifs in E. coli
Two groups have conducted computational surveys to identify
the repertoire of TFs in E. coli. Using a combination of sequence
homology search and literature mining, Perez-Rueda and Col-
lado-Vides (2000) identified a total of 314 TFs in E. coli. By look-
ing for signature protein domains present in TFs, Babu and
Teichmann (2003) independently identified a total of 273 TFs in
E. coli. We took the intersection of the two sets as the set of TFs
in E. coli, which contains 248 proteins. McCue et al. (2002) con-
ducted a whole-genome phylogenetic footprinting study of E.
coli and six additional genomes, resulting in thousands of palin-
dromic DNA motif predictions that consist of cross-species site
alignments. Clustering a set of statistically significant (P < 0.05)
motifs from this study yielded predicted regulons (Qin et al.
2003). For this study we used as input a set of 113 motifs (pre-
dicted regulons) that resulted from clustering a less stringent
set of statistically significant (P < 0.2) phylogenetic footprint mo-
tifs (L.A. McCue, unpubl.; data available at http://www.
wadsworth.org/resnres/bioinfo/).

Novel sets of TFs and DNA motifs in E. coli
From the full set of 248 TFs and 113 DNA motifs, we identified a
set of novel TFs and DNA motifs to make connections. They were
selected via the following procedures. For DNA motifs, we re-
moved all motifs containing E. coli sites that overlap with verified
TF-binding sites for any of the 35 TFs in the study set, reported
RNA secondary structures, and intergenic repeats. We ended up
with 70 novel DNA motifs. Among them, three motifs contain
binding sites for known TFs (ntrC, pdhR, xylR) that are not in-
cluded in our study set because they have fewer than five verified
binding sites. These motifs remained in our novel set as an ad-
ditional way to evaluate the performance of our algorithm be-
cause the TF–DNA-motif associations are known in these cases.
For TFs, we removed those with documented sites in RegulonDB
and/or DPinteract, including the study set TFs and TFs with
known nonpalindromic DNA motifs. Again, ntrC, pdhR, and
xylR were retained for performance evaluation. In addition, since
the set of DNA motifs was derived from alignments having sites
from E. coli and at least one more genome that is not S. typhi
(owing to the close phylogenetic distance between E. coli and S.
typhi, alignments having sites from only these two genomes may
not represent functional DNA elements), we removed TFs that
only occur in E. coli or in E. coli and S. typhi. This procedure
resulted in 99 novel TFs (Supplemental Table 6).

Calculation of normalized Dmin (minimal distance)
The study set and novel DNA motifs in this study represent par-
tial regulons; in some cases a DNA motif may contain only one or
two binding sites from a given species like E. coli. Thus, we
needed to more fully delineate the regulons in order to calculate
a minimal distance between a TF-encoding gene and a binding
site. Specifically, for a given DNA motif Mi, all intertranscription

unit regions in the genome were scored against the weight matrix
representing Mi (constructed from clustered sites as described in
above). Sites scoring above the mean minus 1.5 standard devia-
tions of the training set scores were regarded as likely binding
sites of Mi. Determining the cutoff score for binding sites is a hard
problem and inevitably involves some arbitrary decision. Previ-
ously, the mean minus one or two standard deviations, or the
lowest score of training sequences, have each been used as site
cutoffs (Robison et al. 1998; Gelfand et al. 2000; De Wulf et al.
2002). The cutoff used in this study is a compromise that we have
found yields many true binding sites without too many false
positives (Tan et al. 2001).

For a given transcription factor TFj, we then calculate a Dij
min

by the following procedure. The binding site closest to the trans-
lation start of TFj is used to calculate the unnormalized minimal
distance dij

min, which is the number of genes between the closest
binding site and the translation start of TFj. Each dij

min is divided
by 〈 di

min〉 to give the normalized Dij
min, where 〈 di

min〉 denotes the
mean of all dij

min’s between Mi and the set of TFs under consid-
eration. The normalization is needed to account for the differ-
ence between motifs (having low information content) that oc-
cur very frequently and motifs (having high information con-
tent) that occur very infrequently. We calculate a Dij

min for each
genome and the final Dij

min is the average of all Dij
min’s for species

having an ortholog of TFj.

Calculation of PC (phylogenetic correlation)
For a given DNA motif Mi and a transcription factor TFj, we cal-

culate a PCij. The two vectors, TFj

→
and RCi

→
, are K-element vectors,

where K is the number of species under consideration. Each ele-

ment k of TFj

→
assumes the value 1 or 0, where 1 denotes that an

ortholog of TFj was detected in species k, and 0 otherwise. Each

element k of RCi

→
assumes a value that measures the degree of

conservation between the E. coli regulon determined by Mi and
its counterpart in species k. These values are calculated by using

the gene regulation vector, GRik

→
. For species k, the elements of

GRik

→
represent orthologs shared between E. coli and that species.

The value of each element is the probability that the orthologous
genes are controlled by the DNA motif Mi. Given a DNA motif Mi

and the regulatory region S, the probability that this region is
bound by a TF having the motif Mi can be approximated as:

P�bound � S, Mi� ≈ c�
j=1

l

esj��
j=1

g

esj

where l is the length of S and g is the length of the genome, Sj is
the score of the sequence word starting at position j, and c is a
constant depending on the concentration of the TF in the cell
(Heumann et al. 1994; Workman and Stormo 2000). All genes in
a transcription unit (TU) are assigned the same probability (of
being regulated by Mi), which is calculated using the regulatory
region of the TU. Transcription units are predicted using the
method described in Salgado et al. (2000). The regulatory region
of a TU is the intergenic sequence between the first gene of the
TU and the last gene of the upstream TU. The Pearson’s correla-

tion coefficients between an E. coli GRik

→
vector and GRik

→
vectors

for other genomes form the RCi

→
vector, which describes the evo-

lutionary changes of the regulon predicted to be controlled by
the motif Mi. The phylogenetic correlation between the tran-
scription factor TFj and the regulon controlled by Mi, PCij, is

calculated as the Pearson’s correlation coefficient between the TFj

→

vector and the RCi

→
vector.
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Calculation of FMC (familial motif conservation)
Given a DNA motif Mi and a transcription factor TFj belonging to
the structural family �, FMCij is calculated as follows:

FMCij =
1
n �

k=1

n

ALLRik

where n is the number of TFs in family � and ALLRik is the simi-
larity score between motifs i and k. The majority of the DNA
motifs have inverted or direct repeats; we can compare them by
splitting the full matrices at the center of symmetry. This avoids
the problem of allowing insertions/deletions in the alignment
when comparing motifs with different length spacer regions be-
tween the most conserved positions. A few DNA motifs have
asymmetric patterns, for them the full matrices are used. Now
matrices can be aligned using an ungapped Smith-Waterman al-
gorithm, modified for profile alignment instead of sequence
alignment, which finds the highest scoring local alignment be-
tween them. The scoring function for the alignment between a
pair of columns from two alignment matrices is the average log
likelihood ratio (ALLR) (Wang and Stormo 2003):

ALLR =
�
b=A

T

nbj ln
fbi

Pb
+ �

b=A

T

nbi ln
fbj

Pb

�
b=A

T

nbi + nbj

where i and j are two columns from the two alignment matrices
respectively, nbi and nbj are count vectors for base b, fbi and fbj are
frequency vectors for base b, and pb is the frequency of base b in
the background model. The score of aligning two matrices is the
sum of scores for all columns in the alignment.

Probability of a TF–DNA-motif connection
The posterior probability of a connection being true given one
type of information can be calculated using Bayes’ rule:

P�TF ↔ M � I� =
P�I � TF ↔ M�* P�TF ↔ M�

P�I�

where I refers to one of the following three terms: Dmin � x,
PC � y, or FMC � z. We use a flat prior of 1/N, where N is the
number of TFs or DNA motifs, whichever is smaller. Using Bayes’
rule and the assumption of independence of the three types of
information, the joint probability of a true TF ↔ DNA connec-
tion considering all types of information simultaneously,
P(TF ↔ M|Dmin � x, PC � y, FMC � z), is the product of the fol-
lowing four terms:

P�Dmin � x � TF ↔ M�

P�Dmin � x�
,
P�PC � y � TF ↔ M�

P�PC � y�
,

P�FMC � z � TF ↔ M�

P�FMC � z�
, P�TF ↔ M�.

The first three terms represent the application of the three types
of information independently, and the fourth term is the prior
probability. Probability distributions calculated based on the
study set are used to set the probabilities for the novel set of TFs
and DNA motifs.

Maximum weighted matching algorithm
A maximum weighted matching algorithm (MWM) has been
used to predict RNA secondary structures (Cary and Stormo 1995;

Tabaska et al. 1998). To apply MWM to our problem, we convert
the posterior probability table (containing the probabilities for
all possible TF–DNA-motif pairs) into a bipartite graph, only al-
lowing edges between each TF and each DNA motif. The edge
weight between TFj and motif Mi is calculated as follows:

wij =
P�TFj ↔ Mi � Dmin

ij � x, PCij � y, FMCij � z� − �P�

�P�

where 〈P〉 is the average of the probabilities of associating TFj with
each of the DNA motifs.

To find the best set of TF–DNA-motif pairs, the algorithm
finds the match with the highest total edge weight. MWM is
guaranteed to reach the optimal solution (Gabow 1976).

Calculation of P-value for functional category enrichment
Genes having a binding site for a DNA motif, scored above the
cutoff, are regarded as members of the regulon. The hypergeo-
metric distribution is used to calculate the P-value of observing
the number of genes from a particular COG functional category
within a regulon. Specifically, the probability of having at least k
genes from a functional category within a regulon of size n is
given by:

P = 1 − �
i=0

k−1 �Mi � �N − M
n − i �

�Nn �
where M is the total number of genes in a functional category,
and N is the total number of genes in the E. coli K-12 genome
(4279). Since we tested 21 COG functional categories for each
regulon, a significance value of 2.4 � 10�3 is used for each func-
tional category to give an overall significance value of 0.05 for
each regulon.

Calculation of P-value for binding sites
Scores of all possible l-mers (l is the length of the DNA motif) in
the genome is calculated using the program PATSER. The scores
conform to a normal distribution. The tail probability of finding
a site having the observed score is calculated by converting the
score distribution into a standard normal distribution.
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