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Cartilage is one of the very few naturally occurring avascular tissues where lack S
of angiogenesis is the guiding principle for its structure and function. This has 8
attracted investigators who have sought to understand the biochemical basis 5
for its avascular nature, hypothesising that it could be used in designing E
therapies for treating cancer and related malignancies in humans through s
antiangiogenic applications. Cartilage encompasses primarily a specialised 8
extracellular matrix synthesised by chondrocytes that is both complex and <
unique as a result of the myriad molecules of which it is composed. Of these 8
components, a few such as thrombospondin-1, chondromodulin-1, the type ==
XVllI-derived endostatin, SPARC (secreted protein acidic and rich in cysteine) %
and the type Il collagen-derived N-terminal propeptide (PIIBNP) have
demonstrated antiangiogenic or antitumour properties in vitro and in vivo <
preclinical trials that involve several complicated mechanisms that are 8
not completely understood. Thrombospondin-1, endostatin and the shark- =
cartilage-derived Neovastat preparation have also been investigated in human @
clinical trials to treat several different kinds of cancers, where, despite the 8’
tremendous success seen in preclinical trials, these molecules are yet to show a
success as anticancer agents. This review summarises the current state-of- <
the-art antiangiogenic characterisation of these molecules, highlights their _g
most promising aspects and evaluates the future of these molecules in C
antiangiogenic applications. <

In designing strategies to counter cancer, knowledge base in angiogenesis pathways and

restricting or eliminating angiogenic signals
from the tumour is the working principle
behind several therapeutic applications. An
idea that was first seeded by Judah Folkman
in the 1970s (Ref. 1) has matured into
exponentially expanding treatment
opportunities because of an ever-increasing

molecular targets. The discovery of naturally
occurring tissues that are antiangiogenic and
where antiangiogenesis and lack of vasculature
is a guiding principle dictating the
developmental outcome has allowed for an
increase in identification of antiangiogenic
molecules. Chief among these is cartilage, a

MO, USA

"Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
*Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis,

*Corresponding author: Linda J. Sandell. E-mail: sandelll@ewudosis.wustl.edu

|
Accession information: doi:10.1017/erm.2012.3; Vol. 14; e10; April 2012

© Cambridge University Press 2012


https://core.ac.uk/display/70379868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

http://www.expertreviews.org/

expert reviews

in molecular medicine

specialised form of extracellular matrix (ECM)
synthesised by chondrocytes.

The characteristic that sets cartilage apart is that it
is avascular, and this has piqued the interest of
investigators who have sought to understand its
avascular nature and to apply its principles to
therapeutic applications. It stands to reason that
the avascular nature of cartilage would be due to
its biochemical composition that antagonises
vascular invasion and there has been considerable
interest in identifying these antiangiogenic
components in cartilage. The primary components
of cartilage are the two major macromolecules,
type II collagen (Col II) and aggrecan (Fig. 1).
Minor components include collagens types IX, XI,
I, V, VI, X, XII, XIV as well as versican, perlecan,
lubricin, biglycan, fibromodulin, thrombospondins
(TSPs), chondromodulin-1 (ChM-1), endostatin
and secreted protein acidic and rich in cysteine
(SPARC), among others (reviewed in Ref. 2).
Although in adults cartilage serves primarily to
lubricate  the joints, during embryonic
development its chief function is to form the
template for future skeletal development in
mammals.

The process by which cartilage template is
replaced by bone is called endochondral
ossification, which occurs when the avascular
privilege of cartilage is broken down, allowing
for vascular invasion and endochondral bone
formation. This topic has been well reviewed
(Refs 3, 4), but to briefly summarise, the process
begins with mesenchymal cell condensations at
sites where the future skeletal elements will
form; cells in these condensates differentiate to
form chondrocytes that secrete a Col-Il-rich
avascular cartilage, with cells surrounding the
chondrocytes forming the perichondrium. To
allow for bone formation, the innermost
chondrocytes differentiate to form hypertrophic
chondrocytes that secrete a type-X-collagen-rich
matrix that gets calcified, with the perichondral
cells surrounding the hypertrophic chondrocytes
differentiating into osteoblasts to form the bone
collar. This allows for the vascular endothelial
growth factor (VEGF)-dependent vascular
invasion of the calcified cartilage matrix from
the bone collar, which brings along with it
chondroclasts and osteoblasts that degrade and
replace the calcified matrix with bone and
results in removal of the hypertrophic
chondrocytes by apoptosis. This process thus
allows for vascular invasion only of the calcified

matrix, leaving the rest of cartilage matrix
avascular. This is crucial to bone growth because
the avascular cartilage continuously provides
chondrocytes  that differentiate to form
hypertrophic chondrocytes that are removed
during endochondral bone growth, thus
allowing for continuous bone growth. With
maturity, the centre of the avascular cartilage
undergoes hypertrophic differentiation again to
allow vascular invasion and the development of
a secondary ossification centre. In adults, most
of the cartilage is thus replaced by bone, with
the exception of the articular cartilage at the
bone ends, which remains avascular to maintain
cartilage phenotype and functions to lubricate
the joint. Breakdown of the antiangiogenic
barrier during diseases such as osteoarthritis
and rheumatoid arthritis results in undesirable
vascular invasion of the articular cartilage and
irreversible cartilage degeneration.

Tumours that exceed 1-2mm in diameter
require new capillary formation or angiogenesis
that feeds their growth (Ref. 5). The recognition
of this fundamental principle behind tumour
growth has triggered the search for
antiangiogenic molecules that would prevent
tumour growth. Blessed with its avascular state,
cartilage has since then become a prime target
for investigation of its antiangiogenic properties
(Refs 5, 6). Although primarily articular cartilage
was tested, growth plate chondrocytes also
demonstrated antiangiogenic effects (Ref. 7).
These discoveries propelled an interest in the
identification of cartilage components that
produce these antiangiogenic and antitumour
effect with the expectation that these cartilage-
derived molecules could be used in therapeutic
applications to treat tumours and related
malignancies. This review summarises the status
quo of some antiangiogenic molecules that are
present in cartilage.

Neovastat and shark cartilage extract
Neovastat and shark cartilage extract (SCE) are
preparations with antiangiogenesis activity
derived from shark cartilage. Interest in shark
cartilage as a source of anticancer agents grew
because of its avascular state coupled with the
misconception that sharks do not get cancer. The
cartilaginous shark endoskeleton was thus
thought to be an ideal source of large quantities
of anticancer agents. Current literature finds
researchers at extreme ends of the spectrum in
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Schematic representation of the cartilage matrix showing many of the molecules
present in cartilage and some of their interactions
Expert Reviews in Molecular Medicine © 2012 Cambridge University Press

Figure 1. Schematic representation of the cartilage matrix showing many of the molecules present in
cartilage and some of their interactions. The matrix closest to the chondrocytes is indicated as territorial
and between the chondrocytes is interterritorial. The cartilage extracellular matrix (ECM) is made of
molecules that are synthesised by the chondrocyte. It has two major macromolecules, collagen type Il and
the large proteoglycan, aggrecan. The aggrecan protein consists of a globular core protein to which are
attached chains of chondroitin sulfate (CS) and keratan sulfate (KS). The figure shows aggrecan monomers
attached to hyaluronic acid (HA), which is stabilised by the link protein, to form a larger proteoglycan
aggregate in interaction with the smaller proteoglycan, fibulin. In addition to these, the cartilage ECM is also
composed of minor amounts of other collagens such as collagen types IX, XI, Ill, V; VI, X, Xll, XIV and XVIII
(from which endostatin is derived). Collagen type IX has four noncollagenous (NC) domains and has the
ability to form heterotypic fibrils with collagen II/XI (shown in the interterritorial matrix) that is coated with
smaller proteoglycans such as decorin and fibromodulin. The cartilage intermediate layer protein (CILP) is
found primarily in the interterritorial matrix. Other smaller proteoglycans include biglycan, decorin and
chondromodulin-1. The other major cartilage proteins are the thrombospondins (TSPs), which consists of
TSP1, TSP2 and COMP (cartilage oligomeric matrix protein also known as TSP5). Matrilins 1 and 3 (MAT1,
MATS3) are the primary members of the multimeric matrilin family of proteins found in the cartilage. PRELP
(proline arginine-rich end leucine-rich repeat protein) and CHAD (chondroadherin) are small leucine-rich
repeat proteins (LRRs) that bind to fibre forming collagens with high affinity due to the LRR domain.
Syndecan is a heparan sulfate proteoglycan (HSPG) found on the chondrocyte cell surface where it acts as
receptors for matrix components such as fibronectin. A number of matricellular proteins such as SPARC
(secreted protein acidic and rich in cysteine) are also seen in the cartilage ECM. The cartilage matrix and its
composition are reviewed in depth elsewhere (Ref. 2). This figure is modified from Ref. 2 with permission
from Lippincott, Williams & Wilkins (Philadelphia).
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their faith in shark-cartilage-derived products. The
discovery of cancer in sharks (Ref. 8) and the lack of
promising results from the most recent clinical trial
with Neovastat (see below) were serious setbacks
to its use in cancer treatment.

Neovastat (or AE-941) is not a single molecule
but a mix of water-soluble components derived
from shark cartilage prepared by a proprietary
manufacturing process developed by Aeterna
Laboratories  (Quebec, Canada) (Ref. 9).
Homogenisation of the shark cartilage in water
followed by sequential extraction to remove
water-insoluble and inactive molecules results in a
concentrated biological derivative with a mixture
of components less than approximately 500 kDa.
To date, the identity of all the individual
components of Neovastat is not known, but
extensive characterisation has attributed it with
antiangiogenic properties. Neovastat induced
a concentration-dependent inhibition of cell
proliferation in human umbilical vein endothelial
cells (HUVECs) and bovine endothelial cells;
inhibited the formation of blood vessels induced
by basic fibroblast growth factor (FGF) in the
chicken chorioallantoic membrane model;
severely inhibited in vivo the vascular invasion of
bFGF-containing Matrigel implanted in C57BL6
mice fed orally with Neovastat; and inhibited
lung metastases in the murine Lewis lung
carcinoma model (Ref. 10). Neovastat combined
with cisplatin, a conventional anticancer agent,
exhibited greater anticancer activity than cisplatin
alone. These data indicated the successful
extraction of the antiangiogenic and antitumour
agents from shark cartilage into Neovastat, and
surprisingly, its success as an orally active
biological compound.

Antiangiogenic features of Neovastat
Mechanistically, Neovastat induced apoptosis
specifically in endothelial cells that involved the
activation of caspase-3, caspase-8 and caspase-9
(Ref. 11). Neovastat interferes with VEGF
binding to VEGFR-2 (Flk-1/KDR), which is
required to make new blood vessels (Ref. 12),
thereby inhibiting several mitogenic, chemotactic
and antiapoptotic responses in endothelial cells
(Ref. 13). Neovastat also inhibited the activity of
matrix metalloproteinases (MMPs), primarily
MMP2, but also of MMP1, MMP7, MMP9,
MMP12 and MMP13 (Ref. 14), limiting the
metastatic potential of tumour cells (Ref. 15).
Neovastat-treated ~ovalbumin-sensitised mice

exhibited reduced airway hyper-responsiveness
and inflammation when challenged (Ref. 16);
these mice demonstrated significantly reduced
levels of MMP9 activity in their bronchoalveolar
lavage fluid and reduced VEGF and hypoxia-
inducible factor (HIF)-2at expression in their lung
tissue, suggesting that the anti-inflammatory
effects of Neovastat are linked to inhibition of
VEGF and HIF-2a (Ref. 17).

Neovastat can activate the Jun amino terminal
kinase (JNK) and nuclear factor-kappaB (NF-«B)
signalling pathways as demonstrated by its
ability to modulate the plasmin—plasminogen-
activator (PA) systems. Plasmin-PA systems are
vital components of the proteolytic machinery
that degrade the ECM along with MMPs
during angiogenesis (Refs 18, 19). Tissue PA
(tPA) and urokinase PA (uPA) are the two major
types of PA that convert plasminogen into
plasmin (Ref. 20). Binding of uPA to its cell
surface receptor is thought to have a role in
neovascularisation and  therefore  tumour
angiogenesis (Refs 21, 22). However, tPA is
synthesised primarily by endothelial cells and
has a role in cleavage of fibrin-bound PA to
plasmin, leading to fibrin degradation (Ref. 20).
Neovastat stimulates tPA-mediated plasmin
generation (but only marginally inhibits uPA);
BIAcore surface plasmon resonance
spectroscopy demonstrated direct physical
interaction of Neovastat with plasminogen that
increased its catalytic efficiency (Ref. 23).
Neovastat increased tPA  production by
endothelial cells, increased the phosphorylation
and activity of JNK1 and JNK2, and the
phosphorylation of IkB (an inhibitor of NF-«xB)
thereby inducing NF-kB signalling (Ref. 24).
Administration of SCE (a generic preparation of
Neovastat) to mouse glioma models resulted in
tPA activity stimulation that is thought to direct
the antiangiogenic property of SCE because
tumours derived from glioma cells that
overexpressed PAI-1, an inhibitor of tPA, did not
exhibit decreased blood vessel formation
(Ref. 25). Mice orally treated with
SCE demonstrated a reduction in glioblastoma
infiltration into the brain, with very small
tumours, in contrast to mice that did not get
SCE treatment. These studies indicated
beneficial aspects of orally administered
Neovastat across the blood-brain barrier and
beneficial aspects of SCE in immune-
compromised athymic mice with glioma.
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Clinical trials with Neovastat
Multi-targeting ~ properties  of  Neovastat
propelled its use as a multimodal, anticancer
drug in humans. Phase I/Il clinical trials for
Neovastat in patients with renal cell carcinoma
(RCC) (Ref. 26) and non-small cell lung cancer
(NSCLC) (Ref. 27) were conducted. In both
RCC and NSCLC patients, Neovastat was well
tolerated, with no dose-limiting toxicity, with
oral administrations of up to 240 ml/day
showing significantly longer median survival
than those receiving 60 ml/day. However,
neither of these studies reported any response
within the tumour [in contrast to the tumour
necrosis observed in mouse models on
Neovastat administration (Ref. 25)]. In the
NSCLC study, about half the number of
patients did not complete standard imaging
assessments because of progressive disease as
per clinical symptoms. A randomised, double-
blinded, placebo-controlled Phase III clinical
trial was conducted to determine Neovastat
efficacy in treating Stage III NSCLC patients
(Ref. 28). NSCLC patients who had previously
received chemoradiotherapy were treated
further with chemoradiotherapy plus Neovastat
(or placebo). Although no tumour responses
were observed with Neovastat administration,
no statistically significant difference in patient
survival was observed between those receiving
Neovastat plus chemoradiotherapy and those
receiving  chemoradiotherapy  alone.  To
rationalise the failure of Neovastat, the authors
noted that as Neovastat is a complex, natural
product as opposed to a well-defined chemical
molecule, it lacks pharmacokinetic/
pharmacodynamic  (PK/PC) assays, which
makes it difficult to control the product for
quality (Ref. 28). Furthermore, no validated
biomarker is available to follow the
antiangiogenic effect in humans. Although the
authors conclude that their study does not
support the wuse of shark-cartilage-derived
products as a therapy, the study design limits
the conclusion and leaves behind an open
question regarding their value in clinical
applications (Ref. 29).

Chondromodulin-1
ChM-1 is an extensively studied molecule
identified in cartilage with demonstrated
antiangiogenic properties in vitro. ChM-1 (also
known as the leukocyte cell-derived chemotaxin

1 encoded by the LECT1 gene in humans) is a
25kDa glycoprotein first identified in fetal
bovine epiphyseal cartilage extracts (Ref. 30)
with ability to stimulate DNA synthesis in
cultured rabbit growth plate chondrocytes in the
presence of FGF. The mature ChM-1 protein is
the C-terminal portion of a larger precursor
protein with one N-linked and two O-linked
potential glycosylation sites. Interest in ChM-1
grew when it was discovered that it could
inhibit bovine carotid artery endothelial cell
growth and prevent a tube-like cellular network
in vitro (Ref. 31). This was considered a
prognostication of its ability to inhibit
proliferation and tube morphogenesis of
invading endothelial cells during angiogenesis
in vivo. In situ hybridisation analyses in bovine
embryonic growth plate (Ref. 31) and
developing mice (Ref. 32) detected ChM-1
mRNA in the proliferating and pre-hypertrophic
cartilage zones (which are avascular) with
expression  missing  from  the  mature
hypertrophic zone (where vascular invasion
during endochondral bone growth takes place)
and vascular bone. The detection of ChM-1
protein in the cartilage inter-territorial matrix in
the same avascular zones as its mRNA
strengthened the notion of ChM-1 as an
antiangiogenesis molecule in cartilage. Once
considered specific to cartilage, ChM-1 has since
then been identified in other avascular tissues,
such as the eye, thymus (Ref. 33) and cardiac
valves (Ref. 34).

Antiangiogenic features of ChM-1 and
skeletal homeostasis
In humans, ChM-1 protein was detected in the
ECM  surrounding mature  hypertrophic
chondrocytes in neonatal vertebrae, at the
junction with bone (Ref. 35). This is not
consistent with results in mice or bovine growth
plate, nor can this be deemed favourable for
vascular invasion during endochondral bone
growth if it is antiangiogenic in vivo. The results
from mouse models cast doubt on the ability of
ChM-1 to regulate angiogenesis in vivo. Based
on its distribution in the bovine and murine
growth plate, it was predicted that ChM-1
allows the cartilage to remain avascular and its
reduced expression in the hypertrophic cartilage
allows  for  vascular invasion  during
endochondral bone development. However,
ChM-1-null mice demonstrated normal cartilage
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and bone development, with no reported
abnormal cartilage vascularisation (Ref. 36).
Even though recombinant human ChM-1
demonstrated inhibition of human retinal
endothelial cell tube morphogenesis in vitro
(Ref. 37), suggesting that it might be required to
maintain normal avascular state of the retina,
mice lacking ChM-1 did not show any abnormal
vascularisation of the retina or any other
abnormalities in eye development. It was
thought that loss of ChM-1 in mice was
compensated by its close homologue,
tenomodulin (also called tendin) (Ref. 33). Like
ChM-1, tenomodulin inhibited the growth of
HUVECs and tube morphogenesis in vitro
(Ref. 38). However, mice that lack both ChM-1
and tenomodulin also did not show any
abnormalities in eye development, nor were any
abnormalities in cartilage and endochondral
bone development reported (Ref. 39).

Despite these contradictions, the notion of ChM-
1 being an antiangiogenic factor in vivo cannot be
overruled. During endochondral ossification in
mice, chondrocyte hypertrophic differentiation
results in loss of ChM-1 expression prior to matrix
calcification in the cartilage anlagen (Ref. 32).
Hypertrophic chondrocyte differentiation and
osteoblast differentiation is governed among
other factors, by the transcription factor Runx2
(Cbfal) (Refs 40, 41, 42, 43). Runx2-null mice
lack hypertrophic differentiation and osteoblast
development and show no endochondral bone
formation. Interestingly, this was accompanied by
an increase in ChM-1 in the cartilage of these mice
(Ref. 43). However, rescue of Runx2-null mice by
a transgene that expressed Runx2 in chondrocytes
reduced ChM-1 expression in the cartilage
and allowed for vascular invasion. This indicated
that Runx2 regulates ChM-1 expression in
chondrocytes and that ChM-1 is required to
maintain cartilage avascular state. Likewise, in
experimental osteoarthritis in rats, ChM-1 levels
decreased in all cartilage zones with advancing
osteoarthritis with a concomitant increase in
VEGF expression (Ref. 44). However, inhibition
of VEGF by administration of antibodies against
VEGF improved articular cartilage repair in an
osteochondral defect model with parallel
increases in ChM-1 (Ref. 45).

ChM-1-null mice exhibited delayed union of the
fractured bone in a tibial fracture repair model
(Ref. 46). Fracture repair usually mimics
endochondral bone development where a

cartilaginous  callus is initially = formed
enveloping the fracture site that is replaced by
bone. ChM-1-null mice exhibited severely

reduced external cartilaginous callus formation
restricted only to the fracture site, with reduced
gene expression for the cartilage-promoting
factor Sox9 and for type X collagen. ChM-1-null
mice exhibited a bony callus instead in the
periosteal region and an enhanced internal
fracture callus. ChM-1 might also be responsible
for the good-quality cartilaginous repair tissue
formed when femoral chondral lesions in
miniature pig knee joint were treated with
matrix-associated ~ autologous  chondrocyte
transplantation (MACT) (Ref. 47). In the absence
of MACT, these chondral lesions were filled
with excessive bony tissue and vascular invasion
from the subchondral bone plate with overlying
fibrocartilage repair tissue of poor quality that
lacked ChM-1 expression. With MACT
treatment, the cartilage repair tissue formed was
rich in proteoglycan and Col II, and positive for
ChM-1, with calcification of repair tissue and
subchondral bone overgrowth inhibited. ChM-1
was also detected in normal healthy noncalcified
articular pig cartilage.

In the same porcine model, chondroprogenitor
cells overexpressing recombinant human ChM-1
when transplanted into the chondral lesions
stimulated chondrogenic differentiation that
produced a superior hyaline-like matrix than
those in the absence of recombinant human
ChM-1, by inhibiting chondrocyte hypertrophy,
preventing vascularity and therefore
endochondral ossification, thus stabilising the
chondrocyte phenotype (Ref. 48). In an
immobilisation-induced cartilage degeneration
model (Ref. 49), rats with plaster-cast-
immobilised ankle joints demonstrated thinning
of the ankle joint cartilage with reduced ChM-1,
in contrast to rats with continuous passive
motion. Immobilised ankle joints also exhibited
increased VEGF and HIF-1a expression, with
vascular invasion of the calcified cartilage zone
from the subchondral bone plates. ChM-1 is also
abundantly expressed in other avascular tissues
such as cardiac valves in mice (Ref. 34). Young
ChM-1-null mice exhibited normal cardiac
valves; but as these mice aged, in strong contrast
to wild-type mice, they exhibited bulky aortic
valves that showed VEGF expression, enhanced
angiogenesis of the aortic valves, increased
calcium deposits and consequent aortic stenosis
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characterised by turbulent blood flow. In human
heart diseases such as in congenital bicuspid
aortic valves stenosis, cardiac valves exhibited

ChM-1  downregulation in  regions of
neovascularisation, calcification and VEGEF-A
expression, with  aggressive = macrophage

infiltration and inflammation, indicating that
ChM-1 is important for normal valvular
function (Ref. 50).

Modes of ChM-1 antiangiogenic inhibition
Application of ChM-1 in clinical trials as an
antitumour agent has not been reported.
However, ChM-1 is able to suppress
tumourigenesis in mouse tumour models. The
application of recombinant human ChM-1 to
OUMS-27 (that do not express ChM-1) xenograft
tumour model in mice (Ref. 51) or to HepG2-
induced tumours in athymic mice (Ref. 52)
suppressed tumour growth and prevented blood
vessel invasion into the tumour. Interestingly,
ChM-1 can act directly on tumour cells and not
just endothelial cells. ChM-1 inhibited DNA
synthesis and reduced growth of human tumour
cells such as HepG2, PC-3 and NOS-1,
presumably by suppressing the STAT signalling
pathway (Ref. 52). ChM-1 also downregulated
cell cycle proteins such as cyclin D1, cyclin D3
and cdké6 and upregulated the cell cycle inhibitor
protein p21P!, although no apoptosis was
observed. These data suggested that ChM-1
mediates its cytotoxic effect on human tumour
cells primarily by causing cell cycle arrest.
However, in HUVECs, ChM-1 inhibited their
migration  through  disruption of actin
reorganisation and suppression of Racl/Cdc42
GTPase activity (Ref. 53). In a mouse model for
rheumatoid arthritis, recombinant human ChM-1
suppressed proliferation of mouse splenic T cells
and production of interleukin (IL)-2 from CD4" T
cells (Ref. 54). It also suppressed the development
of antigen-induced arthritis and the proliferation
of synovial cells from joints of rheumatoid
arthritis patients. How ChM-1 manifests these
diverse inhibitory physiological responses in
different cell types remains to be investigated. In
addition to its antiangiogenic activity, ChM-1
might have additional attributes (Ref. 48) that
remain to be identified. These data suggest that
ChM-1 has a strong potential to be used as a
therapeutic agent for treatment of localised
tumours as well as for suppressing the severity of
symptoms in rheumatoid arthritis patients.

Thrombospondins

TSPs are a family of five cartilage matrix proteins
of which only TSP1 and TSP2 have antiangiogenic
properties and are of interest in clinical
applications as anticancer agents. Although
TSP1 and TSP2 are detected in cartilage and
have important roles in maintaining growth
plate homeostasis (Refs 55, 56, 57), their
distribution is not limited to cartilage and their
antiangiogenic properties discovered in other
systems have been well reviewed (Refs 58, 59).
In addition to their antiangiogenic properties,
TSP1 and TSP2 also have angiogenic functions
(reviewed in Ref. 60).

Antiangiogenic features of TSP1 and TSP2
The antiangiogenic properties of TSP1 and TSP2
are complex and may arise from several
mechanisms. In the presence of the CD36
receptor, TSP1 mediates its antiangiogenic effect
on endothelial cells in vitro, and inhibition of
neovascularisation in vivo, through apoptosis by
sequential upregulation of the Src family kinase
p59fyn, caspase-3 like proteases and the p38
mitogen-activated protein kinase (MAPK)-
mediated signalling and activation of Fas ligand
(FasL) (Refs 61, 62), or by tumour necrosis factor
(TNF)-receptor 1 and TNFa in the absence of
FasL  (Ref. 63). TSP1 also inhibits
lymphangiogenesis (formation of lymphatic
vessels) through CD36 ligation on monocytic
cells in a mechanism that inhibits transforming
growth factor p (TGFpP)-mediated expression of
VEGF-C (Ref. 64), providing an added
anticancer benefit because lymphangiogenesis
facilitates cancer metastases to distant lymph
nodes and organs (Refs 65, 66). TSP2 also
mediates apoptosis through CD36 interaction
(Refs 67, 68). However in HUVECs, in the
absence of CD36, TSP1 induced upregulation of
p219P/¥af  p53  phosphorylation and  Rb
dephosphorylation resulting in cell cycle arrest
(Ref. 69). Ligation of the VLDL receptor by TSP1
or TSP2 also inhibited cell division in
endothelial cells by a similar nonapoptotic
pathway with cell cycle arrest (Ref. 70). A third
mechanism is the binding of TSP1 and TSP2 to
heparan sulfate proteoglycans (HSPGs) through
its N-terminal heparin-binding domain (Ref. 71).
HSPGs are co-receptors for the low-density
lipoprotein  receptor-related protein (LRP1).
LRP1 is a scavenger receptor with endocytic and
signal transmission behaviour that is required
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for chondrocyte differentiation (Ref. 72). LRP1
functions to clear complexes of TSP1 and TSP2
with MMP2, MMP9 and VEGF (Refs 73, 74, 75)
resulting in decreased activity of these enzymes
to inhibit vascular invasion.

TSP1- and TSP2-deficient mouse models

and skeletal homeostasis
It is not known as to whether the mechanisms
enumerated above are used in cartilage, but
antiangiogenic benefits from TSP1 and TSP2 can
be surmised from the following. Mice deficient
in TSP1 or TSP2 show only mild chondrocyte
growth plate disorganisation, but no abnormal
vascularisation of the cartilage was reported
(Ref. 57), although TSP2-deficient mice showed
enhanced cortical bone formation (Ref. 76).
However, loss of TSPl in mice exhibited
increased retinal vascular density, a reduced rate
of endothelial cell apoptosis, and excessive
capillary formation of heart and skeletal muscles
(Refs 77, 78). In a collagen-induced arthritis
model in rats, recombinant murine TSP1
delivered intraarticularly by adenoviral vectors
(AdTSP1) into the ankle joints of collagen-
sensitised rats, reduced the pathogenesis of
arthritis with lower levels of VEGF, IL-1p, blood
vessels and synovial hypertrophy (Ref. 79).
Absence of TSP2 altered the dynamics of
osteogenic and chondrogenic differentiation in
the callus in a tibial fracture model such that the
invading mesenchymal cells showed decreased
chondrogenic differentiation with less cartilage
formation and increased bone formation in the
callus characterised by increased blood vessel
density (Ref. 80).

In cartilage repair models, as seen with ChM-1,
femoral chondral lesions in miniature pig knee
joint treated with MACT developed superior
cartilage that stained positively for TSP1
(Ref. 47). Application of recombinant human
TSP1 to microfracture lesions discouraged
ingrowing mesenchymal bone marrow stromal
cells from terminal differentiation thus
preventing chondrocyte hypertrophy and bone
outgrowths from the subchondral plate, though
this did not induce chondrogenesis and the
lesions did not repair (Ref. 81). But application
of recombinant human TSP1 along with
osteogenic  protein-1, which can induce
chondrogenesis, but cannot prevent chondrocyte
differentiation and endochondral ossification,
resulted in the lesions repairing favourably with

production  of  cartilage that  resisted
hypertrophic differentiation and bone formation.
RT-PCR analysis of human chondrocytes treated
with  TSP1  showed downregulation of
GADD4583, which is required for chondrocyte
hypertrophy, although no increase in p21°P/*f
was observed (Ref. 81). In a rat model of
osteoarthritis with anterior cruciate ligament
transection (ACLT), intraarticular injection of
AdTSP1 in the ACLT-treated knee joint resulted
in angiogenesis inhibition, with reduced
microvessel formation, macrophage infiltration,
IL-13 and MMP13 levels, and reduced synovial
tissue hyperplasia that suppressed osteoarthritis
progression (Ref. 82). How TSP1 modulates
these effects is not completely understood but
TSP1 induced TGF in this study, which is
known to aid cartilage repair and
chondrogenesis (Refs 83, 84).

Clinical applications with TSP1 and TSP2
The benefits from TSP1 and TSP2 in preclinical
applications in treating cancer are considerable
and have been well reviewed (Refs 68, 85, 86, 87,
88). TSP1 applications have gained further
credibility as a result of some recent noteworthy
observations. Treatment of prostate tumour cells
with  quinoline-3-carboxamide  tasquinimod
(chemotherapy for metastatic prostate cancer)
induced wupregulation of TSP1 that was
paralleled by reduced VEGF expression in the
tumour tissue (Ref. 89). TSP1 was tested for its
ability to treat cerebral arteriovenous
malformation (AVM) as a noninvasive therapy.
Cerebral AVM endothelial cells have different
angiogenic characteristics than endothelial cells
from normal control brain; TSP1 was able to
normalise the rate of proliferation and migration
of AVM endothelial cells (Ref. 90). The
contradictory absence of angiogenesis in
hypoxic tissues of patients suffering from
systemic sclerosis could be explained by the
aberrant expression of TSP1 in these tissues
(Ref. 91). A fusion protein of TSP2 with IgG-Fcl
could inhibit both primary tumour growth of
MDA-MB-435 tumour cells in vivo and lymph
node and lung metastases from the mammary
gland in athymic nude mice (Ref. 92).

Clinical applications with TSP1-derived
ABT-510 and ABT-526
Several logistical considerations precluded the use
of the whole molecule for clinical development and
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application in humans. These include the large size
of TSP1, cost-prohibitive large-scale production
and the possibility of unwanted side effects that
could arise from  multiple  biological
complications because of the multiple TSP1
receptors and target cells, including increased
angiogenesis with TSP1 overexpression (reviewed
in Ref. 68). A possible solution has been the use
of TSP1-derived peptide mimetics. Successful
peptides were based on the antiangiogenic
sequence GVITRIR derived from the second type
I repeat of TSP1 (Ref. 93), later modified for
better half-life and PK/PC profiles, through the
incorporation of non-natural amino acids,
resulting in ABT-510 and ABT-526 (Ref. 94). ABT-
510 and ABT-526 demonstrated both safety and
efficacy in treatment of dogs with cancer
(Refs 95, 96), in mice with malignant glioma and
in inducing apoptosis of human brain endothelial
cells in vitro (Ref. 97), and in combination with
valproic acid to inhibit neuroblastoma in vivo
(Ref. 98). In an orthotopic syngeneic mouse
model of epithelial ovarian cancer, treatment of
mice with cisplatin or paclitaxel was more
effective in combination with ABT-510, primarily
because ABT-510 normalised the tumour
vasculature by direct apoptotic effect on
immature blood vessel endothelial cells, allowing
for better uptake of cisplatin or paclitaxel,
thereby significantly reducing tumour size
(Ref. 99). ABT-510 was tested successfully for its
ability to reduce tumours in mouse models of
head and neck squamous cell cancer (Ref. 100)
and epithelial ovarian cancer (Ref. 101) that
merited clinical trials in humans.

Although ABT-526 has remained largely
preclinical, ABT-510 has been tested in clinical
trials. The impact of ABT-510 in human clinical
trials, however, is not impressive. Phase I/II
clinical trials to determine safety, toxicity and
PK/PC responses with ABT-510 in patients with
a variety of advanced cancers (Refs 102, 103),
metastatic melanoma (Ref. 104), advanced RCC
(Ref. 105) and advanced soft tissue sarcoma
(Ref. 106) demonstrated that ABT-510 was well
tolerated with negligible adverse effects at the
doses studied (although the maximum tolerated
dose was never defined). These studies,
however, failed to demonstrate any significant
favourable clinical benefit to patients on ABT-
510 treatment. This led to Phase I/II trials for
ABT-510 in combination with gemcitabine and
cisplatin for treatment of solid tumours

(Ref. 107), or 5-fluorouracil and leucovorin
(Ref. 108), or in combination with
chemoradiation for treatment of glioblastoma
(Ref. 109). Although these combinations were
deemed safe, the efficacy of ABT-510 in
treatment of human cancers remains
inconclusive because the number of patients
showing improvement due to ABT-510
treatment was not impressive. Randomised
Phase III trials with ABT-510 remain to be
reported.

Endostatin

Endostatin is a 20 kDa fragment derived from the
C-terminus of collagen XVIII by the activity of
several proteinases, chiefly MMP9 (Refs 110,
111). Endostatin, similar to other inhibitors of
angiogenesis, inhibits endothelial cell
proliferation and migration and induces
apoptosis. It is expressed in cartilage, but is not
specific to cartilage and has been detected in
both fetal epiphyseal cartilage and adult
articular cartilage in humans, rats and mice,
where its spatio-temporal distribution might
provide an antiangiogenic benefit against
cartilage vascularisation (Refs 112, 113). In the
meniscal fibrocartilage, its concentration is
highest in the completely avascular central
portion as compared with the outer region that
has some vascular elements.

Antiangiogenic features of endostatin
The mechanism by which endostatin mediates its
antiangiogenic effect is complex and is not
completely understood because of the myriad
pathways that it affects. To highlight some major
pathways and recent advances, endostatin can
suppress VEGF expression and induce
expression of the antiangiogenic pigment
epithelium-derived factor (Refs 114, 115, 116); it
can also wupregulate the antiangiogenic
VEGF165b isoform through inhibition of
specificity protein 1 (Ref. 117). Endostatin can
directly bind the VEGF receptor KDR/Flk-1
(VEGFR-2) on endothelial cells and therefore
inhibit VEGF-induced activation of p38 MAPK
(Ref. 118). It can downregulate TNFa and
vascular cell adhesion molecule-1 (VCAM-1)
(Ref. 115), which induces chemotaxis and
angiogenesis in quiescent endothelial cells.
Endostatin also binds to other receptors on
endothelial cells such as glypicans (Ref. 119), but
most of its effect is manifested by its binding to
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its high-affinity receptor, nucleolin. Nucleolin is
tissue specific and present only on angiogenic,
but not mature, blood vessels; antinucleolin
antibodies can inhibit the antiangiogenic and
antitumour activities of endostatin in vivo
(Ref. 120). Endostatin binding to nucleolin
results in the internalisation of endostatin and
transportation to the nucleus, an event that
requires integrin as. Endostatin then inhibits the
phosphorylation of nucleolin in the nucleus that
is inhibitory to nucleolin activity and retards
endothelial cell proliferation. Mechanistically,
how endostatin is internalised and translocated
to the nucleus is not known, but the heparin-
binding motif in its N-terminus is a key
structural motif required for nucleolin
interaction (Ref. 121); mutation of six arginine
residues (individually or in combinations) to
alanine in this motif eliminates
endostatin—nucleolin  interactions and its
antiangiogenic  and  antitumour  activity.
Endostatin-nucleolin interaction also inhibits
lymphangiogenesis by  inhibiting  lymph
endothelial cells in active lymphangiogenic
vessels, and prevents liver metastasis in a mouse
breast cancer model (Ref. 122).

Endostatin can negatively impact on endothelial
cell migration and adhesion in several ways. It
binds to asf; integrins on endothelial cells,
resulting in the activation of Src kinase and
downregulation of RhoA GTPase in a caveolin-
1- and heparin-sulfate-dependent manner
resulting in actin cytoskeleton disorganisation
(Refs 123, 124). It inhibits MT1-MMP-mediated
activation of proMMP2 protease (Ref. 125) and
directly inhibits MMP2 activity by binding to its
catalytic site (Ref. 126), thereby eliminating their
activities vital to endothelial cell migration.
Endostatin downregulates uPA and PAI-1 and
removes uPA from focal adhesion molecules to
effect  actin  cytoskeletal  disorganisation
(Ref. 127). Endostatin downregulates
antiapoptotic members Bcl-2 and Bcl-x;, (with no
effect on the pro-apoptotic Bax) to facilitate
apoptosis (Ref. 128). It inhibits the Wnt-
signalling pathway through the glypican
receptors to target [-catenin for degradation
(Ref. 129), which eventually suppresses Myc and
cyclin D1 (Ref. 130). Endostatin can also
upregulate levels of Beclin-1, a physiological
partner of Bcl-2 and Bcl-xp; this upregulation
distorts the Bcl-2 (or Bcl-x;) to Beclin 1 ratio,
which can modulate endothelial cell apoptosis

(Ref. 131). It can also induce apoptosis in
endothelial cells by inducing tyrosine
phosphorylation of the Shb adaptor protein by
binding to HSPG (Ref. 132).

In animal models of ulcerative colitis, increase in
VEGEF in the colonic tissue was paralleled by a
concomitant increase in endostatin as a defense
mechanism; the larger the colonic lesion, the
greater the increase in VEGF and therefore
endostatin (Ref. 133). Induction of ulcerative
colitis in MMP9-deficient mice resulted in less
endostatin than in wild-type mice pointing to
the in vivo role of MMP9 in generating
endostatin from collagen XVIII in lesions. The
levels of VEGF and endostatin are often linked,
and although the molecular mechanism is not
completely understood, VEGF might positively
influence endostatin  levels through the
activation of MMP9 (Ref. 134). Finally, the large
number of genes that are up- or downregulated
by endostatin in a genome-wide microarray
analysis (Ref. 135) suggests that a lot remains to
be wunderstood about endostatin’s role in
antiangiogenesis.

Derivatives of endostatin with
antiangiogenic properties
Several studies have explored structural
modifications of endostatin to improve function,
routes of endostatin administration and
combinatorial therapeutic applications as an
antitumour agent in preclinical and clinical
studies. Structural modifications include a single
amino acid substitution (P125A endostatin) that
was more antiangiogenic than wild-type
endostatin (Ref. 136). Zinc has an important role
in both structure and biological functions of
endostatin with the amino acid residues H1, H3,
H11 and D76 coordinating with a single zinc ion
(Refs 137, 138, 139). Impaired zinc binding in
recombinant endostatin expressed in Pichia
pastoris ~ showing  N-terminal  truncations
demonstrated  different  biological activity
depending on the extent of the truncations.
However, addition of an extra zinc binding
motif (ZBP) to its N-terminal region (ZBP-
endostatin) showed more potent antiendothelial
and antitumour activity than wild-type
endostatin (Ref. 140). Addition of the integrin-
targeting Arg-Gly-Asp (RGD) moiety to its N-
terminus improved targeted localisation of
endostatin to the tumour vasculature, which
overexpresses oyfs ayPs and ayf; integrins
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compared with normal tissues, and improved its
antiangiogenic activity (Ref. 141). Addition of
the IgG Fc fragment increased endostatin half-
life in systemic circulation (Ref. 142); the
addition of both RGD and Fc effectively
inhibited tumour-cell-induced angiogenesis, and
in combination with Bevacizumab (monoclonal
antibody to VEGF-A), additively inhibited
ovarian cancer growth in vivo (Ref. 142). A
novel therapeutic fusion protein, EndoCD,
which links endostatin to cytosine deaminase
and uracil phosphoribosyl transferase (CD) (the
latter ~ converts  5-fluorocytosine to  the
antitumour drug 5-fluorouracil) suppressed
tumour growth and metastasis in human breast
and colorectal animal models (Ref. 143). The
P125A endostatin fusion protein with anti-
Her2 antibody (aHer2-IgG3-huEndo-P125A)
showed better half-life in serum and improved
activity in breast cancer xenograft models
(Ref. 144). Combining endostatin with another
angiostatic protein, the angiostatin—-endostatin
hybrid, provided a potent synergistic effect
(Ref. 145).

Clinical applications of endostatin
Recent years have seen an increased interest in
applications of endostatin through different
vectors, and combinatorial therapies, for various
tumour models. Application routes tested
include adenoviral vectors (Ref. 146), adeno-
associated vectors (Ref. 147), the oncolytic
herpes simplex virus (Ref. 148) and
mesenchymal stem cells (Ref. 149), all of which
deliver endostatin; the Lister vaccine vaccinia
viral strain, which delivers an
endostatin—angiostatin fusion protein (Ref. 150)
or endostatin plus carboxylesterases (which
converts a latent drug into an active drug)
(Ref. 151); and NIH/3T3 cells expressing murine
endostatin from retroviral vectors to provide
sustained levels of endostatin and a long-term
antiangiogenic effect (Ref. 152). Recent attempts
at combinatorial therapies in preclinical models
included endostatin plus oxaliplatin (Ref. 153) or
paclitaxel (Ref. 154), which decreased tumour
blood vessel density and VEGF expression, and
normalised the tumour blood vasculature,
allowing for increased drug uptake. Combined
with radiotherapy, endostatin inhibited tumour
growth and induced tumour regression
(Ref. 155), or reduced VEGF Ilevels in
combination with gemcitabine (Ref. 156); ZBP-

endostatin potentiated the effects of chemo-
radiotherapy (Ref. 157) or the antitumour effect
of dexamethasone (Ref. 158); it disrupted the
actin cytoskeleton in lymph endothelial cells by
inhibiting the fibronectin alternative extra
domain A and integrin a9 (which facilitates
lymphangiogenesis of colorectal tumours)
expression and interactions (Ref. 159). In
cartilage repair studies, collagen scaffolds
supplemented  with ~ chondrocytes  and
endostatin-expressing mesenchymal stem cells
allowed the formation of a cartilaginous implant
suffused with endostatin, which promoted the
anabolic activity of the chondrocytes to produce
more sulfated glycosaminoglycans indicating
better cartilage production (Refs 160, 161). It is
hoped that endostatin-infused scaffolds when
implanted into a cartilage fissure in vivo, such
as during osteoarthritis, would allow for better
cartilage repair.

Clinical trials with endostatin and its

derivatives
Phase I/II trials with endostatin that showed any
benefit were largely conducted with ZBP-
endostatin referred to as Endostar (trade name)
or YH-16 (in Chinese publications that have
been reviewed (Ref. 162)); however, those
conducted with recombinant human endostatin
showed no benefit (Refs 163, 164, 165, 166, 167).
The better response to Endostar was due to the
ZBP domain that supported the vital nature of
the N-terminus in endostatin functions. More
recently, Phase I/II trials were conducted with
Endostar in patients with solid cancers
(Ref. 168), in patients with extensive-stage small-
cell lung cancer combined with cisplatin and
etoposide (Ref. 169), or recombinant human
endostatin in combination with gemcitabine/
cisplatin for NSCLC (Ref. 170), demonstrated
that endostatin was safe for human
administration with minimal adverse reactions
and that patient responses were better in
combination therapies compared with the use of
endostatin alone. However, a recent, Phase II,
multicentre randomised double-blind placebo-
controlled study in NSCLC patients receiving
Endostar plus paclitaxel-carboplatin showed
that although this combination had a good
safety profile, overall increased patient survival
was not significant (Ref. 171). No Phase III trial
has been reported in an English language
publication.
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Secreted protein acidic andrichin cysteine
SPARC is a matricellular glycoprotein that is not
only multifunctional, but is perhaps the only
molecule here that has extensive reviews
devoted to both its angiogenic (or tumour-
promoting) and antiangiogenic (or tumour-
inhibiting) roles (Refs 172, 173, 174). Also
known as osteonectin/BM40 and known initially
as a bone protein (Ref. 175), SPARC is present in
cartilage (Refs 176, 177), where it is thought to
have a function in secretion of the ECM
components (Ref. 178). SPARC has been tested
extensively in vitro and in preclinical tumour
models that demonstrated its antiangiogenic
ability to induce endothelial cell apoptosis,
inhibit endothelial cell migration (Ref. 179),
directly induce apoptosis of ovarian cancer cells
(Ref. 180), and inhibit breast cancer -cells
(Ref. 181) and neuroblastoma (Ref. 182). As with
other molecules discussed above, the exact
mechanism  of SPARC  antiangiogenesis
behaviour remains unclear, but it can inhibit the
mitogenic activity of bFGF (Ref. 183), and by
binding directly to platelet-derived growth
factor (Ref. 184) and VEGF (Ref. 185) can
suppress their binding to their respective
receptors. No abnormal cartilage vascularisation
in SPARC-null mice has been reported, but these
mice exhibit cataract formation in the eye lens
(Ref. 186) that 1is not associated with
angiogenesis. There are no reported clinical
trials of SPARC. Of late, SPARC has been used
primarily in disease prognosis, where its
expression is associated with better prognosis
for colon cancer (Refs 187, 188), although
high SPARC expression is associated with
enhanced tumour and poor prognosis of gastric
carcinoma (Ref. 189) or oesophageal carcinoma
(Ref. 190).

The N-terminal propeptide of the type IIB
collagen protein
The trimeric fibrillar type II collagen protein (Col
II) has only recently been attributed as a source of
antiangiogenic activity in cartilage. It is
synthesised as a procollagen with N- and C-
terminal propeptides that are removed by
proteinases from the collagen trimers prior to its
incorporation into the ECM (Ref. 191). The Col
II protein exists in two splice forms, type IIA
and type IIB (Ref. 192). The type IIB form (Col
IIB) is distinguished from type IIA (Col IIA) by
the absence of exon-2-coded sequences and is

chondrocyte specificc, as opposed to the
chondroprogenitor-derived Col IIA. The N-
terminal propeptide is not removed from the
Col IIA procollagen and is deposited intact into
the ECM, where it binds growth factors such as
BMP-2 and TGF{ through the exon-2-coded
sequences (Ref. 193). The removal of the N-
terminal propeptide (PIIBNP) from the Col IIB
procollagen results in a free peptide whose
molecular function is not understood. The
presence of two RGD sequences in tandem
(RGDRGD) that is well conserved across
mammals in PIIBNP suggests its interaction
with integrin family members.

Recent work indicated that PIIBNP has strong
antiangiogenic and  antitumour activities
(Ref. 194) that might have a role in keeping the
cartilage avascular and could be exploited to kill
tumours in vivo. The interaction of recombinant
human PIIBNP (GST-PIIBNP) with hCh-1 cells
(human  chondrosarcoma cell line) was
dependent on ays and ayfs integrins and took
place in an RGDRGD-dependent manner in
vitro. Notably, PIIBNP was able to directly
induce cell death in hCh-1 cells, in Hela
cells (cervical carcinoma cell line) and in
MDA-MB231 (breast cancer cell line) in a dose-
dependent manner. Disruption of the RGD-
integrin  interaction by mutation of the
RGDRGD motif in PIIBNP or downregulation of
integrin ay in the cell line using siRNA
technology significantly reduced cell death. The
significance of these in vitro observations hit
home when it was realised that PIIBNP exists in
cartilage and that normal chondrocytes do not
express, or have very low levels of ay, 5 and 33
integrins, and presumably therefore are not
killed by PIIBNP in vivo. GST-PIIBNP induced
necrosis as opposed to apoptotic cell death and
was also inhibitory to tumour cell migration.
When tested in vivo, GST-PIIBNP suppressed
MDA-MB231 induced tumours in nude mice
(Fig. 2) demonstrating a 75% reduction in
tumour growth over untreated tumours. Several
cell types such as endothelial cells, osteoclasts
and tumour cells express ayfs and ayfs
integrins, suggesting that PIIBNP might function
in vivo to keep the cartilage avascular and free
from bone invasion. Indeed, PIIBNP was able to
induce apoptotic death in osteoclasts (but not
osteoblasts and macrophages) in an RGD- and
integrin-dependent manner both in vitro and in
vivo (Ref. 195). These data indicate that PIIBNP
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The antitumour activity of the type IIB collagen protein derived PIIBNP propeptide
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Figure 2. The antitumour activity of the type IIB collagen protein derived PIIBNP propeptide. (a) An in vivo
tumour assay showing the antitumour activity of PIIBNP peptide. NOD/SCID mice were injected into the dorsal
surface with MDA-MB231 breast cancer cells to form solid tumours. When the tumours grew to 0.5 cm in
diameter, the mice were divided into two groups with three mice in each. Mice received either 6 nmol of
PIIBNP or GST per day by subcutaneous injection into the tumour for 2 weeks. The dashed line shows the
boundary of the tumour. (b) When the largest tumour size in the control (GST) group reached 2 cm in
diameter, the mice were sacrificed and tumours removed and weighed. The graph shows tumour weights in
grams (g) represented as mean + s.d. (*P < 0.01 compared with GST control, n = 6) derived from these mice
after treatment with PIIBNP or GST. PIIBNP suppressed tumour growth in mice. Reproduced from Ref. 194,
with permission. © The American Society for Biochemistry and Molecular Biology, 2010.

might have antiangiogenic role in cartilage and
could be used as an anticancer agent.

Future prospects for antiangiogenic
research for cartilage-derived molecules
Interest in antiangiogenic molecules has also
triggered an interest in their application as
anticancer agents in the clinic. The current
antiangiogenic modality approved to treat
different forms of cancer in the clinic uses
monoclonal antibodies against VEGF or to its
receptor. Bevacizumab, an anti-VEGF
humanised antibody is used as a treatment for
pancreatic cancer, colorectal cancer, nonsmall
lung cancer, metastatic renal cancer, carcinoma,
glioblastoma and metastatic breast cancer, often
in combination with chemotherapy. It is also
under investigation for treatment of solid
tumours. Despite the tremendous interest
generated by the applications of anti-VEGF
therapy, it is beleaguered with several
drawbacks, primarily its sporadic success in

clinical treatments and an inability to provide
significant survival benefit (Refs 196, 197). In
fact Avastin, a commercially marketed
bevacizumab preparation, was banned recently
by the FDA for breast cancer treatment,
although it continues to be used for lung and
kidney cancers. Furthermore, some tumours
demonstrate initial sensitivity to anti-VEGF
therapy, but acquire resistance later as a result of
the upregulation of bFGF within the tumour
after treatment with an anti-VEGFR2 antibody
(Ref. 198). Some tumours also have a natural
resistance to anti-VEGF therapy because of
CD11b"Grl" myeloid cells (Ref. 199). The high
cost of these therapies and their lack of efficacy,
coupled with significant toxicity in the form of
hypertension (Ref. 200), suggest a need for
designing additional antiangiogenic agents.
Cartilage as a naturally occurring avascular
tissue was considered a good source of
antiangiogenic molecules that might fill the gaps
from anticancer therapies resulting from
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targeting VEGF alone. Indeed, studies on these
cartilage-derived antiangiogenic molecules have
demonstrated the versatile and complex nature
of their antiangiogenic, and in some cases, direct
anticancer (ChM-1 and PIIBNP) effect, that is
not restricted to targeting VEGF (see Table 1 and
Fig. 3).

However, none of these cartilage-derived
molecules have so far had much success in
clinical trials. Their in vitro assessments and
highly successful preclinical trials have had little
bearing on their success in humans. Although
their in vivo antiangiogenic benefit was largely
visible only under certain experimental
conditions, such as in a fracture model or
cartilage lesion model, deficiency of these
molecules in mouse models did not create any
abnormal pathology. Perhaps redundancies in
functions are responsible for this effect.
Discovery of these molecules has not helped to
explain how cartilage remains avascular either.
Furthermore, Col IIB, ChM-1 and endostatin
levels in cartilage drop drastically with maturity
and yet the cartilage remains avascular in a
healthy individual. Thus, cartilage might derive
its antiangiogenic benefit, not from a single
molecule, but from the sum total from several
individual antiangiogenic molecules, or all
cartilage components might need to be present
together for it to be antiangiogenic. This
suggests that it would be improbable to expect
total comprehensive  benefit based on
administration of a single antiangiogenic
molecule in clinical trials. Combinations of
molecules, such as TSP1 plus endostatin, in
trials might provide better benefit. In
preparations of Neovastat, the individual
molecules remain largely unidentified. It needs
to be ascertained whether Neovastat extract by
any chance contains the water-soluble fractions
of all the single molecules discussed above. The
only identified molecule in Neovastat is the
kappa light chain (which had the ability to
stimulate tPA activity; see Ref. 201), which
cannot be considered cartilage specific.

Attempts to identify individual shark cartilage
components that demonstrate antiangiogenic
properties showed sequence similarity to alpha
parvalbumin family (SCP1 protein) (Ref. 202) or
novel proteins (Refs 203, 204), but not to the
molecules discussed above. Although Col IIB
has recently been recognised, molecules in
cartilage identified as antiangiogenic so far are

largely the minor cartilage components. Not
many reports on articular cartilage aggrecan, the
other = major  macromolecule, as an
antiangiogenic compound  exist, although
intervertebral = disc  aggrecan has  been
demonstrated to be inhibitory to endothelial cell
adhesion and migration (Ref. 205), and a
polysaccharide isolated from porcine cartilage,
an aggrecan-derived component, has
demonstrated apoptosis of tumour cells by
activation of caspase-3 and caspase-9 (Ref. 206).
Recently, articular cartilage glycosaminoglycan
has been demonstrated to inhibit endothelial cell
adhesion (Ref. 207). Other cartilage components
such as Troponin 1 (Ref. 208), which interferes
with bFGF function by binding to bFGF receptor
(Ref. 209), metastatin complex, which disrupts
endothelial cell proliferation by binding to
hyaluronan (Ref. 210), the 16 kDa N-terminal
fragment of prolactin with ability to inhibit
bFGF (Ref. 211), or the tissue inhibitors of
metalloproteinases that are often upregulated by
drugs that inhibit angiogenesis (Ref. 212), have
not been pursued much beyond their initial
recognition of their antiangiogenic properties.

There is no simple explanation for the overall
disappointment with these molecules. In the
case of Neovastat, lack of PK/PC data was
considered a hindrance to analyse its failure. But
PK/PC values are available for TSP1 and
endostatin, but have not helped in alleviating
their failures. Peptide mimetics of TSP2 have not
been reported and considering the lack of
significant benefit from TSP1, antiangiogenic
properties of TSP2 might need further
evaluation. The mechanisms of inhibitory
processes for most of these molecules are only
marginally understood. Understanding the
complete antiangiogenic mechanism might
better prepare us for clinical trials. This can be
exemplified for endostatin where a lack of
understanding of the ZBP domain in the N-
terminus led to the use of P. pastoris expressed,
N-terminally truncated, recombinant human
endostatin in clinical trials, which did not
demonstrate any therapeutic efficacy. The
genetic heterogeneity of the human population
could also be a hindrance to translating the
success from the preclinical, syngeneic mouse
models. Formulating a new strategy or criteria
for testing antiangiogenic molecules might be
necessary before any further investments in
clinical trials.
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Figure 3. The multimodal antiangiogenic attributes of various molecules on endothelial cells.
Representation of the effects of Neovastat, chondromodulin-1 (ChM-1), thrombospondin-1 (TSP1),
endostatin, SPARC (secreted protein acidic and rich in cysteine) and the type Il collagen-derived N-terminal
propeptide (PIIBNP) on endothelial cells (see also Table 1 and text for further details).

Designing effective administration, improving
half-life, or identification and modification of
peptide derivatives are being tested to tackle
these shortcomings. For example, attachment of
polyethylene glycol to the N-terminus of
Endostar to reduce proteolytic susceptibility
(Ref. 213), peptide derivatives of endostatin
further modified by the addition of RGD
sequence for improved activity (Refs 214, 215),
addition of the tumour-penetrating peptide
internalisation sequence (iRGD) to endostatin
to facilitate penetration into extravascular
tumour tissue that demonstrated stronger
antiangiogenic/antitumour activity (Ref. 216),
and finally, endostatin-expressing Ad vectors

encapsulated in cationic liposome to allow
delivery to cancer cells lacking Ad receptors
(Refs 217, 218), have all found success in
preclinical trials, although not yet in humans.
The criteria of what is a better biomarker of a
successful clinical trial might also need to be
revisited. Antiangiogenesis prevents blood vessel
formation that shrinks tumours, rather than by
being cytotoxic; this is a slow process that might
need time for characterisation and recognition of
the clinical end point. Antiangiogenesis remains
an attractive therapeutic application, but
it would appear that its sources need to be
scrupulously and completely understood to
translate them into beneficial clinical applications.
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Website
For detailed information on clinical trials using anti-VEGF therapies, endostatin or the TSP1-derived ABT-510 in

treatment of cancer, see:

http://clinicaltrials.gov

Review articles
Bonnet, C.S. and Walsh, D.A. (2005) Osteoarthritis, angiogenesis and inflammation. Rheumatology 44, 7-16
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Further reading, resources and contacts (continued)

This review discusses how angiogenesis promotes osteoarthritis and the importance of the antiangiogenic
approach in designing therapies for osteoarthritis.

Zheng, M.-J. (2009) Endostatin derivative angiogenesis inhibitors. Chinese Medical Journal 122, 1947-1951
The review discusses peptide derivatives from endostatin and their success in preclinical trials.

Rosca, E.V. et al. (2011) Anti-angiogenic peptides for cancer therapeutics. Current Pharmaceutical
Biotechnology 12, 1101-1116

This review describes the various antiangiogenic peptides derived from several different classes of biological
molecules and their trials and tribulations.

Wang, J. et al. (2005) Results of randomized, multicenter, double-blind phase Il trial of recombinant human
endostatin (YH-16) in treatment of non-small cell lung cancer patients. Zhongguo Fei Ai Za Zhi 8, 283-290

The article is in Chinese and therefore we were unable to review it. It is the only published Phase Ill clinical trial for
endostatin in humans, and readers may be interested in the abstract that is available in English in PubMed
(PMID: 21108883), which suggests a beneficial response in NSCLC patients treated with endostatin when
combined with chemotherapy.

Faye, C. et al. (2009) The first draft of the endostatin interaction network. Journal of Biological Chemistry 284,
22041-22047

This article describes an endostatin network that involves physical interaction with other proteins including
TSP1 and SPARC identified by surface plasmon resonance studies, indicating the extremely
complicated mode of endostatin behaviour.

These three reviews discuss the impediments to treating tumours by chemotherapy and the importance of the
antiangiogenic approach to normalise blood vessels to allow for better drug uptake.

Goel, S. et al. (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiological
Reviews 91, 1071-1121

Sato, Y. (2011) Persistent vascular normalization as an alternative goal of anti-angiogenic cancer therapy.
Cancer Science 102, 1253-1256

Minchinton, A.l. and Tannock, I.F. (2006) Drug penetration in solid tumours. Nature Reviews Cancer 6, 583-592

The following three reviews of SPARC are recommended as they summarise the early work done on SPARC, its
numerous biological functions, crystal structure and its role primarily in ECM assembly:

Yan, Q. and Sage, E.H. (1999) SPARC, a matricellular glycoprotein with important biological functions. Journal
of Histochemistry and Cytochemistry 47, 1495-1505

Bradshaw, A.D. and Sage, E.H. (2001) SPARC, a matricellular protein that functions in cellular differentiation and
tissue response to injury. Journal of Clinical Investigation 107, 1049-1054

Bradshaw, A.D. (2009) The role of SPARC in extracellular matrix assembly. Journal of Cell Communication and
Signaling 3, 239-246

Features associated with this article

Figures

Figure 1. Schematic representation of the cartilage matrix showing many of the molecules present in cartilage
and some of their interactions.

Figure 2. The antitumour activity of the type IIB collagen protein derived PIIBNP propeptide.

Figure 3. The multimodal antiangiogenic attributes of various molecules on endothelial cells.
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Table E

Table 1. Summary of cartilage-derived antiangiogenic molecules, their modes of inhibition in endothelial cells o
and outcomes in clinical trials.
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