
Abstract. Cancer stem cells (CSCs) are rare tumor cells that
have the potential to proliferate, self-renew and induce
tumorigenesis. Over the past few years, CSCs have been
isolated from several different tumors and when implanted
into immune-deficient mice, generate tumors that are identical
to the parental tumors. In this review, we summarize the
current literature on CSCs, which suggests that since these
cells have the ability to drive tumor formation, specifically
targeting them may lead to more effective therapies against
tumors.
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1. Introduction

Despite many advances in the early detection and treatment
of cancers, patient mortality rates remain high. This is due in
part to the survival of chemo- and radio-resistant cancer stem
cells following treatment. Cancer stem cells (CSCs) are
defined as cells within a tumor that possess the capacity to
self-renew and differentiate into the heterogeneous lineages
of cancer cells that comprise the tumor. Like ordinary cells,
CSCs appear to be quiescent for much of their life, dividing
on occasion to give rise to two daughter cells, either two
replicas of itself (stem cell) or one stem cell and the other a
more differentiated progenitor cell capable of further
differentiation when given the appropriate signals. CSCs
drive tumorigenesis and give rise to a large population of
differentiated progeny that make up the bulk of the tumor and
lack tumorigenic potential. While isolation of CSCs has only
recently occurred (see below), the concept of CSCs has been
around for >40 years. Decades ago, cancer researchers noted
that tumors are composed of multiple cell types that appear to
have originated from a common ancestor cell and that while
chemotherapy and radiation treatment may eradicate a tumor,
the cancer can re-grow and metastasize (1). These observations
lead to the conclusion that a small subset of cells in a tumor
has the ability to sustain and re-create the tumor, although
many uncertainties still remain. It is becoming evident that
CSCs are the only cells in malignancy which have the ability
to expand, promote tumor growth as well as metastasize.
Despite several studies which question the existence of such
cells (2,3), two general assumptions in the field of CSC
biology are that treatments which fail to eliminate CSCs may
allow re-growth of the tumor and specifically targeting CSCs
may cure cancers. Identification and characterization of CSCs
may lead to important advances in our understanding of cancer
biology and pave the way for the development of drugs that
specifically target CSCs.

2. Discovery of cancer stem cells in multiple cancers

The first conclusive evidence for the existence of CSCs was
published in 1997 by Bonnet and Dick who studied acute
myelogenous leukemia (AML) (4). They isolated cells from a
patient with AML and found that only a subset of the total
cells, termed SCID leukemia-initiating cells (SL-ICs), were
capable of initiating leukemia after transplantation into a
non-obese diabetic, severe combined immunodeficient
(NOD/SCID) mouse. SL-ICs carried the unique cell surface
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antigen CD34 but were negative for CD38 (CD34+CD38-)
(Table I). When injected into a recipient mouse, CD34+CD38-

cells initiated leukemia that expressed the same aberrant
combination of surface antigens typical of the patient sample,
whereas other leukemia cells could not. Bonnet and Dick also
provided evidence that leukemia-initiating transformation and
progression-associated genetic events occur in primitive cells
and not in committed progenitors and the nature of the genetic
defect itself determines the differentiation program of the
leukemic clone. These results suggested that SL-ICs originated
from normal stem cells rather than from progenitors and have
the properties of self-renewal, proliferation and differentiation,
characteristic features of stem cells (4). However, not all CSCs
appear to arise from normal stem cells and this issue will be
discussed.

The differentiation hierarchy of normal stem cells and the
markers that identify them are not well characterized in most
organs. However, significant similarities have been found
between CSCs and normal stem/progenitor cells in solid
tumors. Researchers have succeeded in isolating sub-popu-
lations of tumor cells with stem cell-like features and with
tumorigenic capabilities from many solid tumors. Al-Hajj and
colleagues (5) were the first to report the presence of CSCs in
breast cancer. They isolated a distinct population of cells from
a human breast cancer that have the ability to form tumors
when engrafted into NOD/SCID mice and they termed these
cells tumor initiating cells. These distinct cells expressed the
cell surface marker CD44+CD24-/lowlineage- and as few as 1000
CD44+CD24-/lowlineage- cells were able to generate tumors in
NOD/SCID mice.

Breast cancer consist of a heterogeneous population of
cells with very few CD44+CD24-/lowlineage- CSCs and a much
larger population of cells that lack tumorigenic potential.
When engrafted into NOD/SCID mice, the tumorigenic cells
gave rise to both CD44+CD24-/lowlineage- cells and to pheno-
typically diverse non-tumorigenic cells, thus simulating the
complexity of the primary tumors from which the tumor
initiating cells had been derived. The CD44+CD24-/lowlineage-

cells were serially passaged through four rounds of tumor
formation in mice, yielding similar results in each passage
with no evidence of decreased tumorigenicity, suggesting that
CD44+CD24-/lowlineage- cells undergo a process analogous to
the self-renewal and differentiation of normal stem cells. Thus,
CD44+CD24-/lowlineage- cells exhibited the properties of cancer
stem cells, that have the ability to proliferate extensively and
give rise to diverse cell types with reduced development or
proliferative potential. Together these results showed that
while some breast cancer cells have the ability to proliferate
extensively, the majority of cells derived from a tumor have
only limited proliferative potential in vivo (5).

More recently, CSCs have been isolated from some, but
not all, brain cancer (6), lung cancer (7), prostate cancer (8),
melanoma (9), ovarian cancer (10), colon cancer (11), head and
neck cancer (12), pancreatic cancer (13) hepatocellular cancer
(14), bladder cancer (15) and skin cancer (16) (Table I). In all
cases, xenotransplant assays have been employed to prove
cancer stemness. However, there is still debate regarding how
realistically xenograft models recapitulate human tumors.
Studies have suggested that xenograft models might under-
estimate the number of tumor-initiating cells (17). In addition,

tumor cell fractions injected into different sites (eg, subcutan-
eous, renal capsule) of the same mouse can form a tumor at
one site but not another (17). Another potential problem
with the use of immunodeficient mice is that they lack
lymphocytes and macrophages, both of which are known to
play important roles in tumor growth, angiogenesis, and
metastasis (18). Regardless of these limitations, it has been
shown that CSCs i) represent a small fraction of the total cells
comprising the tumor, ii) express specific cell surface markers
and iii) have the potential to self-renew and differentiate.
Injection of as low as 100 CSCs into SCID/NOD mice
produced a tumor that could be serially transmitted from
mouse to mouse. In addition, the cellular heterogeneity and
architecture of tumors originated from these mice closely
resembled those of patient tumors from which the cells were
originally taken.

However, it is still under debate as to whether the cells
being sorted from tumors are truly CSCs as there are several
controversial studies regarding the specificity of CSC markers
(3). For example, CD133 is recognized as a stem cell marker
for normal and cancerous tissues and CD133 alone or in
combination with other markers is currently used for the
isolation of CSCs from a variety of tumors such as brain,
colon and prostate cancers. Recently, Shmelkov et al used a
knock-in LacZ transgenic approach that showed that CD133
is not expressed exclusively in CSCs, but rather is widely
expressed in normal adult tissues (19). Furthermore, they
found that both CD133+ and CD133- cells formed colono-
spheres in in vitro cultures and were capable of initiating
tumorigenesis in NOD/SCID mice (19). Thus, these results
suggest that no single marker is likely to be absolutely
informative, and better techniques and assays will be required
for the validation of CSC markers.
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Table I. CSC markers in different cancers.
–––––––––––––––––––––––––––––––––––––––––––––––––
Cancer type Stem cell markers
–––––––––––––––––––––––––––––––––––––––––––––––––
Leukemia CD38-CD34+ (4)

Breast CD44+CD24-/lowlineage- (5)

Brain CD133+ (6)

Lung Sca+CD34+ (7)

Prostate CD44+·ßhiCD133+ (8)

Melanoma CD20+ (9)

Ovarian Hoechst effluxing, verapamil sensitive and 
BRCP1+ SP (side population) cells (10)

Colon CD133+ (11)

Head and neck CD44+ (12)

Pancreatic CD44+CD24+ESA+ (13)

Hepatocellular CD90+CD44+ (14)

Bladder EMA-CD44v6+ (15)

Skin CD34+ (16)
–––––––––––––––––––––––––––––––––––––––––––––––––
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3. Signaling pathways in cancer stem cells

The most important property of any stem cell is the ability to
self-renew via a unique cell division in which the capacity of
one or both progeny to proliferate and differentiate is similar
to those of the parental cell. It is thought that most tumors
develop through a series of mutations that occur over a period
of months to years. Adult stem cells are slowly dividing
long-lived cells, which are exposed to a range of damaging
agents over long periods of time. Therefore, they may
accumulate mutations that i) turn on genes that promote
proliferation, ii) silence genes involved in the inhibition of
proliferation, iii) circumvent genes involved in apoptosis
and/or iv) disrupt genes involved in the regulation of stem cell
self-renewal.

CSCs retain both the features of self-renewal and differ-
entiation but have lost the homeostatic mechanism which
maintains normal cell number. There are striking parallels
between normal stem cells and CSCs. Both cell types share
various markers of ‘stemness’. In particular, normal stem cells
and CSCs utilize similar molecular mechanisms and signaling
pathways to drive self-renewal and differentiation. Still, it is
unclear as to whether CSCs are heterogenous in nature with
cells having varying self-renewal capacity or homogenous
with all cells have equal self-renewal capacity. Many pathways
that are classically associated with normal stem cell self-
renewal and differentiation can also regulate cancer. Recent
advances in the understanding of the roles of the Notch, Wnt
and Sonic hedgehog (Shh) signaling pathways in regulating
stem cell self-renewal begin to shed new light on carcino-
genesis. These signaling pathways are well conserved
during evolution. In organisms such as D. melanogaster and
C. elegans, they regulate morphogenesis, while in mammals
they regulate proliferation and differentiation of various cell
types at different stages of phylogenesis. These pathways
help to maintain the proper balance between stem cells,
progenitor cells and the differentiated compartment.

Notch signaling pathway. The Notch signaling pathway is
well-conserved from nematodes to humans (20,21). In
mammals, four Notch receptors (Notch1-Notch4) are present,
and each receptor has a unique ligand (22). A number of in vivo
and in vitro studies have demonstrated the roles of the Notch
signaling pathway in stem cells, early progenitor cells and
in the development of cancers. The involvement of Notch
signaling in cancer was first identified in T-cell acute
lymphoblastic leukemia (T-ALL) where chromosomal
translocation (7;9) leads to the constitutive activation of
Notch signaling (23-26) that was further demonstrated in a
mouse model where expression of a constitutively active
Notch1 protein led to the development of T-cell lymphoma
(27,28).

In addition, the vertebrate Notch4 gene has been shown to
be involved in normal mammary development (29,30) where
it promotes self-renewal in stem cells and in the later stages
of development it promotes mammary progenitor cell
differentiation into myoepithelial cells (29,30). In transgenic
mice, expression of a constitutively active form of Notch4
inhibits differentiation of normal breast epithelial cells and
leads to the development of mammary tumors in a dominant-

negative manner (29,31-34). Taken together, these studies
suggest that unregulated Notch signaling contributes to tumor
development.

Notch signaling also plays a role in the renewal of existing
cell populations through the proliferation of progenitor cells,
particularly during epidermal wound repair or in neural cell
replacement (35-37). Increasing evidence suggests that up-
regulation of Notch signaling leads to brain tumor development
driven by brain tumor stem cells (BTSCs). Shih and Holland
(38) found that in glioblastoma tissue samples, high levels of
the neural stem cell marker nestin have been associated with
high levels of Notch expression, suggesting that Notch
signaling can play important roles in glial tumor development,
particularly in promoting nestin expression that may contribute
to stem cell potential. Altogether, these findings suggest that
the constitutive activation of Notch signaling could be
responsible for preventing differentiation and dysregulating
cell proliferation, the consequences of which lead to neoplastic
transformations.

Wnt signaling pathway. The Wnt signaling pathway plays an
important role in embryogenesis, and abnormal Wnt signaling
has been shown to lead to oncogenesis. Activating mutations
of ß-catenin or inactivating mutations of the adenomatosis
polyposis coli (APC) gene, both components of the Wnt
signaling pathway, occur in a large percentage of colon,
endometrial, prostate and hepatocellular carcinomas (39,40).
In addition, constitutive activation of Wnt signaling triggers
tumorigenesis in the skin (41), breast (42), bone marrow (43),
chronic myelogenous leukemia (CML), sarcoma, multiple
myeloma and brain tumors (39).

In addition to its crucial role in carcinogenesis, Wnt
signaling also regulates stemness, proliferation, differentiation
and self-renewal of stem cells and progenitor cells (44-46). It
is assumed that the Wnt protein acts as a stem cell growth
factor that promotes the maintenance and proliferation of stem
cells (39,47,48).

The longevity of stem cells makes them good candidates
for tumor precursors (see discussion below) and a growing
amount of literature suggest that Wnt-induced stem and/or
progenitor cell amplification is likely to be a key step in tumor
initiation. Since it has been shown that normal activation of
Wnt signaling may promote self-renewal of neuronal stem
cells, it is reasonable to hypothesize that aberrant Wnt pathway
activation may be tumorigenic in the nervous system (49,50).
This idea is supported by the fact that medulloblastomas, a
pediatric brain tumor of the cerebellum, harbor activating
mutations in ß-catenin (51) and axin (a negative regulator of
the Wnt pathway) (52,53) suggesting that some medullo-
blastomas may arise from uncontrolled Wnt signaling in
primitive stem/progenitor cells. Furthermore, dysregulated
Wnt signaling causes an excess proliferation of mammary
progenitor cells and predisposes them to cancer. Expression
of Wnt1 in the mammary glands of transgenic mice resulted
in the expansion of population of epithelial cells expressing
the progenitor cell markers keratin-6 and Sca-1, suggesting
that progenitor cells are the precursor to the mammary tumor.
Furthermore, subsequent tumors (from its progeny) express
these markers, implying that they arose from a common
progenitor. These tumors have an increased frequency of cells
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with stem and progenitor properties, in contrast to tumors from
mice overexpressing other oncogenes, such as Neu or H-Ras
(42,54). This suggests that the Wnt pathway may be unique in
its ability to target stem and progenitor cells for transformation
and perhaps reflects a role of the Wnt pathway in self-renewal
of normal breast epithelium (42).

It has been reported in HSCs that, activating Wnt signaling
through ß-catenin results in stem cell expansion, whereas
ectopic expression of inhibitors of Wnt signaling reduces
in vitro hematopoitic stem cell growth and in vivo recons-
titution of HSCs (46). In contrast to this, Fleming et al
recently demonstrated that Wnt signaling is required for the
maintenance of the HSCs in a quiescent stage in bone marrow
to preserve the reconstituting function (55).

Taken together, these studies support the notions that the
Wnt pathway plays a crucial role in the maintenance of stem/
progenitor cells and dysregulation of Wnt pathway may lead
to tumor development. Significantly, this pathway could
potentially be an important therapeutic target in that blocking
upstream or downstream components of the Wnt pathway may
decrease or inhibit the signaling pathways required for CSC
survival and self-renewal.

Sonic hedgehog (Shh) signaling pathway and Bmi-1. The
Sonic hedgehog (Shh) pathway is important in growth and
differentiation during embryogenesis and for proper
functioning in many adult tissues. The first link between Shh
signaling and cancer was shown in the hereditary disease
Gorlin's syndrome, which predisposes individuals to multiple
basal cell carcinomas (BCCs) in the skin, medulloblastomas,
and rhabdomyosarcomas (56,57). Gorlin's syndrome is
caused by a germline mutation in the Shh receptor PATCHED1
(PTCH) gene. It has been reported that overexpression of
the downstream signaling targets of the Shh pathway, either
Gli-1 or Gli-2, was sufficient for the formation of BCCs in
murine models (58-61). Analysis of human sporadic medullo-
blastomas revealed PTCH inactivation in ~20% of tumors and
mice engineered to harbor a germline PTCH inactivating
mutation developed medulloblastomas (62,63). Other
proteins involved in Shh signaling have also been found to
be mutated or deregulated in brain tumors, including the
transmembrane receptor smoothened (SMOH), the glioma-
associated oncogene homologue transcription factors (Gli-1,
Gli-2, Gli-3) and the suppressor of fused protein (SUFU)
(64-67).

Liu et al (68) first elucidated the role of Shh signaling in
the regulation of stem cell self-renewal by demonstrating that
several components of the Shh signaling pathway, namely
PTCH1, Gli-1, and Gli-2, were highly expressed in normal
mammary stem/progenitor cells compared to differentiated
cells on a collagen substratum (68). Activation of this pathway
with Shh ligands promoted the self-renewal of mammary stem
cells and the effect was blocked by cyclopamine, a specific
inhibitor of this pathway (68). The Shh pathway also plays
crucial roles in the expansion of human blood progenitors in
immunocompromised mice (69). Furthermore, Clement et al
(70) demonstrated that Shh signaling regulates expression of
the stemness gene and functions in the self-renewal of CD133+

glioma CSCs, suggesting that the Shh pathway is important for
proliferation, survival, self-renewal and tumorigenicity.

Liu et al (68) also showed that Shh signaling coordinates
with the protein Bmi-1, a member of the polycomb group of
genes, to regulate the self-renewal of stem cells. Bmi-1 (B
lymphoma Mo-MLV insertion region) is a transcriptional
repressor that controls target gene expression through
chromatin modification (71). It is involved in the regulation of
genes controlling cell proliferation, cell survival, differentiation
as well as stem-cell-maintenance (72). Liu et al found that
activation of Shh signaling increases Bmi-1 expression,
which in turn promotes mammary stem cell self-renewal
and proliferation both in vivo and in vitro. Specifically, it was
demonstrated that overexpression of Gli-1 and Gli-2 in
mammosphere-initiating cells resulted in increased Bmi-1
expression which increase the size and number of mammo-
sphere. This effect was specifically blocked by the Shh
pathway-specific inhibitor cyclopamine. Furthermore,
NOD-SCID mice overexpressing Bmi-1 displayed increased
ductal/alveolar hyperplasias (68).

Several studies of the Bmi-1 protein in normal stem cells
support the idea that Bmi-1 promotes stem cell self-renewal.
Bmi-1 has also been shown to play important roles in the
self-renewal of hematopoietic and neuronal stem cells
(72,73). Molofsky et al (73) examined the effect of Bmi-1
deficiency on the self-renewal of stem cells in the central
nervous system (CNS) and neural crest and found that lack of
Bmi-1 reduced the self-renewal of both CNS and neural crest
stem cells (73). Furthermore, multiple laboratories have
generated Bmi-1-/- mice to investigate its role in stem cell
self-renewal and found that Bmi-1-deficient HSCs were
unable to self-renew (72-74). These results, together with the
fact that Bmi-1 deficient mice die of bone marrow failure (75),
indicate that Bmi-1 is essential for self-renewal of HSCs. The
mechanism by which Bmi-1 modulates HSC self-renewal
seems to be through repression of the genes encoding the
p16Ink4a and p19Arf proteins that inhibit cell proliferation and
enhance cell death, respectively (72,73).

Lessard and Sauvageau (74) also linked Bmi-1 to the
self-renewal of leukemic stem cells (LSCs). LSCs from Bmi-1-
deficient mice could not self-renew, resulting in far fewer
leukemic cells in the blood of primary mouse recipients and
an inability to produce leukemic cells in secondary recipients,
suggesting that the self-renewal is an essential component of
the development of leukemia (74). Altogether these data
suggest that Bmi-1 is required for the self-renewal of stem
cells and deregulation of this pathway leads to cancer.

Overall, it appears that deregulation of the self-renewal,
proliferation and differentiation pathways in normal stem cells
may play a role in the generation of CSCs that drives tumori-
genesis. These pathways may act independently or may
coordinate with each other to control different aspects of
self-renewal pathway. Further studies will be needed to
decipher these complex relationships.

4. Origin of cancer stem cells

The origin of CSCs is unclear. There is debate as to whether
CSCs originate from i) normal stem cells that have lost the
ability to regulate proliferation, ii) a more differentiated
progenitor cells that have acquired the ability to self-renew,
or iii) mature cells and cancer cells that have been
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reprogrammed by genetic and/or epigenetic events to gain
self-renewal capacity and lose some features of differentiation.
While mutations in normal stem cells could lead to the
formation of CSCs in tissues with high rates of cellular
turnover, such as skin or GI epithelium where stem cells are
the only cells that live long enough to acquire enough genetic
abnormalities to become cancerous, it is also possible that
differentiated cells in which the genome is unstable could
acquire the properties of stemness because of accumulation of
mutations. For example, in chronic myelogenous leukemia
(CML) committed granulocyte macrophage progenitors
acquire the self-renewal capacity due to accumulated
mutations, thus rendering them stem cell-like (4). Thus, it is
possible that differentiated cells can, through multiple
mutagenic events, acquire the self-renewal capacity and
immortality that defines CSCs.

Acute lymphoblastic leukemia (ALL) is the most
common cancer in pediatric patients. A majority of ALL
cases involve the expansion of B-cell lymphoid progenitor
cells (76). However, it has also been suggested that the
expansion of T-cells as the origin of leukemia initiating cells
in ALL (77). Taken together these data suggest that
leukemia initiating cells share phenotypes with normal HSCs
and ALL originates from the HSC compartment. Another
study that analyzed the leukemia initiating cells in CML
found that the LSC compartment may be dynamic: HSCs
drive the initial phase of the disease and other committed
compartments are responsible for the disease's progression
via acquired mutations (78). New evidence indicates that
LSCs can originate from normal blood stem cells or progenitor
cells. In the case of chronic phase CML, LSCs arise from
normal blood stem cells while in the case of blast crisis CML,
they arise from more differentiated progenitor cells, thus
the source of origin may change during disease progression
(78).

Progenitor cells which lose the activity of self-renewal may
lead to the generation of CSCs. In the case of CML, activation
of ß-catenin simply enhance the self-renewal activity of
leukemic progenitor cells while keeping the overall gene
expression profile of progenitor cells suggesting that LSCs
can thus be generated from committed progenitors without
widespread reprogramming of gene expression (78-80). Thus
some CSCs may originate from normal progenitors by
reactivating the self-renewal program while retaining the
identity of committed progenitor cells.

Similar to normal stem cells, cancer cells also depend on
dynamic interaction with adjacent stromal cells that comprise
the tumor niche. As a tumor grows, the niche may change
due to for example infiltration of immune cells and activation
of the inflammatory response (81). This change in environment
may lead to the generation of CSCs. Whether there is an
environment in solid tumors that could be described as a
‘cancer stem cell niche’ remains to be established.

Thus, not all CSCs appear to arise via the same mechanism.
Blood malignancies and solid tumors consist of a population
of biologically distinct cancer cells. These cells are either
stem cells that have mutated to undergo uncontrolled cell
division and differentiation, progenitor cells that through
mutations have regained the ability to self-renew, or CSCs that
have arisen by the alteration of their niche (Fig. 1).

5. Mechanism of cancer stem cell resistance

Many of the mechanisms underlying tumor resistance remain
elusive. Stem cells possess inherent mechanisms of protection
that their differentiated progeny lack. Various types of
membrane-spanning ATP binding cassette transporters, such
as the multidrug-resistant gene1 (MDR1) and the breast
cancer-resistant protein1 (BRCP1), contribute to the drug
resistance of many cancers by pumping lipophilic drugs out
of the cells. Activation of intracellular detoxifying systems
and blockage of apoptosis also make CSCs more resistant to
chemotherapeutic drugs (82), but how the small population of
CSCs escapes various kinds of therapy and re-initiate tumor
formation is largely unknown.

Stem cell subpopulations in many mammals, including
humans, have been identified by the rapid efflux of Hoechst
33342 dye in flow cytometry and termed the side population
(SP) (83-86). SP cells have been detected in several tumors,
including breast cancer, lung cancer, ovarian cancer, glio-
blastoma, neuroblastoma and leukemia (10,87-90). These cells
express high levels of the ABC transporter transmembrane
proteins MDR1 and BRCP1 (91,92), in addition to other
transporter proteins, including ABCA3 and ABCG2 (88)
and have a greater capacity to expel cytotoxic drugs such as
mitoxantrone (88,91,92), thus contributing to their high
resistance to chemotherapeutic agents.

Liu et al (93) studied chemoresistance in glioblastoma and
found that CD133+ brain tumor stem cells showed increased
resistance to chemotherapeutic agents such as carboplatin,
paclitaxel (Taxol), and etoposide as compared to CD133- cells.
They (93) found that CD133+ cells express O6-methylguanine-
DNA methyltransferase (MGMT) at a higher level than CD133-

cells, suggesting that chemoresistance may be substantially
linked to MGMT-mediated DNA repair. In addition to the
multidrug resistance gene BRCP1, anti-apoptotic genes, such
as FLIP, BCL-2 and BCL-XL, and inhibitors of the apoptosis
protein family (IAP) genes, such as cIAP2, cIAP2, NAIP and
survivin were also found at higher expression levels in CD133+

CSCs (93). This study suggests that anti-apoptotic factors may
also contribute to the drug resistance properties of CSCs as
compared to normal stem cells.

Radiotherapy has been the most effective non-surgical
treatment for cancer, yet recurrence is almost universal. Bao
and colleagues (94) attempted to investigate the mechanism of
radioresistance in glioblastomas. First, they showed that there
is a small population of CD133+ cells which are highly resistant
to radiation therapy and are responsible for the re-growth of
the tumor after radiation treatment. In both cell culture and the
brains of NOD/SCID mice, CD133+ glioma cells survived
IR in increased proportions relative to CD133- cells (94). The
CD133+ cells retained the ability to reinitiate heterogeneous
tumors when transplanted into other mice, demonstrating the
retention of stem cell ability. They further noted that while
radiation treatment induced DNA damage to similar degrees
in both CD133+ and CD133- cells from a glioma xenograft or
human patient biopsy specimen, CD133+ cells were more
resistant than their CD133- counterparts. The preferential
survival of CD133+ cells after irradiation was due to lower
rates of apoptosis, as evidenced by decreased activation of
caspase-3 and to efficient activation of DNA repair responses
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as indicated by phosphorylation of the ATM, Rad17, Chk1 and
Chk2 proteins (94). The ability to repair DNA damage is
essential to cellular survival as unrepaired DNA breaks induce
apoptosis or senescence. Altogether, the study suggested that
CD133+ CSCs contribute to glioma radioresistance through
preferential activation of the DNA damage checkpoint
response and an increase in DNA repair capacity.

When investigating radioresistance in breast cancer, it was
found that breast cancer initiating cells were more radio-
resistant than non-breast cancer initiating cells. IR treatment
in breast cancer initiating cells lowered the level of reactive
oxygen species (ROS) followed by decreased double-strand
break formation, thus resulting in increased radiation resistance
(95,96). Furthermore, progenitor cells in the mammary gland

were more resistant to clinically relevant doses (2 Gy) of
radiation than non-progenitors which constitute the bulk of
mammary gland (95,96). Thus, the study of CSCs may provide
insight into the underlying mechanisms of treatment failure,
and as new studies emerge, it will be interesting to discover
whether the mechanism of CSC resistance in other tumors is
similar.

6. On the way to eliminate cancer stem cells

There is speculation that current cancer therapies, including
radiation, chemotherapy and surgery often leave behind CSCs.
The residual CSCs have the capability to give rise to a new
tumor from a single cell missed by these therapies and
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Figure 1. CSCs origin and their ability to self-renew. Self-renewal and differentiation are the hallmarks of stem cells. Normal Wnt, SHH, Notch signaling
influences the self-renewal, proliferation and differentiation of stem cells or progenitor cells. Deregulation of these pathways can lead to constitutive or aberrant
self-renewal pathways that in turn lead to cancer.
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promote the metastasis of cancers to new sites around the body.
These cells are capable of quietly living within the body for
years and are able to restart tumor growth and metastasis
even after a patient has been successfully treated with chemo-
therapeutics. Recurrence can take place in the first few years
or as late as 20 years after the initial diagnosis. Isolating and
characterizing CSCs paves the way for the creation of drugs
to target them. Specifically destroying CSCs, the source of
the cancer, could eliminate the disease more efficiently than
treatments that randomly kill cancer cells. Traditional drug
therapies have been developed based on the ability of the
reagent to cause tumor regression in animal models. Because

the majority of cancer cells within a tumor are non-tumori-
genic, therapies directed at these cells cause tumor regression,
but fail to target the tumorigenic CSCs. These cells then persist
after therapy and are able to regenerate the tumor, resulting
in tumor relapse. Effective tumor eradication will require
agents that specifically target CSCs while sparing normal stem
cells (Fig. 2). Thus, it is important that agents directed against
CSCs discriminate between CSCs and normal stem cells. This
will require identification of realistic drug targets unique to
CSCs. Several approaches to this problem are discussed below.

It is becoming clear that HSCs reside in physiologically
limited and specialized microenvironments termed ‘niches’
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Figure 2. Proposed model for the treatment of cancer by targeting CSCs. Effective cancer treatments are only possible by targeting CSCs. Standard therapies may
reduce the size of tumor by killing non-cancer stem cells, however targeting CSCs may lead to complete eradication of the cancer.
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which maintain the balance between self-renewal and
differentiation (97). Deregulation of factors provided by the
niche that maintains this balance, leads to uncontrolled
proliferation of stem cells and tumorigenesis (98). Targeting
the interplay between stem cells and their niche pharmaco-
logically may lead to better treatments of cancer. Promising
studies show that stem cells isolated from AML patients
display differences from normal HSCs (99). Although little is
known of the molecular basis of self-renewal, it is becoming
clear that survival and self-renewal of normal HSCs have an
extrinsic component provided by the niche. If AML LSCs
possess unique requirements for interaction with a niche,
targeting this association might be an effective therapeutic
approach to potentially inhibit their proliferation, induce
differentiation, or stimulate apoptosis. Jin and colleagues
(99) pursued this idea and reported a therapeutic approach
using an activating monoclonal antibody (mAb H90) directed
to the adhesion molecule CD44. CD44 is a ubiquitously
expressed transmembrane glycoprotein that mediates cell-cell
and cell-extracellular matrix interaction. CD44 is a key
regulator of AML LSC function and is essential for proper
homing of AML-LSCs to microenvironment niches and for
maintaining AML-LSCs in their primitive state (100). Ligation
of CD44 by activating mAb (H90) efficiently and selectively
eradicated AML LSCs in vivo by blocking LSC trafficking to
a supportive microenvironment and by altering their stem
cell fate. H90 treatment, either in vivo or in vitro, effectively
blocked the homing of leukemic cells, including primitive
CD34+CD38- SL-ICs to both the bone marrow and spleen (99).
In vivo, disruption of CD44-mediated LSC-niche interaction
may induce cell commitment at the expense of self-renewal
and promote some level of differentiation. Differing effects
of H90 on normal HSCs versus AML-LSCs are due to cell
autonomous differences in CD44 structure and signaling. AML
LSCs are probably more sensitive to H90 induced eradication
as a result of the greater abundance of CD44 on their surface
as compared with normal CD34+CD38- cells (99). In vivo
administration of this mAb to NOD/SCID mice transplanted
with human AML markedly reduced leukemic repopulation.
Furthermore, the absence of leukemia in serially transplanted
mice demonstrated that AML LSCs were directly targeted (99).

Preliminary studies in solid tumors also suggested that
CSCs require a niche. Calabrese et al (101) demonstrated that
CSCs in brain tumors, similar to normal neural stem cells
(NSCs), reside in vascular niches where vascular endothelial
cells (ECs) secrete factors that promote stem cell survival
and self-renewal. Co-transplantation of tumor cells with ECs
in immunocompromised mice lead to more rapid tumor
formation. Furthermore, these tumors contained more CSCs
suggesting that ECs enhanced the self-renewal of CSCs in vitro
and promoted the growth of brain tumors in vivo. Thus, tumor
microvasculature generates specific microenvironments that
promote the formation and/or maintenance of CSCs. The
recruitment of an aberrant vascular niche is an important
component in the progression and invasion of tumors.
Furthermore, glioblastoma CSCs promote tumor angiogenesis
through elevated expression of vascular endothelial growth
factor (VEGF) (94). Thus disruption of this niche could prove
a highly effective treatment of cancer. Anti-VEGF treatment
by the Bevacizumab antibody specifically depletes tumor blood

vessels and self-renewing CSCs from both medulloblastomas
and glioblastomas, resulting in tumor growth arrest but have
little effects on non-CSCs (94,101).

CSCs can also be targeted by differentiating agents that
induce stem cells to divide into two progenitor cells rather
than dividing into two identical daughter cells with stem cell
properties. Promoting this form of division would be a way to
deplete cancer stem cell populations and may constitute an
alternative strategy to inducing cell death to treat cancer.
Piccirillo and colleagues (102) reported a role for the bone
morphogenetic protein BMP4 in the differentiation of brain
tumor stem cells (BTSCs) in glioblastomas (GBM). BMPs are
soluble factors that normally induce neural precursor cells to
differentiate into mature astrocytes, a subtype of brain cells.
BMP4 treatment of cultured glioblastoma progenitor cells or
CD133+ glioblastoma cells reduced cell proliferation and
induced cell differentiation predominantly into cells resembling
mature astrocytes. Thus, BMP4 produces a pro-differentiation
action in GBM cells that leads to depletion of the pool of
BTSCs (102). When NOD/SCID mice were transplanted with
BMP4-treated glioblastoma progenitor cells or CD133+ cells,
there was a significant decrease in the size of tumors in
recipient mice and CD133+ cells could not be recovered from
these tumors. Furthermore, three to four months post-injection,
all control mice (mice receiving BMP4 un-treated cells) died,
whereas nearly all mice receiving BMP4 pre-treated cells
survived (102). Thus, transient exposure to BMP4 depleted the
BTSC population and produced a significant decrease in the
in vivo tumor initiating ability of GBM cells (102). Although
these results were remarkable in showing the effectiveness of
a differentiation promoting agent as a potential treatment for
brain tumors, it will be interesting to explore the effects of
differentiating promoting agents in other tumors as well.

Growing literature suggests that CSCs often have
deactivated checkpoint responses as compared to that of
normal stem cells. While the cell cycle of normal stem cells is
tightly controlled by checkpoints to maintain genomic stability
and integrity, the defective checkpoint responses associated
with early cancer development implicate abnormal checkpoint
control as a potential contributor to the transformation of
normal stem cells into CSCs. This was demonstrated by Bao
and colleagues (94), who suggested that CD133+ cancer cells
contribute to glioma radioresistance and tumor repopulation
through a preferential checkpoint response and DNA repair.
They showed that targeting the checkpoint response in
CD133+ cancer cells can overcome glioma radioresistance
both in vivo and in vitro and provided a therapeutic model for
malignant brain cancers. Pretreatment of CD133+ and CD133-

glioblastoma cells with debromohymenialdisine (DBH), a
Chk1 and Chk2 inhibitor, minimally impacted the proliferation
of both CD133+ and CD133- cells, but showed synergy with
ionizing radiation (IR) to disrupt the radioresistance of
CD133+ cells in vitro as well as in vivo, suggesting that a
preferential checkpoint response in CD133+ cancer cells is
closely associated with cellular resistance to radiation (94).
Multiple therapies targeted to checkpoint kinases are in
preclinical and clinical development and may provide a
specific method to disrupt this resistance mechanism and
improve overall tumor control in conjunction with radiation
treatment.

AKHTAR et al:  CANCER STEM CELLS1498

1491-1503  30/4/2009  10:18 Ì  ™ÂÏ›‰·1498



Several signaling pathways, such as Notch, Wnt and Sonic
hedgehog (SHH), play a central role in modulating the delicate
balance between stemness and differentiation (discussed
above). Blocking downstream or upstream components of
these signaling pathways could potentially decrease or inhibit
the signaling required for CSCs to survive and self-renew.
For example, Fan et al (103) showed that blocking the Notch
pathway in medulloblastomas depleted a population of cells
required for in vivo tumor formation. Pharmacologically
blocking the Á-secretase complex (a component of Notch
pathway) decreased the quantity of CD133+ BTSCs in culture
by inhibiting cell proliferation and inducing apoptosis or
differentiation (103). When implanted into nude mice, cells
treated with a Á-secretase inhibitor demonstrated a reduced
ability to form tumors. Notch blockade depletes stem-like cells
but leaves many better differentiated cells that are capable of
limited growth intact, suggesting that Notch pathway blockers
may be the first of a new class of chemotherapeutic agents
for specifically targeting CSCs (103). Since aberrantly
activated Notch signaling has been documented in lung, breast,
salivary gland and pancreatic carcinomas (104-107), disrupting
Notch pathway components may be useful in targeting stem-
like cancer cells in a wide range of neoplasms. Furthermore,
inhibition of Wnt signaling components by small molecule
inhibitors, siRNA, anti-Wnt antibodies, or by reversal of
epigenetic silencing induced apoptosis and suppressed cell
growth both in vivo and in vitro in a variety of cancers and
cancer cell lines (108-113). In addition, small molecule
inhibition of the SHH pathway has successfully suppressed
proliferation and induced apoptosis in murine tumor models
(114). Of all the components of the SHH pathway, SMOH
appears to be the most suitable drug target, being especially
susceptible to the effects of small molecules in manipulating

normal regulation of the pathway (115). Cyclopamine (an
antagonist of SHH pathway that binds to SMOH) has been
successfully used to inhibit medulloblastoma cell growth both
in cell culture and in mouse models (116). However, in vitro
models of these antagonists did not provide convincing
evidence of specificity to the SHH pathway (117,118),
suggesting that more specific pathway inhibitors need to be
developed before this approach may be of therapeutic
value.

Together, these studies suggest that utilizing what is known
about the biological mechanisms of CSCs and how they
differ from normal stem cells could provide clues to specific
therapeutic targets that can more effectively eliminate CSCs
while sparing normal stem cells. Furthermore, identifying
regulators of CSCs that are less critical in normal stem cell
biology and exploring the origin of this cellular niche and
the underlying molecular mechanisms will be important in
achieving greater success in control of CSC growth.

7. Summary and future prospects

In recent years, there has been a surge of interest in CSC
biology, owing to landmark discoveries and emerging concepts
which have provided a better understanding of the events
leading to the development of CSCs. Thus far, studies have
revealed that only a small subset of cells (<10%) in tumors is
capable of tumor re-initiation, which is consistent with the
cancer stem cell hypothesis. As of today, CSCs have been
identified and characterized from leukemia, breast, brain,
lung, prostate, melanomas, ovarian, colon, head and neck,
pancreatic, liver, bladder and skin cancers. These cells express
distinct cell surface markers (Table I) which have the potential
to be used for further purifying and functionally characterizing
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Figure 3. Potential cancer therapies. Future therapies for cancer might target CSCs by altering signaling pathways, inducing differentiation, altering the cell cycle,
inhibiting angiogenesis, altering the interaction with the niche or by a different combination.
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the biological properties of the CSCs. It will be important to
develop cell surface marker and activity profiles in other
tumors as well so that they can be used to reliably identify
CSCs. Furthermore, markers that are not expressed by normal
stem cells or non-tumorigenic cancer cells are of particular
importance as they will aid in developing new therapeutic
strategies directed specifically against CSCs. A number of
studies have shown that CSCs have the capacity to self-renew
and differentiate, however, it is still unclear that for how long
CSCs have the capacity to self-renew. It will also be interesting
to determine whether all cells of CSCs have similar capacity
to self-renew or whether there is different sub-classes of CSCs
exist with different self-renewal capacity. While aberrant
regulation of self-renewal pathways plays a critical role in
CSC biology, targeting these pathways could be an attractive
option. However, it will be important to determine the degree
to which inhibition of self-renewal can be tolerated by normal
cells. It is also unclear whether targeting self-renewal pathways
will kill the CSCs or simply suppress their growth. The origin
of CSCs is still controversial, thus, future study will be needed
to clarify the complex question whether CSCs originate from
normal stem cells by acquiring epigenetic and genetic changes
required for tumorigenicity or from more differentiated
progenitor cells by acquiring self-renewal capacity. Perhaps it
is the nature of carcinogenesis itself to utilize a combination of
these mechanisms. It is clear that the niche (microenvironment)
provides an extrinsic component to normal HSCs that help in
their survival and self-renewal. This is also true in solid
tumors, wherein stromal fibroblasts play important roles in
the initiation and progression of tumors, suggesting that cross
talk between cancer cells and their micro environment is a
general requirement for neoplasia. CSCs may also exploit the
niche or micro-environment in additional ways to maintain
their behavior and promote cancer growth. Further study will
be required to understand the mechanism of interaction of
CSCs with niche in order to aid in the development of novel
cancer therapies.

As new literature continues to confirm the role of
several stem cell signaling pathways in cancer formation
and maintenance, it will be interesting to decipher how
abnormalities in these stem cell signaling cascades cause
cancer and also whether the same tumor-specific mechanisms
of growth and survival are active across multiple cancer types.
An additional challenge in targeting CSCs is to understand
how the properties of stem cells make them particularly
difficult to kill. It has been reported that leukemia cancer stem
cells reside in a largely quiescent state with regards to cell
cycle activity (119,120), thus drugs that target rapidly dividing
cells are unlikely to eradicate them. Targeting these cells will
require drugs that kill cells independently of cell cycle or that
induce the cell cycle specifically in CSCs. Another common
feature of CSCs is resistance towards radio- and chemo-
therapy. It will be important to understand the mechanism of
resistance across various cancer types and develop radio- or
chemo-sensitizers that preferentially sensitize CSCs to these
compounds compared with normal stem cells.

To effectively target CSCs without affecting normal stem
cells, it will be important to know how CSCs are similar to
normal stem cells. Thus far, studies have shown that CSCs can
be eliminated by targeting their stem cell niche, stimulating

their differentiation, manipulating the self-renewal pathways
or blocking their cell cycle checkpoints (Fig. 3). However,
further studies are required to define the mechanism of
therapeutic responses of CSCs in various cancers and how it
distinguishes them from normal stem cells. It will also be
important to develop a sensitive real time method of CSC
detection and quantitation to help in the evaluation of clinical
end points and in the measurement of treatment success in
patients receiving cancer therapy.

The opportunity for discovering new mechanisms and
molecular targets for attacking cancer is extremely exciting.
While many challenges lie ahead, the investigation of CSCs
offers the possibility of generating novel targets that could
overcome issues of drug resistance, improve therapeutic
efficacy and make cancer treatment more successful and
perhaps even curative.
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