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Kingella kingae is a gram-negative bacterium that is being recognized increasingly as a cause of septic
arthritis and osteomyelitis in young children. Previous work established that K. kingae expresses type IV pili
that mediate adherence to respiratory epithelial and synovial cells. PilA1 is the major pilus subunit in K. kingae
type IV pili and is essential for pilus assembly. To develop a better understanding of the role of K. kingae type
IV pili during colonization and invasive disease, we examined a collection of clinical isolates for pilus
expression and in vitro adherence. In addition, in a subset of isolates we performed nucleotide sequencing to
assess the level of conservation of PilA1. The majority of respiratory and nonendocarditis blood isolates were
piliated, while the majority of joint fluid, bone, and endocarditis blood isolates were nonpiliated. The piliated
isolates formed either spreading/corroding or nonspreading/noncorroding colonies and were uniformly adher-
ent, while the nonpiliated isolates formed domed colonies and were nonadherent. PilA1 sequence varied
significantly from strain to strain, resulting in substantial variability in antibody reactivity. These results
suggest that type IV pili may confer a selective advantage on K. kingae early in infection and a selective
disadvantage on K. kingae at later stages in the pathogenic process. We speculate that PilA1 is immunogenic
during natural infection and undergoes antigenic variation to escape the immune response.

Kingella kingae is a gram-negative bacterium that is a mem-
ber of the Neisseriaceae family and is being recognized increas-
ingly as a cause of pediatric diseases, including septic arthritis,
osteomyelitis, and endocarditis. K. kingae was originally iden-
tified by Henriksen and Bovre in 1968 (10) but was dismissed
early on as an important pathogen due to its infrequent recov-
ery from infected sites. Recent improvements in cultivation
techniques and the application of PCR-based assays have led
to increased detection of K. kingae in association with invasive
disease (3, 6, 17, 25, 27, 28, 31). A recent study identified K.
kingae as a major cause of pediatric joint and bone infections
and the leading etiology of these infections in children under
36 months of age (3).

Invasive disease due to K. kingae is believed to begin with
colonization of the upper respiratory tract (32). A sizeable
percentage of children are colonized with K. kingae at least
once per year during the first 2 years of life and appear to
acquire the organism by person-to-person transmission (1, 14,
22, 27, 29–31). Following colonization, the organism must
breach the respiratory epithelium, enter the bloodstream, and
then disseminate to deeper tissues. An essential step in both
colonization of the respiratory tract and seeding of remote
sites is adherence to host tissues. Recent work demonstrated
that K. kingae expresses type IV pili that are necessary for in

vitro adherence to both respiratory epithelial and synovial cells
(11). The major pilin subunit in K. kingae type IV pili is called
PilA1 and is essential for pilus assembly (11, 12).

Type IV pili have been shown to be necessary for adherence
and colonization in a variety of organisms, including the patho-
genic Neisseria species (2, 4, 15, 16, 19, 20, 23, 24, 26). In this
work, we examined a collection of clinical isolates of K. kingae
for pilus expression, adherence, and antigenic diversity of
PilA1. Our results revealed that K. kingae has three naturally
occurring colony types that correlate with density of piliation,
including high-density piliation, low-density piliation, and non-
piliation. Further analysis demonstrated that respiratory iso-
lates and nonendocarditis blood isolates were generally pili-
ated and that joint fluid, bone, and endocarditis blood isolates
were usually nonpiliated. Only piliated isolates were capable of
adherence to cultured respiratory epithelial and synovial cells
in vitro. The PilA1 subunit in piliated isolates exhibited signif-
icant strain-to-strain variation in sequence and antibody reac-
tivity.

MATERIALS AND METHODS

Bacterial strains, culture methods, and storage. Table 1 lists the clinical
isolates that were examined in this study. K. kingae strain 269-492 is the prototype
strain that we have examined in earlier studies, and K. kingae strain 269-492
pilA1::aphA3 is a nonpiliated mutant that contains a kanamycin cassette in the
pilA1 gene (11). K. kingae strains were routinely grown on TSA II chocolate agar
plates (Becton-Dickinson, Franklin Lakes, NJ) at 37°C with 5% CO2 supple-
mented with 50 �g/ml kanamycin, as appropriate. Escherichia coli was routinely
grown on Luria-Bertani (LB) agar or in LB broth supplemented with 100 �g/ml
ampicillin or 50 �g/ml kanamycin, as appropriate. To disrupt pilA1 and eliminate
piliation, strains were transformed by natural transformation with pUC19/
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TABLE 1. Analysis of the clinical isolates used in this study

Straine Site/yr of
isolation Disease state Colony typea Pilib Adherence to

Chang/Hig-82c
PilA1

expressiond

PYIDO Blood/2007 Tenosynovitis SC � �/� �
PYKH-B Blood/2007 Septic arthritis NS/NC � �/� ����
PYHER Blood/2005 Osteomyelitis D � �/� NAg

PYITK-B Blood/2007 Croup SC � �/� ��
PYKK096 Blood/1992 Croup NS/NC � �/� �
PYKK060 Blood/1994 Endocarditis NS/NC � �/� ���
PYKK190 Blood/2002 Endocarditis D � �/� NA
PYKK197 Blood/2003 Endocarditis D � �/� NA
PYKK199 Blood//2004 Endocarditis D � �/� NA
PYKK061 Blood/1995 Bacteremia SC � �/� �
PYKK092 Blood/1996 Bacteremia D � �/� NA
PYKK093 Blood/1995 Bacteremia NS/NC � �/� �
PYKK097 Blood/1992 Bacteremia NS/NC � �/� �
PYKK128 Blood/1997 Bacteremia D � �/� NA
PYKK129 Blood/1997 Bacteremia NS/NC � �/� ����
PYKK181 Blood/2002 Bacteremia NS/NC � �/� �
PYKK243 Blood/2005 Bacteremia SC � �/� ��
PYKK079 Blood/1994 Osteomyelitis NS/NC � �/� �
PYIDO PH-1 Respiratory/2007 Tenosynovitis SC � �/� �
PYKH PH-1 Respiratory/2007 Septic arthritis NS/NC � �/� ����
PYITK PH-1 Respiratory/2007 Croup SC � �/� ��
PYITK PH-2 Respiratory/2007 Croup SC � �/� ��
PYAA026 Respiratory/2006 Carrier SC � �/� ����
PYAA417 Respiratory/2006 Carrier NS/NC � �/� ��
PYBB285 Respiratory/2006 Carrier SC � �/� ��
PYC1639 Respiratory/2006 Carrier SC � �/� �
PYKK002 Respiratory/1994 Carrier NS/NC � �/� ��
PYKK003 Respiratory/1994 Carrier D �f �/� �
PYKK012 Respiratory/1994 Carrier SC � �/� ����
PYKK019 Respiratory/1993 Carrier D � �/� NA
PYKK021 Respiratory/1993 Carrier D � �/� NA
PYKK029 Respiratory/1994 Carrier NS/NC � �/� �
PYKK048 Respiratory/1994 Carrier SC � �/� ��
PYKK063 Respiratory/1994 Carrier D � �/� NA
PYKK065 Respiratory/1994 Carrier D � �/� NA
PYKK068 Respiratory/1994 Carrier NS/NC � �/� �
PYKK069 Respiratory/1994 Carrier NS/NC � �/� �
PYKK104 Respiratory/1996 Carrier SC � �/� �
PYKK113 Respiratory/1996 Carrier SC � �/� �
PYKK114 Respiratory/1996 Carrier NS/NC � �/� �
PYKK119 Respiratory/1996 Carrier SC � �/� �
PYKK120 Respiratory/1996 Carrier SC � �/� �
PYKK125 Respiratory1997 Carrier SC � �/� �
PYKK200 Respiratory/2004 Carrier SC � �/� �
PYO4a Respiratory/2005 Carrier NS/NC � �/� �
PYP8 Respiratory/2005 Carrier D � �/� NA
PYKK070 Skeletal/1993 Osteomyelitis D � �/� NA
PYKK101 Skeletal/1992 Osteomyelitis D � �/� NA
PYKK141 Skeletal/1996 Osteomyelitis NS/NC � �/� �
PYKK088 Skeletal/1996 Osteomyelitis D � �/� �
PYKK057 Synovial/1995 Septic arthritis NS/NC � �/� �
PYKK058 Synovial/1993 Septic arthritis D � �/� NA
PYKK064 Synovial/1994 Septic arthritis D � �/� NA
PYKK077 Synovial/1991 Septic arthritis D � �/� NA
PYKK080 Synovial/1996 Septic arthritis D � �/� NA
PYKK081 Synovial/1991 Septic arthritis NS/NC � �/� �
PYKK082 Synovial/1990 Septic arthritis SC � �/� ����
PYKK083 Synovial/1991 Septic arthritis D � �/� NA
PYKK094 Synovial/1995 Septic arthritis D � �/� NA
PYKK100 Synovial/1996 Septic arthritis SC � �/� �
PYKK102 Synovial/1992 Septic arthritis D � �/� NA
PYKK103 Synovial/1992 Septic arthritis D � �/� NA
PYKK123 Synovial/1997 Septic arthritis NS/NC � �/� �
PYKK56 Synovial/1994 Septic arthritis NS/NC � �/� �

a Colony types were designated spreading/corroding (SC), nonspreading/noncorroding (NS/NC), and domed (D).
b Piliation was assessed by negative-staining transmission electron microscopy.
c Adherence to Chang and Hig-82 cells was assessed by qualitative adherence assay.
d Expression of PilA1 was assessed by Western blot analysis using antiserum GP65. The level of expression was compared to expression by strain 269-492, which was

defined as ����.
e Strains PYHER, PYKK197, PYKK199, PY04a, PYP8, PYKK070, and PYKK057 were recovered from patients in central Israel, strains PYKK092, PYKK128,

PYKK141, PYKK088, and PYKK064 were recovered from patients in northern Israel, and all other strains were recovered from patients in southern Israel. Strains
PYKK060 and PYKK197 were recovered from adults, and all other strains were recovered from children between the ages of 6 months and 6 years.

f Atypical short fibers were observed.
g NA, not applicable.
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pilA1::aphA3 (11). K. kingae strains were stored at �80°C in brain heart infusion
(BHI) broth with 30% glycerol, and E. coli strains were stored at �80°C in LB
broth with 30% glycerol.

Adherence assays. Bacterial adherence was assessed in assays with Chang
(human conjunctiva) cells and Hig-82 (rabbit synovium) cells, which were ob-
tained originally from the American Tissue Culture Collection and were main-
tained as previously described (13). Adherence assays were performed as previ-
ously described (11). Briefly, bacteria were grown for 17 to 18 h on chocolate
agar and then resuspended in BHI broth to an optical density at 600 nm (OD600)
of 0.8. The bacteria were inoculated onto a fixed confluent monolayer of cells in
24-well plates, and the plates were centrifuged for 5 min at 1,000 rpm and then
incubated for 25 min at 37°C. Monolayers were rinsed with phosphate-buffered
saline (PBS) to remove nonadherent bacteria and were then stained with Giemsa
for examination by light microscopy. K. kingae isolates were classified as adherent
if light microscopy at �400 magnification revealed more than 50 bacteria/field
(about five times more bacteria than observed with 269-492 pilA1::aphA3).

Analysis of pilus expression. K. kingae isolates were examined for the presence
of pili by negative-staining transmission electron microscopy as previously de-
scribed, and a minimum of 20 organisms per strain were examined for the
presence of pili (11, 13).

Colony morphology. To determine colony morphology, isolates were grown for
17 to 18 h on chocolate agar and assessed by two independent observers with the
aid of a hand lens. Colonies were classified as spreading/corroding, nonspread-
ing/noncorroding, or domed.

Western analysis. To assess PilA1 antigenic variability, isolates were grown for
17 to 18 h on chocolate agar, resuspended in 1 ml of PBS to an OD600 of 0.8, and
then centrifuged at 21,130 � g for 2 min. The bacterial pellets were resuspended
in 200 �l PBS and mixed with 3� protein running buffer to produce whole-cell
lysates. The resulting lysates were examined by Western analysis using guinea pig
antiserum GP65 raised against PilA1 from K. kingae strain 269-492 and an
anti-guinea pig horseradish peroxidase-conjugated secondary antibody (12).

DNA sequencing and analysis. Chromosomal DNA was prepared using the
Wizard Genomic Purification kit (Promega, Madison, WI). The pilA1 gene
was amplified by nested PCR. The first round of amplification was performed
with primers Pilin Region Rev#2 (ACGTGTCGACCCAGCAACACCGTC
CAATCCAG) and Pilin Region Fwd#1 (ACGTGAATTCAAGCGCGTAT
GCCGTGCGAC), and the second round of amplification was performed with
primers PilA1seq#2Fwd (GCATGCACTCTGCTACCAAGTAAGGC) and
PilA2seqRev#2 (AAACCAAACACCAAAGCCGCC). Comparison of pre-
dicted amino acid sequences was performed as previously described by Obert
et al. (18).

Statistical analysis. Statistical analysis was performed using chi-square testing.
P values were two sided, and P values of �0.05 were considered significant.

Nucleotide sequence accession numbers. The pilA1 DNA sequences deter-
mined in this study were deposited in GenBank and assigned accession numbers
as follows for the K. kingae strains listed: GU581047 for strain PYO4a,
GU581048 for strain PYKK113, GU581049 for strain PYKK114, GU581050 for
strain PYKK123, GU581051 for strain PYKK125, GU581052 for strain
PYC1639, GU581053 for strain PYKK200, GU581054 for strain PYKK243,
GU581055 for strain PYKK56, GU581056 for strain PTKH-B, GU581057 for
strain PYKHPH-1, GU581058 for strain PYKK061, GU581059 for strain
PYKK068, GU581060 for strain PYKK069, GU581061 for strain PYKK096,
GU581062 for strain PYKK129, and GU581063 for strain PYKK181.

RESULTS

Colony morphology and piliation among K. kingae clinical
isolates. Earlier reports described two K. kingae colony types
called spreading/corroding and nonspreading/noncorroding
colonies (5, 9). The spreading/corroding colony type is charac-
terized by a uniform small raised central colony surrounded by
a large fringe and correlates with high-density piliation (5, 9,
12). In contrast, the nonspreading/noncorroding colony type is
characterized by a large, flat colony with a smaller fringe and
correlates with low-density piliation (5, 9, 12). Upon examining
our collection of 64 clinical isolates of K. kingae, we observed
an additional colony type that was similar in size to nonspread-
ing/noncorroding colonies but was more domed and lacked a
fringe, resembling the colonies formed by the nonpiliated K.

kingae strain 269-492 pilA1::aphA3 (Fig. 1). We refer to this
colony type as domed.

To assess the relationship more generally between expres-
sion of type IV pili and colony morphology, we examined our
collection of clinical isolates by negative-staining transmission
electron microscopy. As summarized in Table 1, 64% (41/64)
of the isolates had surface fibers that resembled the type IV pili
present on K. kingae strain 269-492. All of the piliated isolates
formed either spreading/corroding or nonspreading/noncor-
roding colonies, and all of the nonpiliated isolates formed
domed colonies. Strain PYKK003 expressed atypical short fi-
bers and formed domed colonies and was considered nonpili-
ated. To confirm that the type IV pilus-like fibers on the 41
piliated isolates were truly type IV pili, we insertionally inac-
tivated pilA1 in five fiber-expressing clinical isolates, namely,
PYKK012, PYKK060, PYKK061, PYKK081, and PYKK082.
Examination of the resulting mutants by negative-staining
transmission electron microscopy revealed an absence of fibers
in all cases (data not shown), confirming that the fibers in the
parent strains are type IV pili.

Considered together, these results demonstrate that there
are three colony morphologies among clinical isolates of K.
kingae, including spreading/corroding, nonspreading/noncor-
roding, and domed colony types. Spreading/corroding colonies
are associated with high-density piliation, nonspreading/non-
corroding colonies are associated with low-density piliation,
and domed colonies are associated with a lack of pili (12).

Relationship between piliation and colony morphology and
site of isolation. Given that only some of the isolates in our
collection were piliated, we examined whether pilus expression
correlated with the anatomic site of isolation. As shown in
Tables 1 and 2, a high percentage of respiratory isolates (79%;
22/28) and nonendocarditis blood isolates (79%; 11/14) were
piliated and a relatively low percentage (36%; 8/22) of joint
fluid, bone, and endocarditis blood isolates were piliated.
Among the piliated respiratory isolates, 64% (14/22) formed
spreading/corroding colonies (5, 9). Among the piliated non-
endocarditis blood isolates, 36% (4/11) formed spreading/cor-
roding colonies (5, 9). Among the piliated joint fluid, bone, and
endocarditis blood isolates (referred to as invasive isolates),
25% (2/8) formed spreading/corroding colonies.

Analysis using chi-square testing revealed that piliation was
more common among respiratory and nonendocarditis blood iso-
lates than among joint fluid, bone, and endocarditis blood isolates
(P � 0.02 for respiratory and nonendocarditis blood isolates com-
pared to joint fluid, bone, and endocarditis blood isolates) (Table
2). Additional analysis demonstrated that high-density piliation
was more common among respiratory tract isolates than among
nonendocarditis blood and focal invasive isolates (chi-square test,
P � 0.008 for respiratory isolates compared to nonendocarditis
blood and joint fluid, bone, and endocarditis blood isolates) (Ta-
ble 2).

Correlation between piliation and adherence. In previous
work, we demonstrated that K. kingae strain 269-492 requires
type IV pili for adherence to respiratory epithelial and synovial
cells (11). To assess whether type IV pili are required in general
for K. kingae adherence, we assessed our collection of clinical
isolates for the ability to adhere to Chang respiratory epithelial
cells and Hig-82 synovial cells. Overall, 64% (41/64) of the isolates
adhered to Chang cells and 62% (40/64) of the isolates adhered to
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Hig-82 cells (Table 1 and Fig. 2). Consistent with our earlier
observations with K. kingae strain 269-492, only the piliated
isolates were adherent (11). Furthermore, the pilA1 mutants of
strains PYKK012, PYKK060, PYKK061, PYKK081, and
PYKK082 were nonadherent (data not shown). Strain PYKK114
was sparsely piliated and was adherent to Chang cells and non-
adherent to Hig-82 cells.

Variability in PilA1 sequence among strains. Earlier analysis
demonstrated that K. kingae surface proteins exhibit antigenic

variability among strains (33). To assess the level of strain-to-
strain variability in PilA1, we began by examining the piliated
isolates by Western analysis using an antiserum raised against
PilA1 from K. kingae strain 269-492. Overall, only 53% (22/41)
of the piliated isolates reacted with our antiserum against
PilA1. As summarized in Table 1 and highlighted with a rep-
resentative sampling of piliated isolates in Fig. 3, of the 22
isolates with detectable levels of PilA1 by Western analysis,
only 27% (6/22) reacted as well as strain 269-492.

FIG. 1. Representation of the three different colony types formed by K. kingae clinical isolates and K. kingae strain 269-492 derivatives.
(A) Strain KK01, nonspreading/noncorroding derivative of 269-492. (B) Strain PYKK79, nonspreading/noncorroding clinical isolate. (C) Strain
KK03, spreading/corroding derivative of 269-492. (D) Strain PYKK243, spreading/corroding clinical isolate. (E) Strain 269-492 pilA1::aphA3,
nonpiliated derivative of 269-492 with domed morphology. (F) Strain PYKK102, nonpiliated clinical isolate with domed morphology. NS/NC
stands for nonspreading/noncorroding, SC stands for spreading corroding, and D stands for domed. The bar in panel A equals 3 mm.
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To assess whether the range of reactivity by Western analysis
reflected variability in the PilA1 sequence or variability in the
density of piliation, we determined the nucleotide sequence of
the pilA1 gene from 17 clinical isolates with various levels of
detectable PilA1. As shown in Fig. 4, pairwise analysis of the
predicted amino acid sequences revealed substantial variability
among the 17 isolates, with sequence identity ranging between
66% and 100% and averaging 79%. Only 52% of the residues
were identical across all isolates. The N-terminal one-third of
the protein was highly conserved, and the sequence over resi-
dues 66 to 120 and 153 to 164 (the C terminus of the protein)
was highly divergent (Fig. 5). Overall, the Western analysis and

sequencing data indicate that PilA1 is antigenically diverse
among strains of K. kingae.

DISCUSSION

K. kingae is being recognized increasingly as a leading cause
of pediatric joint and bone infections. Previous work estab-
lished that type IV pili are necessary for K. kingae strain 269-
492 adherence to respiratory epithelial and synovial cell lines
(11). To gain further insight into the importance of pili at
different points in the pathogenic process, we examined a col-
lection of clinical isolates for piliation. We found that a high
percentage of respiratory and nonendocarditis blood isolates
and a low percentage of joint fluid, bone, and endocarditis
blood isolates expressed pili. Additionally, we observed that
only piliated isolates were capable of adherence to respiratory
epithelial and synovial cells. We also discovered that the major

TABLE 2. Summary of pilus expression and colony morphology by
site of isolation

Site of isolation % Piliateda % Spreading/corroding
colony typeb

Total 64 (41/64)c 49 (20/41)

Respiratory 79 (22/28) 50 (14/28)

Blood nonendocarditis 79 (11/14) 29 (4/14)

Focal invasive 36 (8/22) 9 (2/22)
Joint fluid 43 (6/14) 14 (2/14)
Bone 25 (1/4) 0 (0/4)
Blood endocarditis 25 (1/4) 0 (0/4)

a Percent piliation is lower in focal invasive isolates than in respiratory and
blood nonendocarditis isolates (chi-square test, P � 0.02).

b Percent spreading/corroding colony type is lower in blood endocarditis and
focal invasive isolates than in respiratory isolates (chi-square test, P � 0.008).

c The values in parentheses are the number of isolates with that morphology/
total number of isolates.

FIG. 2. Representative light micrographs of K. kingae adherence to Chang cells. (A) Strain 269-492, piliated. (B) Strain 269-492 pilA1::aphA3,
nonpiliated. (C) Strain PYKK012, piliated. (D) Strain PYKK102, nonpiliated. Strain PYKK012 is representative of adherent clinical isolates, and
strain PYKK102 is a representative nonadherent clinical isolates. The bar in panel A equals 15 �m.

FIG. 3. Representative Western blot assay showing the range of
signals detected when whole-cell lysates of piliated K. kingae clinical
isolates were examined for PilA1 reactivity using antiserum GP65
raised against PilA1 from K. kingae strain 269-492. Strain 269-492 was
used as a positive control, and strain 269-492 pilA1::aphA3 was used as
a negative control.
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pilus subunit PilA1 displays a relatively high degree of strain-
to-strain variability in sequence.

Previous work described the presence of two K. kingae col-
ony types called spreading/corroding and nonspreading/non-
corroding, which correlate with high-density piliation and low-
density piliation, respectively (5, 9, 12). In this study, we

observed an additional spontaneously occurring colony type
that correlated with an absence of pili and a lack of bacterial
adherence. This nonpiliated colony type is similar in size to the
nonspreading/noncorroding colony type but is slightly more
domed and lacks any fringe, virtually identical to the colonies
produced by pilA1 mutants.

FIG. 4. Pairwise analysis of PilA1 sequences. Reactivity indicates the level of reactivity with antiserum raised against PilA1 from K. kingae strain
269-492. Colony indicates the colony type; SC refers to spreading/corroding colonies, and NS/NC refers to nonspreading/noncorroding colonies.

FIG. 5. Alignment of PilA1 predicted amino acid sequences from K. kingae strain 269-492 and 17 clinical isolates. Residues highlighted in black
are nonidentical to the majority of the residues at that position.
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Examination of our collection of clinical isolates for pilus
expression revealed a high prevalence of piliation among re-
spiratory isolates and nonendocarditis blood isolates and a low
prevalence of piliation among invasive isolates. These results
suggest that pili may provide a selective advantage early in
infection and a selective disadvantage at later stages in the
pathogenic process. In support of this conclusion, examination
of the colony morphology and level of piliation revealed a
progressive decrease in the density of pili on piliated isolates
from the respiratory tract to those from the bloodstream to
those from invasive sites. Interestingly, the selection against
type IV pili during K. kingae invasive disease differs from ob-
servations with Neisseria meningitidis bacteremia and meningi-
tis, which are characterized by persistence of bacterial piliation
(7, 21).

The progressive loss of piliation during the development of
K. kingae invasive disease highlights the importance of a pro-
cess for controlling the level of pilus expression. In previous
work, we found that mutation of the pilS gene, which encodes
the PilS sensor histidine kinase, results in a shift from high-
density piliation to low-density piliation (12), suggesting a
mechanism for the change from spreading/corroding colonies
to nonspreading/noncorroding colonies during infection. In ad-
dition, we discovered that insertional inactivation of the rpoN
gene, which encodes �54, or the pilR gene, which encodes the
PilR response regulator, eliminated the expression of pilA1
(12), raising the possibility that conversion from spreading/
corroding or nonspreading/noncorroding colonies (piliated
colonies) to domed colonies (nonpiliated colonies) as K. kingae
transitions from the respiratory tract or the blood to invasive
sites may be a consequence of mutations in pilR or rpoN. The
observation that clinical isolates vary in the density of piliation
also suggests that mutations in pilS, pilR, and rpoN are repre-
sentative of the range of mutations that alter K. kingae pilus
expression in vivo. More-detailed molecular studies are neces-
sary to fully define the mechanisms used by K. kingae to alter
pilus expression during natural infection.

Analysis of the predicted amino acid sequence of the K.
kingae PilA1 protein demonstrated significant variation be-
tween strains. Similar to PilE in Neisseria species, the K. kingae
PilA1 protein can be divided into three regions, namely, a
highly conserved N-terminal region, a variable middle region,
and a variable C-terminal region (8). However, the variable
regions appears to be shorter in PilA1 from K. kingae than in
PilE from Neisseria species. Interestingly in Neisseria species
and Pseudomonas aeruginosa, the conserved N terminus of the
pilin is located in the core of the pilus and the variable middle
and C-terminal regions are surfaced exposed (2). If K. kingae
type IV pili are structurally similar to Neisseria and Pseudomo-
nas pili, the conserved regions of K. kingae type IV pili may be
located in the pilus core and the variable middle and C-termi-
nal regions may be present on the surface of the pilus. It is
interesting to speculate that the PilA1 sequence variability
observed may facilitate prolonged colonization by a particular
strain or allow repeated colonization by different strains of K.
kingae.

This work emphasizes the importance of type IV pili in K.
kingae colonization and underscores the selection against type
IV pili as K. kingae enters the bloodstream and disseminates to
remote sites. In ongoing work, we are exploring the factors that

control the density of pilus expression and that influence pilus
antigenic variability in K. kingae. These studies will provide an
improved understanding of the role of type IV pili and other
factors in K. kingae pathogenesis.
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6. Gené, A., J. J. Garcia-Garcia, P. Sala, M. Sierra, and R. Huguet. 2004.
Enhanced culture detection of Kingella kingae, a pathogen of increasing
clinical importance in pediatrics. Pediatr. Infect. Dis. J. 23:886–888.

7. Harrison, O. B., B. D. Robertson, S. N. Faust, M. A. Jepson, R. D. Goldin,
M. Levin, and R. S. Heyderman. 2002. Analysis of pathogen-host cell inter-
actions in purpura fulminans: expression of capsule, type IV pili, and PorA
by Neisseria meningitidis in vivo. Infect. Immun. 70:5193–5201.

8. Heckels, J. E. 1989. Structure and function of pili of pathogenic Neisseria
species. Clin. Microbiol. Rev. 2(Suppl.):S66–S73.

9. Henriksen, S. D. 1969. Corroding bacteria from the respiratory tract. 1.
Moraxella kingii. Acta Pathol. Microbiol. Scand. 75:85–90.

10. Henriksen, S. D., and K. Bovre. 1968. Moraxella kingii sp. nov., a hae-
molytic, saccharolytic species of the genus Moraxella. J. Gen. Microbiol.
51:377–385.

11. Kehl-Fie, T. E., S. E. Miller, and J. W. St. Geme III. 2008. Kingella kingae
expresses type IV pili that mediate adherence to respiratory epithelial and
synovial cells. J. Bacteriol. 190:7157–7163.

12. Kehl-Fie, T. E., E. A. Porsch, S. E. Miller, and J. W. St. Geme III. 2009.
Expression of Kingella kingae type IV pili is regulated by �54, PilS, and PilR.
J. Bacteriol. 191:4976–4986.

13. Kehl-Fie, T. E., and J. W. St. Geme III. 2007. Identification and character-
ization of an RTX toxin in the emerging pathogen Kingella kingae. J. Bac-
teriol. 189:430–436.

14. Kiang, K. M., F. Ogunmodede, B. A. Juni, D. J. Boxrud, A. Glennen, J. M.
Bartkus, E. A. Cebelinski, K. Harriman, S. Koop, R. Faville, R. Danila, and
R. Lynfield. 2005. Outbreak of osteomyelitis/septic arthritis caused by Kin-
gella kingae among child care center attendees. Pediatrics 116:e206–e213.

15. Mårdh, P. A., and L. Westtom. 1976. Adherence of bacterial to vaginal
epithelial cells. Infect. Immun. 13:661–666.

16. Mattick, J. S. 2002. Type IV pili and twitching motility. Annu. Rev. Micro-
biol. 56:289–314.

17. Moumile, K., J. Merckx, C. Glorion, P. Berche, and A. Ferroni. 2003. Os-
teoarticular infections caused by Kingella kingae in children: contribution of
polymerase chain reaction to the microbiologic diagnosis. Pediatr. Infect.
Dis. J. 22:837–839.

18. Obert, C. A., G. Gao, J. Sublett, E. I. Tuomanen, and C. J. Orihuela. 2007.
Assessment of molecular typing methods to determine invasiveness and to
differentiate clones of Streptococcus pneumoniae. Infect. Genet. Evol. 7:708–
716.

19. Punsalang, A. P., Jr., and W. D. Sawyer. 1973. Role of pili in the virulence
of Neisseria gonorrhoeae. Infect. Immun. 8:255–263.

20. Saiman, L., K. Ishimoto, S. Lory, and A. Prince. 1990. The effect of piliation
and exoproduct expression on the adherence of Pseudomonas aeruginosa to
respiratory epithelial monolayers. J. Infect. Dis. 161:541–548.
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