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Novel transcription regulatory elements
in Caenorhabditis elegans muscle genes
Debraj GuhaThakurta,2,4 Lawrence A. Schriefer,1,4 Robert H. Waterston,3 and
Gary D. Stormo1,5

1Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA; 2Rosetta Inpharmatics,
LLC., a wholly owned subsidiary of Merck & Co., Inc., Seattle, Washington 98109, USA; 3Department of Genome Sciences,
University of Washington, Health Sciences K-357, Seattle, Washington 98195, USA

We report the identification of three new transcription regulatory elements that are associated with muscle gene
expression in the nematode Caenorhabditis elegans. Starting from a subset of well-characterized nematode muscle genes,
we identified conserved DNA motifs in the promoter regions using computational DNA pattern-recognition
algorithms. These were considered to be putative muscle transcription regulatory motifs. Using the green-fluorescent
protein (GFP) as a reporter, experiments were done to determine the biological activity of these motifs in driving
muscle gene expression. Prediction accuracy of muscle expression based on the presence of these three motifs was
encouraging; nine of 10 previously uncharacterized genes that were predicted to have muscle expression were shown
to be expressed either specifically or selectively in the muscle tissues, whereas only one of the nine that scored low
for these motifs expressed in muscle. Knockouts of putative regulatory elements in the promoter of the mlc-2 and
unc-89 genes show that they significantly contribute to muscle expression and act in a synergistic manner. We find
that these DNA motifs are also present in the muscle promoters of C. briggsae, indicating that they are functionally
conserved in the nematodes.

Understanding the regulatory mechanisms that drive expression
of genes during development or in specific tissues is one of the
central problems in biology. Annotating noncoding genomic se-
quences is an equally challenging issue in computational genom-
ics. The temporal and spatial expression pattern of genes is en-
coded in the genome in the form of organized arrays of cis-acting
DNA elements that act as target sites for transcription factors
(TFs). These DNA elements are recognized and bound by the
cognate TFs that are responsible for the control of transcription
of the genes. We have been interested in studying transcription
control mechanisms that guide the expression of the muscle-
specific genes in the nematode Caenorhabditis elegans. Some of
the transcription factors, which are critical for muscle specifica-
tion and function, e.g., the MyoD class of bHLH factors, and the
NK-2 class of homeodomains (Chen et al. 1994; Okkema and Fire
1994; Okkema et al. 1997; Harfe and Fire 1998; Harfe et al. 1998),
are conserved across distant phyla, suggesting that the knowl-
edge gained from model organisms like the nematodes can be
extrapolated to understanding the functional biology in higher
eukaryotes.

A substantial amount of work has been done previously to
elucidate some of the transcription factors and regulatory ele-
ments that are responsible for modulating gene expression in C.
elegans muscle. Screening for TFs that bind to known regulatory
elements, or searches for some of the known TFs that are respon-
sible in myogenesis and muscle function in vertebrates and in-
sects have resulted in the identification of some TFs that are
critical for C. elegans muscle function (Chen et al. 1994; Okkema
and Fire 1994; Harfe and Fire 1998; Harfe et al. 1998; Zhang et al.

1999). The identified factors include proteins of the bHLH class
of transcription factors (hlh-1, Ce-Twist), which bind to the so-
called ‘E-boxes’ (consensus CAnnTG) (Chen et al. 1994; Harfe et
al. 1998); ceh-22, a homeodomain belonging to the NK-2 class
(Okkema and Fire 1994) that binds to the ‘NdE-box’ motif
(CATATG), which is related to, but distinct from, the standard
E-box motif (Okkema and Fire 1994; Okkema et al. 1997). It is
thought that several of the muscle transcription factors act in
combination with other, more ubiquitous, TFs (Okkema and Fire
1994; Zhang et al. 1999). In some cases, these muscle-specific TFs
may act in combination with organ-specific TFs to activate
muscle gene expression in certain tissues, as is seen in the case of
ceh-22, which shows a strong synergistic pattern of pharyngeal-
muscle gene expression with the pharynx-specific transcription
factor pha-1 (Okkema et al. 1997).

The regulatory elements of a few of the muscle-specific
genes have been studied in detail using sequence deletions or
mutations. For example, several DNA regulatory elements of the
myosin heavy-chain isoforms in pharyngeal muscle (myo-1 and
myo-2), and body-wall muscle (myo-3, unc-54, hlh-1) have been
identified by deletion studies (Okkema et al. 1993). Two types of
elements were discovered for the myosins. The first set contained
general signals that allow high levels of expression without any
obvious contribution to tissue specificity. The second set consists
of promoter and enhancer elements, which appear to generate
the observed tissue specificity. Tissue-specific enhancers were
found to be present in the upstream regions and introns for both
the body-wall and pharyngeal muscle genes (Jantsch-Plunger and
Fire 1994). Apart from the myosin genes, the regulatory elements
of hlh-1 (body-wall muscle) and ceh-24 (pharyngeal muscle) have
also been studied (Krause et al. 1994; Harfe and Fire 1998). The
study of the hlh-1 gene is particularly interesting; it exhibits dis-
tinctly different sequence requirements in the upstream region
for embryonic and adult body-wall muscle expression (Krause et

4These authors contributed equally to this work.
5Corresponding author.
E-mail stormo@genetics.wustl.edu; fax (314) 362-7855.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.2961104.
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al. 1994), showing the complexity of TF–DNA interactions dur-
ing different stages of development of the body-wall muscle.
These studies not only identify the muscle regulatory sequences
of some individual genes, but also delineate some of the com-
plexities in organization of these elements and the sequence re-
gions in which they may be located (upstream sequences and
some introns).

Though detailed studies on a few individual genes have
been done, a study investigating the global transcription regula-
tory elements that may guide the expression of most genes in the
muscle tissues has not been performed. Identification of the regu-
latory elements in a few individual muscle genes has been im-
portant in understanding the regulatory sequences and TF target
sites that guide gene expression in different muscle tissues, but it
does not mean that all or most of the muscle genes will contain
those motifs. It is possible that many of the muscle genes may
contain a set of common regulatory elements that are yet un-
known. These global muscle elements may then interact with
organ-specific TFs to regulate expression of different genes in
different muscle tissue types. In order to better understand the
transcription regulation and development in the muscle, a more
systematic approach involving the identification of common
regulatory elements in muscle genes would be of benefit.

Over the past several years, DNA pattern-recognition meth-
ods (Brazma et al. 1998; Stormo 2000) have been successfully
applied to the detection of regulatory elements (e.g., Hughes et
al. 2000; McCue et al. 2001; GuhaThakurta et al. 2002b). We have
used two such DNA pattern-recognition methods to identify pu-
tative DNA regulatory elements in the upstream regions of a col-
lection of well-characterized C. elegans muscle genes. We identi-
fied three novel motifs using the DNA pattern-recognition pro-
grams. The significance of the identified motifs was evaluated
using several independent test sets that contained both muscle
and nonmuscle genes from C. elegans. These elements were also
found to be significantly over-represented in the promoters of
muscle genes of the related nematode, Caenorhabditis briggsae.
The functional role of the putative DNA motifs in transcription
regulation in muscle genes was examined by experiments using
the GFP (green fluorescent protein) reporter technology (Chalfie
et al. 1994). Based on the presence of these regulatory motifs,
nine of the 10 genes that were enriched in muscle-related motifs
were found to express in the muscle, whereas only one of the
nine genes that were poor in such elements, expressed in the
muscle. Site knockouts were created in the promoter of two well-
known muscle genes to determine the contribution of each of
these motifs in muscle expression. These knockouts resulted in
their significantly reduced muscle expression. In addition, from
double-site knockouts we observed that the contributions of
these sites to muscle expression were nonindependent, suggest-
ing cooperative action of the elements.

Results

DNA regulatory elements identified by computational DNA
pattern-recognition algorithms

For a training set, we chose 19 well-characterized genes known to
be expressed in muscle from previous studies (Table 1, details
given in Methods section). We used the �2000 to �1 region of
the training set genes to identify potential muscle-DNA regula-
tory motifs (GuhaThakurta et al. 2002a). We chose to focus on
the upstream regions, since this region is almost always impor-

tant for regulation of expression. Some of the muscle-specific
enhancer sequences may be present in introns (Jantsch-Plunger
and Fire 1994). But, including the intron regions could poten-
tially add more sequence data without a concomitant increase in
the signal for the regulatory elements, making computational
identification of DNA motifs more difficult. We hope to examine
the intronic regions for regulatory elements in future studies.
Given the relatively closely spaced gene distribution in C. elegans,
the selected upstream regions are likely to contain most of the
relevant promoter elements, and most of the known regulatory
elements are within these regions. However, it is possible that the
selected regions may exclude relevant motifs in genes with large
promoters, long 5� UTRs, or membership in operons. Because
transcriptional start sites have not been determined for many C.
elegans genes, we have used the translation start site (the 1 posi-
tion) to select the candidate promoter regions, because it is
nearly unambiguous.

There are several computational DNA pattern-recognition
methods currently available (Brazma et al. 1998; Stormo 2000).
We have decided to use weight matrix-based methods rather
than DNA sequence patterns with IUPAC alphabets, since they
are likely to capture more information about the variability of the
DNA-binding sites. We have used two methods, one based on a
greedy algorithm (CONSENSUS, Hertz and Stormo 1999) and an-
other based on Gibbs sampling procedure (ANN-SPEC, Workman
and Stormo 2000). Using these computational DNA pattern-
recognition methods on the training set, three different motifs
were found to be significant in the training set (initially reported
in GuhaThakurta et al. 2002a; Fig. 1). Motif 1 (CCCGCGGGAGC-
CCG) and motif 3 (AAGAAGAAGC) were identified by
CONSENSUS, while motif 2 (TCTCTCTAACCC) was identified by
ANN-SPEC. The underlined part of motif 1, which is the most
conserved part of that motif, was also identified by ANN-SPEC.
These motifs did not correspond to any known transcription
factor binding sites from a search of known motifs from the
TRANSFAC database (Matys et al. 2003), or the regulatory se-
quences identified previously using sequence-deletion studies.
The motifs identified were considered novel muscle gene-
enriched regulatory elements.

Overrepresentation of the identified DNA motifs in training
and test sets

In order to assess the significance of the binding probability of
the TFs to the upstream regions of muscle genes, we determined
the TF–DNA-binding probabilities for the sites corresponding to
the putative DNA regulatory elements in a number of sequence
sets in C. elegans (Table 2), and compared them with those ob-
tained from a random set (randomly selected 2000 genes). These
probabilities (which are given by the probability proportionality
values [PPVs], see equation 2 for details) take into account both
the site ‘strength’ (i.e., the match of the model weight matrix to
a site) and frequencies. Multiple sites (even though weak), or one
particular site with high score, can both result in high-binding
probability of a TF to a sequence.

Table 2 gives the average ratio of putative TF–DNA-binding
probabilities (PPVs) of muscle gene upstream sequences to the
upstream sequences from 500 random sets of genes in C. elegans
or C. briggsae. The ratios were determined 500 different times
with the training and test sets and different random sets, each
random set containing 2000 genes selected randomly from the
genome. Table 2 shows that the binding probabilities of the iden-
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tified DNA motifs to their cognate TFs are higher in the two C.
elegans muscle gene sets as compared with random sequences. In
the C. elegans muscle upstream sequences, motif 1 has signifi-
cantly higher scores (more than three orders of magnitude in the
training set, and two orders of magnitude in the test set binding
probability compared with random sequences). Motifs 2 and 3
also contribute to TF-binding probability that is at least one order
of magnitude higher in the training set muscle genes, and sixfold
or more in the test set genes. It is not surprising that the training-
set genes show higher scores compared with the test sets, since
the motif discovery was done in the training set. However, the
big difference in motif 1 scores between the training and test sets
in C. elegans perhaps cannot be entirely accounted for by the
above fact. One plausible explanation could be differences in
temporal expression patterns of some of the training and test set
genes in the muscle as described in the Discussion.

For the purpose of comparison, the ratios of binding prob-
abilities are also shown for three other C. elegans DNA regulatory
motifs, which are not related to muscle regulation, viz., the

GATA (consensus, ACTGATAA), a potential intestine-specific
regulatory motif (Egan et al. 1995) and two other DNA motifs,
skn-1 and ces-2, taken from the TRANSFAC database. skn-1 rep-
resents the DNA-binding site (consensus, TAATGTCATCCA) for
the C. elegans skn-1 protein, which is a TF required for the correct
specification of certain blastomere fates in early C. elegans em-
bryos (Blackwell et al. 1994), and ces-2 represents the DNA-
binding site (consensus, ATTACGTAAT) for ces-2, a TF that con-
trols the cell-death fate of individual cell types in programmed
cell death (Metzstein et al. 1996). None of the three unrelated
motifs show higher binding probability for the muscle genes
compared with random genes in C. elegans.

To determine whether the DNA regulatory motifs may be
functionally conserved in the phylogenetically related nema-
tode, C. briggsae, we determined the average ratio of binding
probabilities for the C. briggsae muscle orthologous upstream se-
quences as compared with random sets of C. briggsae upstream
sequences. For C. briggsae, the ratios vary in magnitude from ∼7
to 35, whereas for the three unrelated DNA motifs (GATA, skn-1,

Table 1. C. elegans muscle genes used as training and test sets

Serial
Gene

symbol
Elegans
gene ID

Briggsae
gene ID Operon Rank Motif1 Mofit2 Motif3

1 mlc-3 F09F7.2 CBG24046 N 1 + + +
2 unc-22 ZK617.1 ND N 6 + + +
3 unc-87 F08B6.4 CBG12778 N 15 + + +
4 gpd-2 K10B3.8 ND Y 16 + + +
5 unc-54 F11C3.3 CBG19730 N 29 + + +
6 unc-120 D1081.2 CBG12542 N 38 + + +
7 myo-3 K12F2.1 CBG23416 N 42 + + +
8 mup-2 T22E5.5 CBG05057 N 46 + + +
9 lev-11 Y105E8B.1 CBG19793 N 85 + + +

10 deb-1 ZC477.9 CBG05763 N 91 + + +
11 tni-1 F42E11.4 CBG17351 N 166 + + +
12 unc-89 C09D1.1 CBG12078 N 227 + + +
13 mlc-1 C36E6.3 ND N 329 + + +
14 unc-112 C47E8.7 CBG04558 N 405 + + +
15 act-4 M03F4.2 ND N 573 + + �
16 unc-97 F14D12.2 CBG14705 N 964 + + +
17 let-2 F01G12.5 CBG16372 N 974 + + +
18 unc-105 C41C4.5 CBG00750 N 1514 + + +
19 myo-1 R06C7.10 CBG21911 N 1631 + + +
20 unc-15 F07A5.7 CBG11932 N 1955 + + �
21 pat-3 ZK1058.2 CBG03601 N 2117 + + +
22 unc-45 F30H5.1 CBG15283 N 2238 + + �
23 mef-2 W10D5.1 CBG12442 N 2320 + + �
24 pat-4 C29F9.7 CBG15792 N 2449 + + �
25 unc-60 C38C3.5 CBG06572 N 2491 + + �
26 pat-10 F54C1.7 CBG10771 N 2523 + + �
27 act-2 T04C12.5 ND N 2672 + + �
28 sup-10 R09G11.1 CBG01870 N 2806 + + �
29 act-1 T04C12.4 ND N 3161 + + �
30 atn-1 W04D2.1 CBG23504 N 3399 + + �
31 lam-1 W03F8.5 CBG20003 N 3463 � + +
32 unc-52 ZC101.2 CBG11064 N 3546 + + �
33 act-3 T04C12.6 ND N 3913 + + �
34 unc-68 K11C4.5 CBG19042 N 4139 + � +
35 myo-2 T18D3.4 CBG00120 N 4154 + + �
36 hlh-1 B0304.1 CBG13470 N 8517 � + +
37 epi-1 K08C7.3 CBG04423 N 11,340 � + �
38 gpd-3 K10B3.7 ND Y 11,342 � + �
39 emb-9 K04H4.1 CBG10116 Y 11,503 � + �
40 mec-8 F46A9.6 CBG03748 N 12,040 � + �
41 egl-19 C48A7.1 CBG05858 N 12,377 � + �

Genes that are shaded were included in the training set for motif discovery, and remaining genes were used as a test set. Putative C. briggsae orthologs
of C. elegans muscle genes are given. Presence (+) or absence (�) of site predictions in the upstream 2000 bp of the genes are given, along with the
rank of the gene when ordered according to the combined score of the three motifs in their upstream regions (equation 4). C. elegans genes that were
inside operons according to Blumenthal et al. (2002) are indicated with a Y (for yes) or N (for no) in the Operon column.

Nematode muscle regulatory elements
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and ces-2), the ratios are not more than ∼1.3. This shows that the
putative DNA regulatory motifs are also overrepresented in the
muscle promoters of C. briggsae.

Since transcription factors almost always work in concert,
we tested the statistical significance of the combined scores from
the three motifs in the muscle promoters. We observed statisti-
cally significant scores in the nematode muscle genes using the
Mann-Whitney test (Zar 1974), a simple nonparametric proce-
dure frequently used for testing whether differences exist be-
tween two sampled populations. We looked at the upstream re-
gions (�2000 to �1) of all genes from the genome, determined
the DNA sites for a motif, m, above the cutoff using the PATSER
program, and calculated the PPV for each of the sequences (equa-
tion 2). A combined PPV for the three motifs was also calculated
for the upstream sequence of each gene in the genome (equation
4). All of the upstream sequences were sorted according to the
decreasing log of the combined PPV, ln(Pseq_M) (equation 4). We
calculated the Mann-Whitney statistic (Mann and Whitney
1947; Zar 1974) for testing the hypothesis, HA: genes in a given
test set have significantly higher binding probability values
(PPVs) when compared with a randomly selected set of genes.
Based on the calculation of the Mann-Whitney statistic and z-
scores (described in more detail in Zar 1974; GuhaThakurta et al.
2002b), the p-value for the null-hypothesis (H0: test genes and
random genes do not differ in their PPVs) can be determined.
Using combined scores from motifs 1, 2, and 3, the p-values for
accepting the null hypothesis in several independent data-sets
were as follows: (1) 4.8 � 10�7 for the C. elegans muscle test set,
(2) 4.8 � 10�5 for the set of around 1200 genes that have been
shown to be overexpressed in the C. elegans muscle using RNA
tagging and c-DNA microarray experiments (Roy et al. 2002), and

(3) 1 � 10�9 for the C. briggsae muscle
genes (Table 1). As a control, we tried a com-
bination of two other C. elegans regulatory
motifs that are not muscle related (skn-1
and ces-2); the p-value was observed to be
∼0.5 for the C. elegans muscle-test set, and
0.16 with the 1200 muscle-expressed genes
in Roy et al. (2002). In all cases, the z-scores
and p-values were computed with 500 dif-
ferent background sets (each background
set consisting of 2000 randomly selected
genes form the genome) and the average of
500 z-scores were taken to report the p-

values. These highly significant p-values with several indepen-
dent test sets strongly suggested that the identified motifs are
over-represented in the promoters of nematode muscle genes,
and are therefore likely to be functional elements.

Regulatory site clustering and investigation of muscle
regulatory module

We have investigated the distribution of sites, looking for evi-
dence of site clustering and the possibility of a regulatory module
in the promoters of the C. elegans muscle genes. We find that
compared with a random set of genes, the predicted muscle regu-
latory sites are more frequent in the immediate upstream region
of C. elegans muscle genes (Fig. 2). As expected, for the random
genes, roughly 20% of the sites are present in each 200-nt win-
dow, but in muscle genes, the percent of sites are higher near to
the gene start sites (TSS).

In human skeletal muscle genes, the known regulatory sites
tend to cluster within a distance of roughly 200 nts, forming a
muscle regulatory module (Wasserman and Fickett 1998). We
investigated the presence of a similar optimal window size for a
muscle regulatory module in C. elegans using predicted sites from
the three motifs we identified here. Several computational meth-
ods now exist for identification of putative DNA regulatory mod-
ules in input sequences given a set of transcription-factor bind-
ing-site profiles. Most can be grouped in two classes, viz., a slid-
ing window approach, and hidden Markov model approach
(Bailey and Noble 2003). We have used two of those methods,
one from each class, viz., MSCAN (Johansson et al. 2003) and
COMET (Frith et al. 2002). MSCAN computes the statistical sig-
nificance of observing regulatory modules in different sequence
windows based on the distribution of hits for the individual DNA
profiles in a random sequence. COMET uses an HMM process,
where it assumes that cis-elements occur in a Poisson process
embedded in random DNA. Given that the motifs are all clus-
tered near the AUG end of the promoter region, we did not ob-
serve any significant combinations of motif clusters. It is possible
that we have not yet discovered all of the muscle regulatory mo-
tifs (see below), and this issue of whether there are particular
combinations that define important modules should be revisited
at a later time.

Muscle regulatory sites in cross-species conserved regions

In human muscle genes, 98% of experimentally defined se-
quence-specific binding sites of skeletal-muscle transcription fac-
tors are confined to the 19% of human sequences that are most
conserved in the orthologous rodent sequence using a Bayesian
alignment method (Wasserman et al. 2000). Since only a few

Table 2. TF-DNA binding PPVs (probability–proportionality
values) as an indicator TF–DNA binding (refer to equation 3)

Sites CE training CE test CB muscle

motif 1 5094.98 111.67 22.27
motif 2 24.89 12.26 6.72
motif 3 9.49 5.95 34.79
ces-2 0.58 0.75 0.48
skn-1 0.52 0.96 1.18
gata 0.50 0.71 1.27

Motifs 1 through 3 are putative C. elegans muscle regulatory elements.
Motifs ces-2, skn-1, and gata are C. elegans regulatory motifs unrelated to
muscle expression and used as controls. Different gene-sets tested are
given. CE training, C. elegans muscle training set (refer to Table 1); CE
test, C. elegans muscle test set; CB Muscle, putative orthologs in C. brigg-
sae of known C. elegans muscle genes (Table 1). The mean of the ratios
of binding probabilities are given for the test or training gene set versus
500 random sets. Values greater than 5 are in bold.

Figure 1. Logos (Schneider and Stephens 1990) for the three putative DNA muscle regulatory
motifs identified by computational methods and their information contents in bits.

GuhaThakurta et al.

2460 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on January 21, 2014 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://genome.cshlp.org/
http://www.cshlpress.com
http://www.cshlpress.com


functional binding sites in C. elegans are known, it is impossible
to deduce such numbers for the nematodes. Another issue is that
C. elegans and C. briggsae are further apart in terms of evolution-
ary distance compared with human–rodent, with significantly
larger nucleotide substitution rates (Hardison 2004; Stein et al.
2003; Waterston et al. 2002). This could make it difficult to find
extended alignments in the promoter regions of these two nema-
todes like the ones that are observed between human and mouse.
However, we wanted to see whether the predicted binding sites
are enriched in conserved upstream regions in C. elegans and C.
briggsae muscle sequences. We aligned the orthologous promot-
ers from the two nematodes using a local (BLASTZ, Schwartz et al.
2003) and a global alignment tool (GLASS, Batzoglou et al. 2000).
The noncoding upstream regions of orthologous genes were re-
peat-masked and then aligned using BLASTZ and GLASS. The
results of alignments were post-processed with a sliding window
of 50 bp with 70% identity (65% for BLASTZ). Only those align-
ments that met these criteria for alignment length and percent
identity were retained as blocks of sequence conservation. The
average fraction of the muscle upstream sequences that fall in
these conserved regions is ∼9% using GLASS, and ∼6% using
BLASTZ (which is significantly below what has been observed for
human–mouse alignments as described in the Discussion). The
percentage of predicted muscle-regulatory sites in the upstream
sequences, corresponding to the three muscle motifs, varied from
6% to 10% within BLASTZ conservation (average ∼7%), and
19%–55% within blocks of GLASS conservation (average ∼32%).
Thus, using the global alignment tool, we get an enrichment of
the predicted sites in the regions of conservation, which is not
observed using the local alignment tool. However, this enrich-
ment still misses the majority of the predicted sites.

Expression patterns of genes predicted to express in C.
elegans muscle

We calculated the combined PPV using motifs 1, 2, and 3 for all
gene upstream regions in C. elegans (equation 4); all of the genes
were then sorted according to their combined PPVs. We decided
to check the expression of 10 high-ranking genes (Table 3). We
used GFP technology (Chalfie et al. 1994) to evaluate the expres-
sion by fusing the promoter region of the genes to GFP, creating
promoter�GFP constructs. Nine of the 10 promoter�GFP con-
structs are expressed in the muscle. Most are expressed only in
muscle, but a few are also expressed in a handful of other tissues,
mainly neuronal cells (Fig. 3; detailed expression patterns of sev-
eral genes are also given at http://ural.wustl.edu/∼dg/
Nematode_Muscle_Regulation.html). It is worth noting here that
many of the known muscle genes are frequently observed to

express also in neuronal tissues. As a caveat,
it should also be mentioned that experi-
mentally proving that a gene is expressed in
only one tissue is difficult. This is because
the observance of expression in one tissue
does not rule out low or transient expres-
sion of that gene in other tissues, and the
detection of expression in some of the tis-
sues can be inherently problematic. We also
tested nine genes that ranked lowly for the
presence of three motifs (between ranks
4800 and 17,000). We did not simply pick
the worst ranked genes by our ranking cri-
teria, because we thought that even if those

were all negative, it would not be as convincing as picking a more
random sampling from a wider range of rankings that we ex-
pected to be negatives. Among these nine constructs, only one
(F09C8.2) showed expression in the muscle.

Expression of promoter�GFP constructs with site knockouts

We assessed the contribution of motifs 1, 2, and 3 to muscle
expression of the C. elegans myosin light chain protein, mlc-2,
which shows localized expression only in the muscle (Rushforth
et al. 1998). It is worth noting that mlc-2, which was not in our
initial training or test sets, shares its upstream region with mlc-1,
the two genes being divergent in the genomic sequence separated
by ∼2500 nts. The immediate promoter regions (first 400 bp) of
mlc-2 and mlc-1 are not identical. The ranks of the promoters for
these genes among all C. elegans genes, when scored for the three
motifs, are thus different. mlc-2 is ranked at 399, while mlc-1 is at
position 329 (Table 1). Sites corresponding to motifs 1, 2, and 3
in the mlc-2 promoter (Fig. 4A) were replaced with mutated se-
quences within the upstream 400 nts. Knocking out the indi-
vidual sites had varied effects on the expression of this gene (Fig.
4B,C,D). Individually, motifs 1, 2, or 3 knockouts reduced expres-
sion of mlc-2 to about 35%, 60%, and 31% of the wild type,
respectively (Fig. 4B,C). The promoter with all three motifs mu-
tated still retained about 5% of the wild-type expression, and it
remained muscle specific. The double knockouts all reduced ex-
pression of the gene more than what would be expected from a
simple multiplication of independent effects. For example, ex-

Table 3. The list of genes whose expression has been
characterized using promoter::GFP constructs

Serial Rank Gene ID
Gene
name Muscle

1 4 C49A1.10 Y
2 9 F55C7.2 Y
3 10 Y44A6D.3 Y
4 13 R08B4.2 Neuronal
5 14 B0513.1 gei-1 Y
6 17 T22C1.7 Y
7 21 W06F12.1a Y
8 50 F41E7.6 Y
9 52 F02E9.2b lin-28 Y

10 60 C05D11.4 let-756 Y

Muscle expression is indicated by Y. Rank of the genes, based on the
three muscle motifs, are given. For figures of GFP expression patterns, see
http://ural.wustl.edu/∼dg/Nematode_Muscle_Regulation.html. One
gene is expressed in neurons but not in muscle. lin-28 did not express in
any tissue in our experiments, but we found it to have muscle expression
in Moss et al. (1997).

Figure 2. Fraction of total sites observed in the upstream 1000 nts mapped as a function of
distance from the start site of the 41 known muscle (�) and 2000 random genes (▫) in C. elegans.
Averages over the gene sets are shown. Motifs 1 (i), motif 2 (ii), motif 3 (iii), and combined
frequency of motifs 1, 2, and 3 (iv).
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pected expression of the double knockout construct eliminating
sites for motifs 1 and 2 is ∼21% based on independent effects of
individual motifs, where the observed expression level was down
to ∼5% of the wild type, indistinguishable from knocking out of
all three motifs. The same is true for the other two double-site
knockouts. Thus, multiple double-site knockouts suggest syner-
gistic effect of these motifs in the gene expression regulation. To
verify that the motifs are functional in other muscle genes, we
did a knockout of motif 3 in the promoter region of unc-89,
another well-known muscle gene (Benian et al. 1996). This
single-site knockout reduces the expression of GFP in body-wall
muscle to about 7% of the wild type (Fig. 4B,C,D). Interestingly,
the motif 3 knockout did not reduce the expression in pharyn-
geal muscle cells, suggesting a different mode of regulation in
that tissue.

Discussion
We have reported here the identification of three new muscle
DNA-regulatory elements in C. elegans. Candidates for regulatory
elements were first determined using computational DNA pat-
tern-recognition methods that were then experimentally vali-
dated. None of the identified motifs corresponded to known
regulatory elements in the TRANSFAC database, or DNA ele-
ments previously found to be driving muscle expression in some
individual genes based on sequence deletion studies, suggesting
that many of the global regulators of muscle genes, which are
found in the promoters of most muscle genes, could be distinct
from the gene-specific elements that have been found by se-
quence-deletion analyses of a specific gene before. We observe

the following facts with the identified mo-
tifs: (1) genes enriched in these motifs usu-
ally express specifically or selectively in the
muscle, and (2) the motifs contribute sig-
nificantly to the expression of muscle-
specific genes. This, however, does not
necessarily mean that the motifs give
muscle-specific expression; we have not
demonstrated that the motifs are not pres-
ent in any other groups of genes nor experi-
mentally verified that they do not contrib-
ute to the expression of genes in any other
tissue.

Motif scores and muscle expression

We observe significantly higher scores for
the motifs in muscle training and test sets
when compared with background sets
(Table 2). While evaluating the significance
of individual motifs, we observed a signifi-
cant difference in the scores of motif 1 in
the training and test sets (Table 2). While a
higher score for the training set is not sur-
prising, as the motifs were discovered using
that set, upon further investigation, we find
another plausible explanation that can con-
tribute to this difference. The training set
was enriched in genes that predominantly
encode proteins that were part of the thick
and thin filaments (15 of 19) while, in com-
parison, the test set was enriched in genes

that predominantly encode proteins that were part of the base-
ment membrane (10 of 22) or part of the dense body and M-line
(5 of 22). While these structures are all in muscle cells, the base-
ment membrane develops early in the muscle cell, followed later
by the dense body and M-line to which, still later, the thin fila-
ment and thick filament, respectively, attach (Waterston 1988).
This suggests that the difference between the training set and the
test set with respect to motif 1 scores could have a temporal
explanation, although we have not verified this experimentally.
It also points to the fact that understanding the full complexity
of the gene regulation in a tissue will require studies of both the
spatial and temporal components.

In a ranked list of C. elegans genes, ordered according to the
combined scores of the three motifs, many of the known muscle
genes appear near the top, and only a few are below 10,000, the
rank that would be expected of a randomly chosen gene (given
the C. elegans genome has nearly 20,000 genes). However, since
not all muscle genes rank near the top, we think there are addi-
tional regulatory motifs that contribute to muscle expression
that escaped discovery in our study, or a more appropriate com-
putational model than the simple PPV statistic that we have used
here is needed with the currently identified motifs that can better
explain the expression of the muscle genes. Other complicating
factors include the organization of C. elegans genes into operons.
Two of the genes (gpd-3 and emb-9) that score below rank 10,000
are inside operons (see Table 1 and Blumenthal et al. 2002),
where they are not the first gene in the operon, so it is not
surprising their immediate upstream regions do not contain the
regulatory sites. In the case of gene emb-9, the promoter of the
first gene (K04H4.2) in the operon scores high with respect to the

Figure 3. GFP-expression patterns of genes B0513.1 (A), C05D11.4 (B), C49A1.10 (C), T22C1.7
(D), Y44A6D.3 (E), W06F12.1a (F), F41E7.6 (G), F55C7.2 (H), and R08B4.2 (I). (A–C) GFP expres-
sion in the cells and nuclei of body-wall muscle cells. (D,E) GFP expression in the nuclei of body-wall
muscle cells. (F) GFP expression in the cells and nuclei of pharyngeal muscle cells. (G) GFP expres-
sion in the anal depressor muscle cell. (H) GFP expression in the intestinal muscle cell. (I) GFP in the
nuclei and neuronal process of a neuronal cell.
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muscle motifs, ranking 374 in the ordered list of genes. Genes
gpd-2 and gpd-3 are the second and third genes of an operon, but
upon examination of the operon and the genes within it, the
start of the transcription and the regulatory region appears to be
included in the 2 kb upstream of the gpd-2 gene, which explains
its high ranking (rank 16, Table 1).

Based on experimental evidence for muscle expression, we
find the top scoring genes on our list (sorted by the combined
scores of the three motifs) to be highly enriched in genes ex-
pressed specifically or selectively in muscle. Among the genes
that scored highly for these motifs, nine of the 10 previously
uncharacterized genes that we tested expressed in the muscle,

whereas in a sample of genes that scored
poorly, only one of the nine tested showed
muscle expression. These numbers do not
represent false-positive and false-negative
rates of our prediction, since we have not
determined a cutoff for classification and we
have only tested a few predictions, but they
are encouraging results. Using logistic re-
gression analysis, with the five, well-
characterized TF–DNA binding sites, which
constitute the human-muscle regulatory
module, the false-positive and false-
negative rates were reported as 52% and
40%, respectively (Wasserman and Fickett
1998). Regulatory modules in higher eu-
karyotes like vertebrates are likely to be
much more complex, however, with more
TF–DNA interactions per gene.

Experimental validation
of individual motifs

The decrease in muscle expression by the
site mutations in mlc-2 and unc-89 indicate
that the identified motifs contribute toward
muscle expression. The double-site muta-
tions have a nonindependent effect on ex-
pression. Most transcription factors work in
a combinatorial fashion with others, so mu-
tating individual regulatory elements is not
only going to affect the binding of the cog-
nate TF to that site, but disturb the binding
of other factors that bind to nearby sites,
thereby affecting the transcription regula-
tory complex in that region.

Enrichment of motifs in the promoters
of C. briggsae muscle genes

Based on the highly significant p-values
from Mann-Whitney statistics, it appears
that the identified regulatory motifs are
conserved in promoters of the muscle genes
in the nematode, C. briggsae. Upon consid-
eration of the ranks of the muscle genes in
the two organisms, we observe that the me-
dian rank of these genes in C. elegans is 2100
and in C. briggsae is 3700, which are in the
top ∼10% and 18% of the total number of
genes in the genome (expected median rank
is 10,000 if we consider 20,000 genes in the
genome). Though the C. briggsae gene ranks
are higher, which is not surprising consid-
ering that the motif discovery was done in
C. elegans, the ranks are still significantly
lower than expected by chance.Figure 4. (Legend on next page)
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In spite of the fact that the identified motifs are overrepre-
sented in the muscle genes of both the nematodes, there are
some differences between them. If we compare the ranks of in-
dividual genes between the two organisms, we find that they are
quite variable. This is not too surprising given that only about
32% of the predicted sites occur with the regions aligned by
GLASS, and indicates that the number of sites, and their specific
sequences can vary between the species. Nonetheless, only two
genes of the 33 orthologs rank poorly (rank >4000) in both or-
ganisms and one of those (emb-9) is inside an operon, so there
appears to be one true outlier (epi-1). Most of the genes have low
ranks in both species, but there are several cases where the rank
is much poorer in C. briggsae than in C. elegans (and a couple of
the opposite). An extreme example is the mlc-3 gene, which has
a rank of 1 in C. elegans but 12,583 in C. briggsae. Assuming mlc-3
is also muscle specific in C. briggsae (which we do not know for
sure, but the assumption seems reasonable), there are several pos-
sible explanations for this. (1) Scores for some of the functional
sites in C. briggsae fall below the threshold we have used here and
were not detected while scanning with the motifs; (2) the same
regulatory sites still control its expression, but they are now lo-
cated outside of the region we included in the scoring (in the first
two introns of mlc-3 gene there are 16 sites corresponding to the
three motifs in C. briggsae as opposed to six sites in C. elegans); (3)
there are additional motifs beside the three we have obtained
thus far, and in the C. briggsae mlc-3 gene, those have replaced
the motifs used in C. elegans. The observation that there are a few
genes with high ranks in C. elegans, and even a few more in C.
briggsae, provides additional evidence that there are likely to be
more motifs involved in the specification of muscle expression
than just the three we have identified and studied so far. In fact,
preliminary searches with another motif discovery tool that used
orthologous promoter sequences from both nematodes (Wang
and Stormo 2003) have identified a few other potential motifs in
addition to the three described here, but they have not been
experimentally verified yet (T. Wang and G.D. Stormo, unpubl.).

While the overrepresentation of the motifs in the C. briggsae
muscle genes indicates a functional conservation, the evidence
for conservation of individual binding sites is weak, and the over-
all alignments of the promoter regions are much less informative
than for human and mouse comparisons. Whereas in one study
about 19% of the upstream 10 kb was alignable between human
and mouse, we only obtain 6%–9%, depending on the alignment
algorithm used. And, while 98% of the known regulatory sites in
the human–mouse comparison were within the alignable seg-
ments, we only find an average of 32% of our predicted sites in
the aligned 9% using GLASS, thereby giving an enrichment of
approximately threefold. While that represents a significant en-
richment, it means that the majority of probable regulatory sites
are not to be found in the regions aligned by programs such as
BLASTZ and GLASS that are the standard methods in the field

today. This observation could be due to the following: (1) indi-
vidual sites are not conserved in C. briggsae and C. elegans, i.e, a
specific site in C. elegans could disappear over evolutionary time
and reappear at a different position; (2) there are limitations to
the currently available traditional phylogenetic footprinting
methods and their reliance on “the” alignment of the promoter
regions. Whether one uses global or local alignment methods,
approaches that return a single optimal alignment, though en-
riched in regulatory sites, can still miss some fraction of them. In
phylogenetic footprinting studies with bacteria, which are more
highly diverged than the species used here, alignments of the
promoter regions are not relied on to identify the motifs, because
only the motifs themselves are significantly conserved (McCue et
al. 2001).

When, instead of returning a single alignment for each pro-
moter region, several (optimal and suboptimal) ungapped, local
alignments were kept (T. Wang, L.A. Schriefer, and G.D. Stormo,
unpubl.), all of the three motifs reported here are obtained along
with a few others, indicating both the value of these suboptimal
alignments as well as increased motif identification sensitivity
from having sequences from two species. Sequences from addi-
tional nematodes that are evolutionarily between C. elegans and
C. briggsae should help in identification of functional regulatory
and cross-species analyses.

One cannot rule out the possibility that the majority of sites
in aligned regions are biologically functional, whereas those that
are outside of these regions are not. Based on our preliminary site
knockout analysis in mlc-2 and unc-89 genes, this appears un-
likely, since none of the sites that we determined to reduce ex-
pression on mutation are in the aligned regions. A more com-
plete analysis with many more known functional elements is
needed before conclusions can be reached on this issue.

Future directions and conclusions
Identification of functional DNA regulatory motifs remains a
challenging problem. The DNA-binding sites for transcription
factors tend to be degenerate and often function only in the
context of other sites. Thus, not all biologically functional motifs
are likely to be statistically significant enough by themselves to
be detected by computational methods. Despite the challenges,
we have shown that DNA-pattern recognition methods and
simple statistical tests give biologically meaningful results in the
nematodes. We expect that more functional motifs are yet to be
discovered; in fact, some previously characterized motifs were
not identified in our analysis. One such element could be the
E-box motif (CAnnTG), a short and variable motif that is bound
by the bHLH factors and frequently observed in multiple copies
in the promoters of muscle genes (Yutzey and Konieczny 1992).
It was not picked up by computational methods nor did it appear
to be overrepresented in the nematode muscle genes. In an initial
analysis with an expanded set of muscle-specific genes and in-

Figure 4. (A) Location of predicted sites corresponding to motifs 1, 2, and 3 in the immediate upstream region of genes mlc-2 and unc-89. Sites on
the reverse strand are shown below the sequence line. The numbers above or below each site indicate the site score given by the PATSER program upon
alignment of the matrix to a sequence. (B–D, left) mlc-2 Expression; (B–D, right) unc-89 expressions. (B) GFP intensity vs. pixel measurements for wild-type
and different site knockouts in the promoters of mlc-2 and unc-89 genes. Data from one line and one photograph is shown for each of the constructs.
(C) Total intensity measurements for wild-type and different site knockouts for the mlc-2 and unc-89 gene promoters. The GFP intensity data for the
wild-type and different knockouts were obtained from a minimum of 11 animals in case of mlc-2 and 30 animals for unc-89. Three different lines were
generated for mlc-2 wild type, mlc-2 motif 2 knockout, mlc-2 motif knockouts 1+2+3, unc-89 wild type, and unc-89 motif 3 knockout. In all other cases,
one line was used. (D) GFP expression photographs with wild-type mlc-2 promoter�GFP construct and with the triple knockout (motifs 1, 2, and 3
eliminated), and GFP expression with wild-type unc-89 promoter�GFP construct and with the knockout of motif 3 site. The left two panels of each figure
are the photographs of wild-type proteins, while the right panels give the site knock-outs.
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corporating information from C. briggsae, the motifs we report
here were confirmed and a few others have been tentatively iden-
tified (T. Wang, L.A. Schriefer, and G.D. Stormo, unpubl.), that
remain to be experimentally tested. Using a larger set of motifs,
we also expect to find significant combinations that function as
regulatory modules for controlling gene expression. But, even at
this point, using only C. elegans and a moderately sized set of
training examples, we have shown that computational motif dis-
covery algorithms can identify sites that are critical to the proper
expression of muscle-specific genes, and can also be utilized as a
search tool to identify additional, previously unknown, muscle-
specific genes. Our current studies are focused on validating the
larger set of putative motifs, analyzing them for significant clus-
ters, and applying experimental approaches to identify the tran-
scription factor that binds to each motif.

Methods

Identification of C. elegans muscle genes
Of the thousands of genes that are expressed in the different
muscle tissues, the most useful genes for the purpose of this study
are the ones that are preferentially expressed in the muscle. Pref-
erential expression can be either specific (expression only in the
muscle tissue) or selective (expression in muscle and a few other
tissues like neurons). Both kinds of genes are likely to contain
regulatory elements that are muscle specific.

We identified a total of 41 muscle-specific or selective genes
from the literature (Table 1) and from our previous work, 19 of
which were put in our training set from which we did motif
discovery, and 22 were put in the test set as described below.
The motif discovery effort was done when we could collect a
substantially large number of genes for the motif-finding pro-
grams. This set consisted of 19 experimentally characterized
genes (‘training set’) with well-defined intron–exon bound-
aries, which was important for accurate identification of the
promoter regions. We gradually added 22 more genes to this
initial list, which we used as an independent ‘test set’ for evalu-
ation of the significance of the motifs. For evaluation of the
statistical significance of the motifs through a Mann-Whitney
test, we used 500 background sets, each set consisting of
2000 randomly selected genes from the C. elegans genome. The
test set for C. briggsae consisted of 33 genes that were orthologous
to the 41 C. elegans genes (Table 1). The 500 background sets for
C. briggsae were prepared in the same way as they were for
C. elegans.

C. briggsae orthologs of C. elegans muscle genes
The C. briggsae genome sequence and annotation has recently
been completed (Stein et al. 2003; ftp://ftp.wormbase.org/pub/
wormbase/briggsae/). Using syntenic markers and reciprocal
BLAST runs, the Washington University Genome Sequencing
Center determined the putative orthologs of more than 11,000 C.
elegans genes in C. briggsae. From this list, orthologs for 33 of the
41 C. elegans muscle genes were obtained (Table 1).

Obtaining upstream sequences
The C. elegans chromosomal sequence and the gene structures
were downloaded from the WormBase ftp-site (ftp://
ftp.wormbase.org/pub/wormbase/). These were then used to ob-
tain �2000 to �1 upstream region of the genes.

Identification of putative regulatory elements using
computational DNA pattern recognition methods
We used two DNA pattern recognition programs, viz.,
CONSENSUS and ANN-SPEC. CONSENSUS and ANN-SPEC are
local multiple-sequence alignment programs that run on a given
set of sequences (training set) to identify conserved motifs com-
monly present in those sequences. Both of these programs use
position-weight matrix-based models (Stormo 2000) to represent
ungapped DNA sequence motifs. The programs were run on up-
stream regions (�2000 to �1) of the C. elegans training set
muscle genes.

CONSENSUS
The CONSENSUS program (Hertz and Stormo 1999) uses a greedy
algorithm and searches for a matrix with a low probability of
occurring by chance or, equivalently, having a high information
content. Version 6.c of CONSENSUS was used and the top scor-
ing result was reported. Different pattern lengths were tested, and
both strands of the DNA were searched for motifs, because TFs
can bind in either orientation. The patterns with high informa-
tion content and the lowest expected frequency were considered.

ANN-SPEC
ANN-SPEC (Workman and Stormo 2000) uses a simple artificial
neural network and Gibbs sampling method to define DNA bind-
ing-site patterns. The program searches for the parameters of a
simple perception network (weight matrix) that maximize the
specificity for protein (TF) binding to a positive sequence set (or
training set) compared with a background sequence set. The use
of background sequences allows the method to find patterns
with greater discriminatory capability and specificity when com-
pared with the original version of the Gibbs sampling method
(Workman and Stormo 2000; GuhaThakurta and Stormo 2001).
ANN-SPEC Version 1.0 was used. A background sequence set of
upstream regions from 3000 randomly picked genes was used for
the runs. Different motif lengths were tried and both strands of
the DNA were searched for motifs. Because of the nondetermin-
istic nature of the algorithm, multiple training runs were per-
formed (100), with each run iterating 2000 times. The results
were sorted by their best-attained objective function values.
Weight matrices corresponding to the 10 highest scoring runs
were compared, and if more than five of these top scoring 10 runs
gave a motif with one consistent consensus pattern, that pattern
was considered significant.

Calculation of site scores, cutoffs, and searching for sites
in sequences
A position-weight matrix (PWM) has been found to be a good
model for describing protein-binding sites in DNA (Stormo
2000). An l-long DNA binding-site pattern is described by a 4 � l
weight matrix, with four weights (for four DNA nucleotides) per
pattern position. The score for any particular site is the sum of
matrix values corresponding to the sequence of the site. Under
the simplifying assumption that the positions contribute inde-
pendently to the binding affinity and the matrix elements are
log-odds scores, then the score for an individual site should be
proportional to its binding energy (Berg and von Hippel 1987;
Stormo and Fields 1998; Benos et al. 2002).

The PATSER program (G.Z. Hertz and G.D. Stormo, unpubl.)
takes as input a weight matrix and a set of sequences. For each
sequence, the score of every subsequence (i.e., for every possible
binding site) is determined, and those that exceed the user-
defined cutoff score are identified in the output. We used the
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default cutoff determined by PATSER based on the information
content of the weight matrix. The information content of the
matrix is related to the probability of observing a site by chance
(Schneider et al. 1986; Stormo 2000), and given the weight ma-
trix, it is possible to calculate the probability of observing a se-
quence with a particular score or greater (Staden 1989; Hertz and
Stormo 1999). The default cutoff from PATSER is the score with a
probability set by the information content.

Determination of promoter binding probabilities from
‘site’ scores
A “site” corresponding to a particular motif is simply a high-
scoring subsequence that is obtained by the PATSER program
using the appropriate motif weight matrix as an input . Weight
matrices for the motifs were determined using the CONSENSUS
and ANN-SPEC programs or were obtained from the TRANSFAC
database (Matys et al. 2003). From a consideration of the ther-
modynamics of protein–DNA interactions and the statistics of
the scores (Stormo and Fields 1998), we expect that the score
should be proportional to the free energy of binding. Therefore,
at equilibrium, the probability of the protein binding to a site
with a score, s, is given by:

P �bound�s) � es (1)

The exact proportionality factor depends on a number of things,
including the availability of binding sites within the genome and
the concentration of the TF in the nucleus, but because we only
use it to rank different potential binding sites, we can ignore it.
We also know that there are commonly multiple-binding sites in
the promoter region for a regulatory TF, so we calculate the prob-
ability that it will bind at any of those sites (probability–
proportionality value, or PPV), as

Pseq_m = �
sites

es (2)

where, m denotes the DNA-binding motif for the TF. This treat-
ment is likely oversimplified, given the known cooperative bind-
ing of TFs to promoter elements. Nevertheless, more complicated
models have not proven more effective for the analysis presented
here, and this simplified approach has produced meaningful re-
sults.

We want to consider the probability that all sequences in a
given set are regulated or bound by a TF. Then, for that given set
of N sequences, the average PPV should be given by the geomet-
ric mean of the PPVs of the sequences:

�Pseq_m� = ��
seq

�
sites

es�
1

N

(3)

When no sites are observed above threshold for a motif, m, we
simply set s = 0, so that es = 1 and the product is not equal to
zero. A combined PPV for a multiple motif set model, M, can also
be calculated for the upstream sequence of each gene in the C.
elegans genome. For lack of more specific information regarding
the mode of TF binding and interaction with the putative DNA
regulatory sites, we assumed that for up-regulation of genes in
the muscle (1) relevant TFs (corresponding to the motifs being
considered) need to bind to the upstream sequence, and (2) if
there are multiple sites scoring above the cutoff for a particular
motif, any one of those binding sites may be occupied by the
corresponding TF. For a particular upstream sequence, the com-

bined PPV for multiple motifs (M) is calculated by taking a prod-
uct of individual PPVs (from equation 2 above) for the motifs:

Pseq_M = �
m=1

M

Pseq_m (4)

Sorting genes by PPVs (probability–proportionality values)
and nonparametric analysis
Nonparametric, or distribution-free tests may be applied in any
situation in which actual measurements are not used, but in-
stead, the ranks of the measurements are used. The data may
be ranked either from highest to lowest or from lowest to high-
est values. In our case, we have the Pseq_(m/M) (probability–
proportionality values) for all C. elegans genes, based on the
DNA binding-site motifs, arranged in decreasing order. We use
the nonparametric analog of the two-sampled t test, commonly
known as the Mann-Whitney test (Mann and Whitney 1947; Zar
1974).

We take the sorted list of Pseq_M calculated using combina-
tions of motifs. We then consider two sets of ranks, that of the
muscle (training or test set) genes and that of the random genes.
Based on the rank positions of the genes in the list, a z-score can
be calculated (details in Zar 1974 and GuhaThakurta et al.
2002b). From the z-score, the significance of the hypothesis, HA,
muscle genes have higher PPVs compared with randomly se-
lected genes, can be assessed.

Alignment of C. elegans and C. briggsae upstream regions
For all ∼11,000 C. elegans/C. briggsae orthologous gene pairs, we
obtained the noncoding upstream regions, repeat masked the
sequences for common C. elegans repeats using the Repeat-
Masker program (http://ftp.genome.washington.edu/RM/
webrepeatmaskerhelp.html), and then aligned each upstream
pair using the two programs BLASTZ (Schwartz et.al. 2003) and
GLASS (Batzoglou et. al. 2000). The BLASTZ program is a local
alignment tool, whereas GLASS gives a global alignment. The
chaining option was used for BLASTZ. Default parameters were
used for GLASS. The results of alignments were post-processed
with a sliding window of 50 bp with 70% identity (65% for
BLASTZ). Only those alignments that met these criteria for align-
ment length and percent identity were retained as blocks of se-
quence conservation.

Putative muscle regulatory module detection
MSCAN (Johansson et al. 2003) was run through its Web-
interface http://tfscan.cgb.ki.se/cgi-bin/MSCAN, whereas the
COMET (Frith et al. 2002) software code was downloaded, com-
piled on Linux, and run from the command line. The programs
were run with the input-weight matrices that were determined
from the C. elegans muscle genes. For both programs, we used a
p-value threshold of 0.01, but different window sizes were tried.
We required a minimum number of two sites to be in a window
for MSCAN. For COMET, we tried several different average dis-
tances between sites.

Promoter�GFP constructs and gene
expression characterization
To determine the in vivo expression pattern of muscle expressing
candidate genes and the negative control gene set, we con-
structed promoter�GFP expression fusions (Yuan et al. 2000).
Genes to be tested were fused with the promoterless GFP vector
pLS43. pLS43 is an adaptation of pPD95.67 (A. Fire, S. Xu, J.
Ahnn, and G. Seydoux, pers. comm.) with additional nuclear
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localization signals. Gene-specific primers were used to amplify
the promoter cassettes from genomic DNA using a high-fidelity
thermostable polymerase. Two PCR products were amplified for
each gene. The first product was ∼500 bases long and had HindIII
and BamHI sites introduced by the amplifying oligonucleotides
and overlapped the second exon of the gene to be analyzed with
the GFP gene remaining in-frame. The 500-base amplified prod-
uct was digested with HindIII and BamHI, then cloned into
pLS43 digested with HindIII and BamHI. The second amplified
product was longer, containing ∼6 Kb (�6000 to �1) 5� of the
start Met and extending 3� to overlap the first product by a mini-
mum of 250 bases. Transformed lines carrying extrachromo-
somal arrays were generated as described (Mello et al. 1991) using
the collagen gene rol-6 as a coinjection marker. Transformation
was done using a 20:1:1 ratio of rol-6(pRF4)/experimental con-
struct plasmid/large PCR fragment, respectively, at 200 ng/µL in
10 mM Tris, 1 mM EDTA (pH 8). These constructs were injected
into N2 where recombination occurred, resulting in an in-vivo
promoter�GFP. Rolling GFP-expressing progeny were isolated,
then studied for in-vivo GFP expression.

Knockout of putative DNA regulatory elements
Gene-specific primers with HindIII or BamHI added were used to
amplify the promoter cassettes from genomic DNA using a high-
fidelity thermostable polymerase.

Mlc-2 (HindIII) 5�-GACACAAGCTTGGGACACATTATCTCT
GCTGG-3�

Mlc-2 (BamHI) 5�-TCCAACATGTCCAAGGCCGCGGATCC
GGGG-3�

Unc-89 (HindIII) 5�-GACACAAGCTTCGCCTAAAACACCG
CAGCTG-3�

Unc-89 (BamHI) 5�-CCTTACCATCATGGCTAGTCGGGATC
CGGGG-3�

The PCR-amplified fragments were digested with HindIII
and BamHI and cloned into the HindIII and BamHI sites of the
promoterless GFP vector pPD95.67 to create pLS45.005 and
pLS45.018 for mlc-2 and unc-89, respectfully.

All knockout constructs were made by altering the above
constructs using the QuickChange kit (Strategene) as described
by the manufacturer. Underlined bases in the following oligo-
nucleotides do not match wild-type sequence.

Mlc-2 (Motif 1) 5�-CACTCTATCTCAAACGGCAGTGATG
GAATCTGCCACCCTCCACC-3�

Mlc-2 (Motif 2) 5�-CTACTAACTTTGCCCGCCGTGAGCTC
GGCACCTCCTCTCGGTCTC-3�

Mlc-2 (Motif 3) 5�-GATCGGGACTTGGAAAAGGCTAT
GAGTTCATACTTTTCATGGGTG-3�

Unc-89 (Motif 3) 5�-CTCATAGTGGGGTGAGAACACTCATC
GCGCAGACGCTAACAGAG-3�

All constructs were confirmed by sequencing using BigDye
Terminator v3.0 (Applied Biosystems) on an ABI Prizm 3100 Ge-
netic Analyzer (Applied Biosystems).

Transformed lines carrying extrachromosomal arrays were
generated as described above, using a 20:1 ratio of rol-6(pRF4)/
experimental construct at 200 ng/µL in 10 mM Tris, 1 mM EDTA
(pH 8). These constructs were injected into N2 and the rolling,
GFP-expressing animals were isolated, then studied for in-vivo
GFP expression.

Photographic analysis of GFP expression
Animals that displayed the rolling phenotype of rol-6 were pho-
tographed; mlc-2 lines were staged at the larval L3 stage, unc-89
lines were staged at the larval L2 stage. Animals were anesthetized
and mounted as described (McCarter et al. 1999), then photo-

graphed on a Bmax-BX60 (Olympus, Inc.) microscope with a
Quantix (Photmetrics, Ltd.) cooled CCD camera using OpenLab
version 3.0.9 software (Improvision, Ltd.) for microscope and
photographic control. All images for the same gene were photo-
graphed under identical conditions for accurate comparison. In-
Speck fluorescent bead standards (Molecular Probes, Inc.) were
used to confirm that identical exposures were maintained.

The TIF images were analyzed on an iMac (Apple, Inc.) using
public domain NIH Image program version 1.60 (developed at
the U.S. National Institutes of Health and available on the inter-
net at http://rsb.info.nih.gov/nih-image/). The histogram analy-
sis of NIH Image generated the frequency of occurrences of each
pixel value (0 = black, 255 = white) of each photograph. To help
visualize the difference between the wild-type and knockout
GFP-expression lines, pixel values that represented the black
background and darkest gray of the GFP expression (pixel values
<19) were excluded from the analysis, as were pixel values that
exceeded those seen in most of the knockout lines (pixel values
>118).

A graphic comparison between the wild-type and knockout
expression lines was done by taking the nonexcluded pixel val-
ues (19–118) and resetting their values as 1–100 on the x-axis.
The y-axis is calculated by multiplying the pixel value by the
frequency of occurrence of that pixel value to yield the total
intensity for that pixel value. The cumulative total intensity is
the area under the curve or the sum of all of the total intensity for
pixel values from 1 to 100.
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