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The Oxal protein plays a central role in facilitating the cotranslational insertion of the nascent polypeptide
chains into the mitochondrial inner membrane. Mitochondrially encoded proteins are synthesized on matrix-
localized ribosomes which are tethered to the inner membrane and in physical association with the Oxal
protein. In the present study we used a chemical cross-linking approach to map the Saccharomyces cerevisiae
Oxal-ribosome interface, and we demonstrate here a close association of Oxal and the large ribosomal subunit
protein, MrpL40. Evidence to indicate that a close physical and functional relationship exists between MrpL40
and another large ribosomal protein, the Mrp20/L23 protein, is also provided. MrpL40 shares sequence
features with the bacterial ribosomal protein L24, which like Mrp20/L23 is known to be located adjacent to the
ribosomal polypeptide exit site. We propose therefore that MrpL40 represents the Saccharomyces cerevisiae 1.24
homolog. MrpL40, like many mitochondrial ribosomal proteins, contains a C-terminal extension region that
bears no similarity to the bacterial counterpart. We show that this C-terminal mitochondria-specific region is
important for MrpL40’s ability to support the synthesis of the correct complement of mitochondrially encoded

proteins and their subsequent assembly into oxidative phosphorylation complexes.

The mitochondrial genome encodes a small, but important,
number of proteins (8). These proteins are predominantly es-
sential components of the mitochondrial oxidative phosphory-
lation (OXPHOS) machinery. In the yeast Saccharomyces cer-
evisiae the proteins encoded by the mitochondrial DNA
(mtDNA) include cytochrome ¢ oxidase subunits Cox1, Cox2,
and Cox3, cytochrome b of the cytochrome bc, complex, F,F,-
ATP synthase subunits Atp6, Atp8, and Atp9, and the small
ribosomal subunit component Varl. With the exception of Varl,
these mitochondrially encoded proteins are integral membrane
proteins which become inserted into the inner membrane dur-
ing their synthesis on mitochondrial ribosomes tethered to the
inner membrane (11, 19, 29, 32, 34). The cotranslational mem-
brane insertion of these proteins is achieved by maintaining a
close physical association of the ribosomes to the inner mem-
brane at sites where the insertion machinery exists (19, 31, 32).

Oxal is an inner membrane protein that forms a central
component of the insertion machinery, whose presence is re-
quired for the cotranslational membrane insertion of the mi-
tochondrially encoded proteins (4-6, 15-17). The Oxal protein
has been shown to physically associate with the ribosomes and
more specifically with the large ribosomal subunit. Matrix-
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exposed elements of the Oxal protein, such as its hydrophilic
C-terminal tail, support this Oxal-ribosome interaction (19,
32). Furthermore, in intact mitochondria we have previously
demonstrated that Oxal can be chemically cross-linked to Mrp20,
a component of the large ribosomal subunit (19). Mrp20 is ho-
mologous to the bacterial ribosomal protein L23, a component
known from the structural analysis of the ribosomes to be located
next to the polypeptide exit site of the large ribosomal subunit (3,
10, 23, 27, 30). Thus, it was concluded that Oxal, the site of
membrane insertion into the inner membrane, exists in close
physical proximity to the large ribosomal subunit and specifi-
cally to that region of the ribosomes where the nascent chain
emerges. This close physical relationship between ribosomal
components and the Oxal insertion site has been proposed to
support a tight coordination between the protein translation
and membrane insertion events (19, 31, 32). Given the strong
hydrophobicity of the OXPHOS complex subunits which are
encoded by the mitochondrial DNA and synthesized by these
ribosomes, a close coupling of the translation and insertion
events is proposed to ensure that the hydrophobic nascent
chains are directly inserted into the membrane during their
synthesis. The exposure of hydrophobic nascent chains to the
hydrophilic matrix space may promote their aggregation and
thus incompetency for subsequence membrane insertion.

In bacteria, the L23 protein has been implicated to play a
direct role in the cotranslational insertion of proteins into the
membrane (7, 13, 24, 33). Thus, it is possible that proteins
adjacent to the polypeptide exit site of mitochondrial ribo-
somes may be directly involved in targeting ribosomes to spe-
cific regions of the inner membrane where the membrane
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insertion and subsequent assembly events occur. The mito-
chondrial ribosomes resemble their prokaryotic ancestors in
some respects, e.g., antibiotic sensitivity, but they differ in a
number of important ways (1, 12, 22, 30). In general, the
protein content of the mitochondrial ribosomes is greater than
their bacterial counterparts. This increase in protein content is
largely attributed to the fact that the mitochondrial ribosomal
proteins are larger in size than their bacterial homologs. Over
the course of evolution, many of the mitochondrial ribosomal
proteins have acquired novel extensions, new domains, in ad-
dition to their bacterial homology domains. These acquired
extensions not only include N-terminal (often cleavable) sig-
nals to target these proteins (nuclear encoded) to the mito-
chondria but also in many instances large C-terminal exten-
sions, which are unique to the mitochondrial ribosomal proteins
and have thus been termed “mitospecific domains” (12, 30).
Largely uncharacterized, the functional relevance of these var-
ious mitospecific domains of the ribosomal proteins remains
unknown. It is speculated that some (or all) of these mitospe-
cific domains serve to ensure that the ribosome becomes as-
sembled and is translationally active while bound to the inner
membrane surface.

In the present study we sought to further characterize the
interaction of the mitochondrial ribosome with the Oxal pro-
tein. We show here that MrpL40, a large ribosomal subunit
component, is physically close to both the Mrp20 and Oxal
proteins, demonstrating the proximity of MrpL40 to both the
ribosomal polypeptide exit site and the Oxal membrane inser-
tion site. MrpL40 contains a large C-terminal mitospecific do-
main, which includes a predicted a-helical region at its extreme
C-terminal end. The results presented here highlight that the
integrity of this domain of MrpL40 is crucial to ensure ribo-
some translational fidelity and subsequent OXPHOS complex
assembly.

MATERIALS AND METHODS

Yeast strains. Unless otherwise stated, all strains used in this study were rho*.
Yeast strains used in this study were wild-type W303-1A (Mata, leu2 trpl ura3
his3 ade2), rho” W303-1A (Mata, leu2 trp1 ura3 his3 ade2) (16), and the oxal null
mutant, Aoxal overexpressing the Oxalyy;, or nontagged Oxal protein (W303-1A
leu2 trpl ura3 ade2 OXAI::HIS3 Yip351-GAL10-OXAI[+/—]His12-LEU2) (19).
The galactose-induced overexpression of Oxalyy, in this manner does not per-
turb a wild-type cell’s ability to grow aerobically (results not shown). Construc-
tion of the strain expressing the C-terminal hemagglutinin (HA)-tagged MrpL40
protein was performed by homologous recombination at the MRPL40 gene locus
of wild-type cells, resulting in the introduction of a DNA sequence encoding one
HA epitope prior to the translational stop codon of the MRPLA0 open reading
frame (ORF), followed by a new stop codon and the HIS3 auxotrophic gene.
Correct tagging of the MRPL40 gene in this manner and the insertion of the
HIS3 gene at the 3’end of the MRPL40 ORF were verified by PCR analysis of
the MRPLA0 genomic region. Expression of the HA-tagged MrpL40 protein in
the resulting strain (MrpL40y,) was verified by sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis of the
mitochondria isolated from the MrpL40y;, strain and using an HA-specific
antiserum. The Oxaly;, protein was expressed in this strain by transforming the
MrpL40y 4 cells with the Yip351GAL10-OXA1y;, plasmid (19) and selecting for
LEU" transformants. Galactose-dependent Oxalyy;, expression was verified in
the resulting strain (MrpL40y 5 +Oxalyy) by using Oxal- and His-specific anti-
sera. The mrpL40AC strain was generated through homologous recombination in
the W303-1A wild-type yeast strain. A premature translational stop codon fol-
lowed by the HIS3 auxotrophic marker gene, resulting in a partial deletion (the
final 28 codons) on the 3" end of the MRPL40 open reading frame, was per-
formed essentially as previously described (35). Correct homologous recombi-
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nation of the HIS3 gene at the MRPLA40 gene locus was verified by PCR analysis
(results not shown).

Cross-linking assays. Mitochondria (200 pg total protein) were suspended in
600 pl SH buffer (0.6 M sorbitol, 20 mM HEPES-KOH, pH 7.2), and cross-
linking was performed with disuccinimidyl glutarate (DSG; 0.3 mM) or maleim-
idobenzoyl-N-hydroxysuccinimide (MBS; 0.5 mM), as indicated for 30 min on
ice. MBS cross-linking was performed in the presence of 3 mM NADH. Both
cross-linking reagents were dissolved in dimethyl sulfoxide, so the mock-treated
samples received dimethyl sulfoxide alone. Excess cross-linker was quenched by
adding glycine (80 mM, pH 8.0). Mitochondria were reisolated by centrifugation
and washed with SH buffer prior to further analysis. For direct analysis of the
proteins and cross-linked adducts the mitochondria were solubilized in the SDS-
sample buffer and analyzed by SDS-PAGE and Western blotting.

Ni-NTA purification of Oxaly;, and cross-linked adducts. For the Ni-nitrilo-
triacetic acid (NTA) purification of Oxaly;, and cross-linked adducts, mitochon-
dria (200 pg total protein) were solubilized in 200 pl TNT buffer (1% Triton
X-100, 300 mM NaCl, 60 mM Tris-HCI, pH 7.4) for 30 min on ice. Where
indicated, mitochondria were initially solubilized in 0.1% SDS prior to the
addition of the TNT buffer. After a clarifying spin (20,860 X g; 15 min at 4°C),
the supernatants were incubated for 1 h at 4°C with the Ni-NTA beads (equili-
brated in the TNT buffer containing 30 mM imidazole). The beads were washed
three times with TNT-imidazole buffer, and bound proteins were eluted with
SDS-sample buffer containing 5% (vol/vol) B-mercaptoethanol and 0.5 M im-
idazole.

Mrp20 and cross-linked adduct immunoprecipitation. For the immunopre-
cipitation of Mrp20 and its cross-linked adducts, mitochondria (200 pg total
protein) following cross-linking were solubilized in SDS (1%) buffer and cooked
(5 min at 95°C), followed by dilution into immunoprecipitation (IP) buffer (1%
Triton X-100, 300 mM NaCl, 10 mM Tris-HCI, pH 7.4) for 30 min on ice. After
a clarifying spin (20,860 X g; 15 min at 4°C), the supernatants were incubated
overnight at 4°C with protein A-Sepharose beads and 30 pl of culture superna-
tant containing the Mrp20 monoclonal antibody. The beads were washed three
times with IP buffer and twice with IP buffer without Triton X-100. Bound
proteins were eluted with SDS-sample buffer containing 5% (vol/vol) B-mercap-
toethanol. The immunoprecipitated Mrp20 and cross-linked adducts were ana-
lyzed by SDS-PAGE, Western blotting, and immunodecoration with MrpL40
antiserum.

MrpL40 antiserum generation. The region of the MRPL40 ORF encompass-
ing codons 1 to 284 was amplified by PCR and cloned in frame with an N-
terminal His tag into the pET-28a(+) vector. The resulting His-tagged protein
(35 kDa) was expressed in an isopropyl-B-p-thiogalactopyranoside-inducible
manner in Escherichia coli. Following sonication to disrupt the bacterial cells, the
soluble His-tagged MrpL40(1-284) was purified by Ni-NTA chromatography and
subjected to thrombin cleavage to remove the His tag. The resulting MrpL40(1-
284) 33-kDa fragment was injected into rabbits to generate a polyclonal anti-
serum.

Triton X-100 solubilization of mitochondria and sucrose gradient centrifuga-
tion. Sucrose gradient analysis of detergent-solubilized mitochondrial ribosomes
was performed essentially as previously published (36, 37). Mitochondria (300 pg
protein) were solubilized with 300 .l of lysis buffer (0.5% Triton X-100, 10 mM
Mg-acetate, 0.1 M NaCl, 20 mM HEPES-KOH, pH 7.4, 1 mM phenylmethyl-
sulfonyl fluoride) for 30 min on ice. The lysate was clarified by centrifugation at
30,000 X g for 30 min at 4°C, and the supernatant was layered onto an 11-ml
continuous sucrose gradient (15 to 30%) containing 500 mM NH,CI, 10 mM
Tris-HCI, pH 7.4, 10 mM Mg-acetate, 7 mM B-mercaptoethanol, and 0.5 mM
phenylmethylsulfonyl fluoride. Gradients were centrifuged at 20,500 rpm for 17 h
at 4°C in a Beckman SW41 Ti rotor. Fractions (750 pl) were collected, trichlo-
roacetic acid precipitated, and subjected to SDS-PAGE and Western blot anal-
ysis.

Antisera used in this study. Antisera against Cox2, Su e, MrpL40 were gen-
erated as described above and as published previously (2, 18). The following
antisera were generously obtained from the following sources: MrpL36 (J. M.
Herrmann, University of Kaiserlautern), MrpL32 (T. Langer, University of Co-
logne), Mrp47 (M. Boguta, Polish Academy of Sciences, Warsaw, Poland),
Mrp10 (A. Tzagoloff, Columbia University, New York, NY), Mrp20 monoclonal
(T. Mason, University of Massachusetts, Amherst), Tim17 (W. Neupert, Uni-
versity of Munich), Atp6 (J. Velours, Bordeaux, France), and the F; sector (D.
Mueller, Rosalind Franklin Medical School, Chicago, IL).

Miscellaneous. Mitochondria were isolated from cultures grown at 30°C in
yeast extract-peptone (YP)-0.5% lactate, 2% galactose medium. Isolation of
mitochondria and in organello labeling with [*>S]methionine were performed
essentially as described earlier (17, 19). Standard procedures were used for
SDS-PAGE, Blue native-PAGE, and Western blotting (20). The enzyme activity
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FIG. 1. Oxal can be cross-linked to ribosomal proteins. (A) Mito-
chondria harboring expressed wild-type or histidine-tagged Oxal
(Oxal and Oxalyy, respectively) were incubated in the presence or
absence of cross-linking reagent DSG (0.3 mM)), as indicated. Follow-
ing quenching, mitochondria were reisolated, lysed initially in SDS,
and then diluted into Triton X-100 buffer and subjected to Ni-NTA
affinity chromatography. The Ni-NTA-bound material was eluted with
SDS-sample buffer and subjected to SDS-PAGE and Western blotting,
followed by immunodecoration with an Oxal-specific antiserum. (B)
Oxalyy;-containing mitochondria were subjected to mock or DSG
cross-linking, as indicated. Samples were further processed as de-
scribed for panel A, again following the initial lysis of the mitochondria
in an SDS-containing buffer. The Ni-NTA-bound material (B lanes)
and the free (nonbound) material remaining in the supernatant (S
lanes) after isolation of the Ni-NTA beads were analyzed by SDS-

EUKARYOT. CELL

measurements were performed as described previously (9), with the exception
that antimycin A-sensitive cytochrome ¢ reductase activity was specifically de-
termined.

RESULTS

Oxal can be cross-linked to a number of ribosomal proteins.
We embarked on a chemical cross-linking approach to identify
other ribosomal proteins which, like Mrp20, exist in close prox-
imity to Oxal. Isolated mitochondria harboring a C-terminal
histidine-tagged (12 His residues) Oxal derivative (Oxaly;,) or
control mitochondria containing nontagged Oxal (Oxal) were
subjected to cross-linking using DSG, an amino-specific, non-
cleavable cross-linking reagent (7.7-A spacer arm). Following
the cross-linking reaction, the mitochondria were solubilized
under denaturing conditions (using the detergent SDS), and
Oxaly;, and covalently associated cross-linked adducts were
purified by Ni-NTA chromatography. The Ni-NTA-purified
material was analyzed by SDS-PAGE and Western blotting
(Fig. 1A). Probing with an Oxal-specific antibody indicated
that Oxal,y; (38 kDa) was recovered on the Ni-NTA beads
together with at least three Oxal,y,-containing adducts (size
range, 66 to 75 kDa). These larger Oxaly;-containing species
were recovered on the beads in a cross-linking-dependent
manner, and from their sizes they indicate the ability of
Oxalyy;, to become cross-linked to several proteins in the size
range of 28 to 37 kDa. No specific bands were recognized by
the Oxal antiserum in the Ni-NTA-purified material, in either
the DSG- or mock-treated control samples, i.e., from mito-
chondria which harbored the non-His-tagged Oxal protein
(Fig. 1A). We conclude from these data that Oxal,y;, can be
cross-linked to at least three different proteins which can be
recovered as cross-linked adducts together with Oxal,y; in a
specific manner.

One of these Oxalyy;, adducts is most likely the Mrp20-
Oxalyy;, adduct. As previously mentioned, we have demon-
strated that Oxal can be cross-linked with DSG to the large
ribosomal subunit protein Mrp20 (33 kDa) (19). When
Oxal,y;-DSG cross-linked adducts were purified by Ni-NTA
chromatography following lysis of the mitochondrial mem-
branes with the denaturing detergent SDS, Oxal,y; and the
Mrp20-Oxalyy;, cross-linked adduct were purified on the Ni-

PAGE and Western blotting. Immunodecoration was performed with
Mrp20- and Oxal-specific antibodies, as indicated. The position of the
Mrp20-Oxalyy;, cross-linked adduct is indicated, and the presence of
monomeric Mrp20 and Oxalyy; in the samples is indicated. (C) Mito-
chondria harboring the Oxal or Oxaly;, proteins were subjected to
cross-linking analysis and Ni-NTA affinity chromatography, as de-
scribed above for panels A and B, with the exception that the mito-
chondria were lysed in Triton X-100-containing buffer, i.e., the SDS
lysis step was omitted. The presence of monomeric MrpL40, in addi-
tion to Mrp20, was also analyzed through immunodecoration with
specific antibodies. (D, upper panel) Oxal,y;, mitochondria, rho® and
rho', as indicated and control Oxal (rho*) mitochondria were sub-
jected to cross-linking, Triton X-100 lysis, and subsequent analysis as
described for panel C. Only the Ni-NTA-bound material is shown.
(Lower panel) Mitochondria (50 pg protein) isolated from wild-type
rho* and rho® cells were analyzed by SDS-PAGE, Western blotting,
and immunodecoration with Mrp20 and Tim17 (loading control) an-
tibodies.
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NTA beads (Fig. 1B). Monomeric Mrp20 was not recovered on
the Ni-NTA beads with the affinity-purified Oxal,y;, protein, in
either the presence or absence of prior cross-linking. Thus, the
purification of the Mrp20-Oxaly;, adduct on the Ni-NTA
beads is due to the His-tagged Oxal protein being covalently
bound to Mrp20, rather than because of a possible nonspecific
association of Mrp20 with the beads.

In order to investigate whether the other Oxaly, cross-
linked adducts recovered on the Ni-NTA beads represent
Oxal-ribosomal protein adducts, Oxaly;, mitochondria were
solubilized after the cross-linking step with the detergent Tri-
ton X-100 rather than with SDS (Fig. 1C). These Triton X-100
solubilization conditions disrupt the interaction between Oxal
and the ribosome, but in contrast to the SDS lysis procedure
previously used (Fig. 1B), they do not perturb the integrity of
the assembled large ribosomal subunit. Following cross-linking
with DSG, the Triton X-100-solubilized Oxaly;, and associ-
ated proteins were purified by Ni-NTA affinity chromatogra-
phy and subsequently analyzed by SDS-PAGE and Western
blotting. In addition to the Mrp20-Oxaly;, adduct, monomeric
Mrp20 was recovered with Oxaly;, on the Ni-NTA beads. The
recovery of monomeric Mrp20 on the Ni-NTA beads was spe-
cific for the presence of the His-tagged Oxal derivative. No
monomeric Mrp20 or cross-linked Mrp20 adduct was recov-
ered on the Ni-NTA beads from the control Oxal-containing
mitochondria (Fig. 1C). Furthermore, in the absence of prior
cross-linking, monomeric Mrp20 was not recovered with
Oxalyy;, on the Ni-NTA beads, because the detergent condi-
tions used were sufficient to disrupt an Oxal-ribosome inter-
action (19, 23, 32). Thus, the recovery of monomeric Mrp20
with Oxal,y;, was dependent on the prior cross-linking step,
suggesting that other ribosomal proteins associated with
Mrp20 are cross-linked to Oxaly;,. To further support this
conclusion, the monomeric form of another large ribosomal
subunit protein, MrpL40, was also recovered with Oxal;, on
the Ni-NTA beads, in a cross-linking-dependent fashion (Fig.
1C). Like Mrp20, MrpL40 was not recovered on the Ni-NTA
beads when cross-linking was performed in the Oxal (i.e., not
His-tagged Oxal) mitochondria.

To demonstrate that the cross-linking-dependent recovery
of the monomeric Mrp20 with Oxal,y;, was due to its associa-
tion with the assembled ribosomes cross-linked to Oxal,y;,
DSG cross-linking was performed in rho” mitochondria har-
boring Oxaly,, i.e., containing Mrp20 which was not assem-
bled into a ribosome (Fig. 1D, upper panel). Following cross-
linking, the rho® mitochondria were solubilized by Triton
X-100, and Ni-NTA purification of Oxal,y;, and associated
proteins was performed. Although the overall levels of Mrp20
were reduced in the rho® mitochondria (relative to rho* mi-
tochondria) (Fig. 1D, lower panel), no monomeric Mrp20 or
Mrp20-Oxalyy;, adduct was detected with Oxal,y;, in the Ni-
NTA-purified material. We conclude therefore that the recov-
ery of Mrp20 with Oxal,y;, appears to depend on Mrp20 being
present in a ribosome assembled state.

In summary, Oxal can be cross-linked to a number of part-
ner proteins, including Mrp20 and at least one other large
ribosomal subunit component. Monomeric ribosomal proteins,
such as Mrp20 and MrpL40, can be copurified with Oxal in a
cross-linking-dependent fashion and when solubilization of the
mitochondrial membranes is performed under conditions
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which preserve the integrity of the large ribosomal subunit.
The recovery of monomeric Mrp20 with Oxaly; in a cross-
linking-dependent fashion supports the idea that other ri-
bosomal components in a complex with Mrp20 become in-
dependently cross-linked to Oxal. Finally, copurification of
monomeric Mrp20 with Oxaly;, was found to be dependent on
the presence of an assembled ribosome, indicating that Mrp20
may not have the capacity to independently interact with Oxal.

The ribosomal protein MrpL40 exists in close proximity to
Oxal. We have demonstrated here that Oxal can form cross-
linked adducts in the size range of 66 to 75 kDa, and given that
the monomeric Mrp20 protein is recovered with Oxaly; in a
cross-linking-dependent fashion, we can conclude that at least
one of the observed Oxalyy;, cross-linked adducts must repre-
sent an Oxal-ribosomal protein adduct which is distinct
from the observed Mrp20-Oxaly;, adduct. To identify other
large ribosomal subunit proteins which may become cross-
linked and hence affinity purified with Oxal,y;,, we searched
the database of known proteins of the mitochondrial large
ribosomal subunit for possible candidates using the following
criteria: (i) in the molecular mass range of 28 to 40 kDa, (ii)
has been described to have a physical or functional relationship
with Mrp20, and (iii) like Mrp20, may be located at the
polypeptide nascent chain exit site of the ribosome. One of
these candidate proteins was MrpL40, encoded by the
YPL173w gene and with a predicted mature size of 34 kDa.
MrpLA40 is known to be a large ribosomal subunit component
but has not yet been annotated as a homolog of a known
bacterial ribosomal protein (1, 12).

We therefore investigated whether one of the Oxal cross-
linked adducts corresponds to an MrpL40-Oxal adduct. In order
to facilitate the detection of MrpLA4OQ initially, an HA epitope was
added at the C-terminal end of MrpL40 through homologous
recombination at the MrpL40 gene locus, thereby ensuring the
HA-tagged MrpLA40 protein (MrpL40,,;,) was expressed under
the control of its endogenous promoter. The resulting tagged
MrplLA40y 5 protein was detected using an HA-specific antisera in
mitochondria isolated from the Mrpl40;;, and MrpLA40; 4+
Oxalyy;, strains (where, interestingly, in the latter it was present at
slightly reduced levels), but not in the control wild-type or
Oxalyy;, mitochondria, analyzed in parallel (Fig. 2A). Like many
mitochondrial ribosomal proteins, the steady-state levels of
MrpLA40,, , were found to be severely impacted in rho® mitochon-
dria, indicating that stability of MrpL40 may be dependent on its
ability to assemble into ribosomes (Fig. 2A).

In order to test whether MrpL40 exists in close proximity to
Oxal, mitochondria isolated from the MrpL40;;,+Oxal,y;
strain and from the control Oxal,y;, strain (i.e., expressing
authentic non-HA-tagged MrpL40) were subjected to DSG
cross-linking followed by SDS solubilization and Ni-NTA pu-
rification (Fig. 2B). Analysis of the Ni-NTA-purified material
using the Oxal antiserum confirmed the recovery of Oxal,y;
on the beads and the cross-linking of Oxal,; to other proteins,
as was shown above in Fig. 1A (Fig. 2B, upper panel). The
ability of Oxal to form cross-linked adducts did not appear to
be perturbed in the mitochondria expressing the HA-tagged
MrpLA40 derivative (Fig. 2B, upper panel). When the Ni-NTA-
purified material was probed with the HA antiserum, an
Oxaly;, cross-linked adduct of approximately 70 kDa was de-
tected in the MrpL40,, , +Oxal,y;, mitochondria, but not in the
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FIG. 2. Oxal can be cross-linked to ribosomal protein MrpL40.
(A) MrpLA40y;, and MrpL40 were detected in mitochondria isolated
from yeast strains, as indicated, following SDS-PAGE, Western blot-
ting, and immunodecoration with HA-specific (a-HA) or MrpL40-
specific (a-MrpL40) antisera, as indicated. The levels of Timl7, a
loading control, are also indicated. (B) MrpL40y,+Oxaly;, and
Oxalyy;, control mitochondria were subjected to chemical cross-linking
with DSG, quenching, and lysis in an SDS-containing buffer. Oxaly;,
and cross-linked adducts (indicated by an X) were purified by Ni-NTA
chromatography and further analyzed as described for Fig. 1B. Only
the Ni-NTA-bound material is shown. Immunodecoration was per-
formed with antiserum specific for Oxal (upper panels), HA (lower
left panels), or MrpL40 (lower right panels).

control (Oxalyy;,) mitochondria, harboring the nontagged
MrpLA40 protein (Fig. 2B, lower left panels). The recovery of
this 70-kDa HA-containing Oxal,y; adduct was dependent on
the prior cross-linking reaction. Furthermore, the size of the
adduct from the MrpL40;, +Oxal,y;, mitochondria was con-
sistent with that expected from MrpL40,, (36 kDa) and
Oxaly;, (38 kDa) (Fig. 2B, lower left panels).

In light of the finding that the MrpL40,;, protein can be
cross-linked to Oxaly;,, we generated an antiserum for
MrpLA40 so that we could directly assay whether the authentic
MrpL40 protein could also be cross-linked to Oxal,y,, and
thus we could rule out that the observed MrpL40-Oxal adduct
formation was not an artifact of the HA tagging of the MrpL40
protein at its C terminus. The MrpL40 protein (residues 1 to
284) was expressed in bacteria, purified, and used as an antigen
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to generate an MrpL40-specific polyclonal antiserum in rab-
bits. Both endogenous and HA-tagged forms of MrpL40 could
be detected with the generated MrpL40 antiserum (Fig. 2A).
The levels of MrpL40 were reduced in the mitochondria bear-
ing the HA-tagged version of the protein, suggesting that the
addition of the C-terminal HA tag may have compromised the
stability of the MrpL40 protein (discussed further in Fig. 5B,
below).

The MrpLA40 antiserum was then used to probe the Oxaly;,
and cross-linked adduct material purified by the Ni-NTA beads
(Fig. 2B, lower right panels). MrpL40 cross-linked adducts
were recovered with the Oxal-purified Oxal,y; protein in a
cross-linking-dependent manner. We conclude therefore that
the authentic MrpL40 protein, like the MrpL40,,, derivative,
can be cross-linked to and affinity purified with Oxal,y;;.

In summary, we have demonstrated here that the large ri-
bosomal subunit component MrpL40 exists in close proximity
to the inner membrane protein Oxal.

MrpL40 is located close to the Mrp20 protein of the large
ribosomal subunit. Given the finding that both MrpL40 and
Mrp20 can be cross-linked to Oxal, we decided to test if
MrpLA40 existed in close physical proximity to Mrp20, which is
known to be located next to the polypeptide exist site of the
large ribosomal subunit (3, 30). A chemical cross-linking ap-
proach to probe the molecular environment of the MrpL40
and MrpL40y, proteins in intact isolated mitochondria using
the sulfhydryl-amino-specific heterobifunctional, noncleavable,
cross-linking reagent MBS (9.9-A spacer arm) (Fig. 3A) was
undertaken. Following cross-linking and SDS-PAGE and
Western blot analysis, both the MrpL40 and MrpL40y, pro-
teins were found to form cross-linked adducts of approximately
70 kDa, as revealed by parallel decoration with MrpL40- and
HA-specific antisera, respectively (Fig. 3A, left and right pan-
els). To test whether this 70-kDa MrpL40 adduct may repre-
sent cross-linking of MrpL40 to Mrp20, we next addressed
whether Mrp20 also formed an MBS-generated cross-linked
adduct of similar size. Mrp20 was found to form two predom-
inant cross-linked adducts of approximately 62 and 70 kDa in
wild-type mitochondria (Fig. 3B, left panel), the larger of
which comigrated with the MrpL40 cross-linked adduct (Fig.
3B, center panel). To demonstrate that this Mrp20 adduct
represented a cross-linked product between Mrp20 and
MrpLA40, the Mrp20 protein and its cross-linked adducts were
immunoprecipitated using an Mrp20 monoclonal antibody,
analyzed by SDS-PAGE and Western blotting, and then probed
with the MrpL40-specific antiserum (Fig. 3B, right panel). An
MrpLA40-reactive band of 70 kDa was observed in the Mrp20-
immunoprecipitated material from the cross-linked samples.
No MrpL40-containing material was detected in the Mrp20
immunoprecipitate in the absence of prior cross-linking. We
conclude therefore that the 70-kDa MBS cross-linked adduct
observed with both Mrp20- and MrpL40-specific antibodies
represents an Mrp20-MrpL40 adduct.

The abilities of Mrp20 and MrpL40 to be chemically cross-
linked to each other demonstrate that a close physical rela-
tionship exists between these two proteins within the assem-
bled ribosome, supporting that MrpL40, like Mrp20, the
mitochondrial L23 homolog, is located close to the nascent
chain exit site of the large ribosomal subunit.
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FIG. 3. MrpL40 and Mrp20 proteins exist in close proximity to
each other. (A) Isolated wild-type (WT) or MrpL40y;, mitochondria
were subjected to cross-linking with MBS or mock treated, as indi-
cated. Following quenching, mitochondria were reisolated and ana-
lyzed by SDS-PAGE, Western blotting, and immunodecoration with
antiserum specific to MrpL40 (left panel) or HA (right panel). * and
*% indicate cross-reactivity signals from the MrpLL40 and HA antisera,
respectively. X indicates an MrpL40(yy,)-specific MBS adduct.
(B) Wild-type mitochondria were subjected to MBS cross-linking
or were mock treated, as indicated. Mitochondria were either lysed
directly in SDS-sample buffer and subjected to SDS-PAGE and West-
ern blotting analysis (“total” samples) or were lysed in SDS-buffer,
diluted in Triton X-100 buffer, and Mrp20 and cross-linked adducts
were immunoprecipitated using Mrp20 monoclonal antibodies (Ip
a-Mrp20). Immunodecoration of the resulting Western blots was per-
formed with either Mrp20 monoclonal antibodies (left panel) or with
MrpLA40 antisera (center and right panels). The position of the Mrp20-
MrpL40 adduct is indicated by “20-L40”.

The C-terminal region of MrpL40 is critical for function.
MrpL40 contains a KOW (Kyrpides, Ouzounis, Woese) motif
(residues 62 to 89) (Fig. 4A), a motif found also in the ribo-
somal L.24 protein family (Fig. 4A), where it is thought to be
involved in rTRNA binding (25). Like many mitochondrial ri-
bosomal proteins, MrpL40 has a region (residues 90 to 289)
which displays no conservation with prokaryotic ribosomal pro-
teins and most likely constitutes a mitochondria-specific do-
main acquired through eukaryotic evolution of MrpL40 from
its prokaryotic ancestors (Fig. 4A).

Deletion of the MrpL40 gene causes an inability to grow on
nonfermentable carbon sources (1). Cells expressing the C-
terminally HA-tagged MrpL40 protein, MrpL40y, 4, were sig-
nificantly compromised in their ability to grow on glycerol-
based media (Fig. 4B). Thus, the ability of the mitochondria to
support the assembly of functional oxidative phosphorylation
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complexes is compromised through the modification of the
C-terminal region of MrpL40.

Essential proteins of the cytochrome bc, (cytochrome b),
cytochrome ¢ oxidase (Cox1, Cox2, and Cox3), and ATP syn-
thase complexes (Atp6, Atp8, and Atp9) are encoded by the
mtDNA and are synthesized on the mitochondrial ribosomes.
We therefore addressed whether the levels of these OXPHOS
enzymes were adversely affected in the MrpL40;;, mitochon-
dria. Measurements of the enzyme levels of the cytochrome bc,
complex (cytochrome ¢ reductase) and the cytochrome ¢ oxi-
dase complexes were both found to be strongly reduced in the
isolated MrpL40,,;, mitochondria. The cytochrome bc, com-
plex enzyme levels in the MrpL40y,; , mitochondria were found
to be only 15 to 20% those of wild-type mitochondria mea-
sured in the MrpL40y; o mitochondria, whereas the cytochrome
¢ oxidase enzyme levels were reduced to less than 10% of the
wild-type control levels (Fig. 4C). Likewise, the levels of the
assembled F,F_-ATP synthase complex were found to be
strongly reduced in the MrpL40;, mitochondria relative to
the wild-type control (Fig. 4D). An abundance of free F;-
containing species was observed in the mitochondria harboring
the MrpL40y, 4 protein, suggesting that the level of assembled
F, sector may have been limiting in these mitochondria. The
strongly reduced levels of these OXPHOS complexes were also
reflected in decreased steady-state levels of components of
these complexes, such as Cox2 of the Cox complex and Atp6
and Su e of the F,F,-ATP synthase (Fig. 4E). These proteins
were chosen for this analysis because they are known to be
susceptible to proteolytic turnover if the assembly of their
respective complexes is hindered. Thus, given the overall de-
crease in the levels of these OXPHOS complexes, it appears
that HA tagging of MrpL40 at its C terminus confers a
pleiotrophic phenotype on the assembly of the mitochondrial
OXPHOS system.

The MrpLA40 protein contains a region (residues 250 to 289)
with a predicted a-helical structure at its extreme C-terminal
end (Fig. 4A), so it is possible that the addition of the HA tag
to the end of this region may have adversely affected its struc-
ture or function. To assess the functional relevance of this
C-terminal feature, we created a yeast strain expressing a trun-
cated derivative of MrpL40, MrpL40AC, where the last 28
residues of the protein had been removed by a corresponding
internal deletion in the chromosomal MRPLA40 gene (Fig. 4A).
This small C-terminal truncation was performed to test initially
whether disruption rather than a complete deletion of the
predicted a-helical segment would have a pronounced effect
on MrpL40’s ability to support OXPHOS assembly. Trunca-
tion of the MrpL40 protein in this manner was found to inter-
fere completely with the ability of MrpL40 to support aerobic
respiration, as the resulting strain, mrpL40AC, failed to grow
on glycerol-containing medium (Fig. 4B). Analysis of the
mrpL40AC mitochondria indicated an extreme decrease of cy-
tochrome bc, and cytochrome ¢ oxidase enzyme levels (Fig.
4C). In addition no assembled F,F_-ATP synthase complex
was detected in the mrpL40AC mitochondria, but rather an
accumulation of free F,; subcomplexes was detected (Fig. 4D).

We conclude that the extreme C-terminal region of MrpL40
is important for its function, and modification of this region,
through either the addition of the HA tag or truncation of the
last 28 residues, either partially or completely affects the ability
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FIG. 4. The C-terminal region of MrpL40 is crucial for its ability to
support mitochondrial OXPHOS activity. (A) The S. cerevisiae
MrpL40 and L24 (E. coli) proteins are depicted. The position of the
conserved KOW motif is indicated for both proteins, together with the
a-helical region in the C-terminal end of the yeast MrpL40. This
region has been truncated in the MrpL40AC protein, from which the
final 28 amino acid residues have been removed. (B) A dilution series
of wild-type, MrpL40y;,, and mrpL40AC strains was generated by
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of this protein to support the biogenesis of the mitochondrial
OXPHOS system.

The function and assembly of mitochondrial ribosomes are
adversely affected in mitochondria harboring MrpL40,,, and
truncated proteins. A pleiotrophic effect on the OXPHOS
complexes in the MrpL40,;, and MrpL40AC strains may be
indicative of a general decrease in the ribosomes’ ability to
synthesize the key OXPHOS subunits encoded by the mtDNA
in these mutant mitochondria. We therefore performed an in
organello translation in the presence of [**S]methionine using
isolated mitochondria harboring either the HA-tagged, trun-
cated, or authentic MrpLA40 proteins (Fig. 5A). The MrpL40,; 5
mitochondria displayed a capacity to synthesize the radiola-
beled proteins; however, the pattern of protein synthesis in
these mitochondria differed from that in the control wild-type
mitochondria. Mitochondria harboring the MrpL40,;, protein
displayed a reduced capacity to synthesize Coxl and Cox2
proteins, whereas the levels of Varl, cytochrome b, Atp6, and
Atp9 appeared elevated compared to the control mitochondria
containing the authentic MrpL40 protein. The levels of Atp8
and Cox3 synthesized in the MrpL40;, mitochondria did not
differ significantly from the wild-type control. The ability of
the mitochondrial ribosomes to synthesize all eight mtDNA-
encoded proteins was severely compromised in the mitochondria
harboring the MrpL40AC truncated protein (Fig. SA). We
conclude therefore that modulation of the C-terminal region
of MrpL40 has consequences for the translational capacity of
the mitochondrial ribosomes. Truncation of this region of
MrpLA40 hinders translation. While the addition of the HA tag
allows the ribosomes to remain translationally active, they dis-
play an altered pattern of protein synthesis relative to the
wild-type control.

When probing the isolated MrpL40;;, mitochondria with
the MrpL40 antisera, we observed that the levels of MrpL40;
were reduced compared to the authentic MrpL40 levels in the
wild-type mitochondria (Fig. 5B and 2A). This observation
indicates that the addition of the HA tag to the C terminus of
MrpL40 may have partially compromised the stability of the
MrpLA40 protein. Interestingly, the levels of Mrp20 were found
to be strongly reduced in the mitochondria harboring the HA-
tagged MrpL40 protein compared to the wild-type control. The
reduction in Mrp20 protein levels in these mitochondria did

serially diluting the cell suspensions 10-fold each time. A 2-pl aliquot
of each of the resulting dilutions was spotted onto YPD (glucose) or
YPG (glycerol) plates and incubated at 30°C. (C) The levels of cyto-
chrome ¢ oxidase (COX) (left panel) and antimycin-sensitive cyto-
chrome ¢ reductase (cyt bc;) enzyme activities were determined in
mitochondria isolated from the wild-type, MrpL40y;,, and mrpL40AC
strains. Samples were measured in triplicate and averaged, and the
relative specific activities in the MrpL40 mutant mitochondria were
calculated and are expressed as a percentage of that measured in
wild-type control mitochondria. Standard deviations are indicated. (D)
Blue native-PAGE analysis of wild-type, MrpL40y 5, and mrpL40AC
mitochondria following digitonin (2%) solubilization, Western blot-
ting, and immunodecoration with an antibody generated against the
purified yeast F, sector. The positions of free F;-containing complexes
are indicated. (E) Steady-state levels of Cox2, Atp6, Su e, and Tim17
(loading control) were analyzed in mitochondria (50 wg of protein)
isolated from the wild-type, MrpL40y,, and mrpL40AC strains.
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FIG. 5. Modification of the C-terminal region of MrpL40 has ad-
verse consequences for ribosome function and stability. (A) In or-
ganello translation was monitored in mitochondria isolated from wild-
type, MrpL40;;,, and mrpL40AC strains at 25°C for 15 min, following
the addition of [**S]methionine. Following chase with excess cold me-
thionine and puromycin for 10 min at 25°C, mitochondria were reiso-
lated, lysed in SDS-sample buffer, and subjected to SDS-PAGE, West-
ern blotting, and autoradiography. Abbreviations: Cox1, Cox2, and
Cox3, cytochrome ¢ oxidase subunits 1, 2, and 3, respectively; Cyt b,
cytochrome b; Atp6, Atp8, and Atp9, subunits 6, 8, and 9 of the F,
sector, respectively. (B) Mitochondria (50 wg of protein) were sub-
jected to SDS-PAGE and analyzed by Western blotting for the pres-
ence of various large ribosomal subunit proteins, as indicated. Tim17
was used as a loading control. (C) Wild-type and MrpL40y;, mito-
chondria were lysed with a Triton X-100-containing buffer and sub-
jected to a clarifying spin. The resulting solubilized material was frac-
tionated with a linear sucrose gradient (see Materials and Methods for
further details). Fractions were collected (1 to 15, top to bottom of the
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not simply reflect a general decrease in mitochondrial ribo-
somal protein levels, because the levels of other large ribo-
somal control proteins MrpL36, MrpL32, and Mrp49 (and
Mrp10, a small subunit protein [reference 21; data not shown])
were not impacted in the MrpL40,;, mitochondria (Fig. 5B).
The levels of these proteins are strongly reduced in the rho”
mitochondria, where the complete ribosome assembly is de-
fective due to the absence of mtDNA and hence the coding
capacities for the rRNA and Varl ribosomal protein (Fig. 5B).
Truncation of the mitospecific region of MrpL40 also nega-
tively impacted the steady-state levels of the MrpL40 and
Mrp20 proteins (Fig. 5B). The mrpL40AC protein was unde-
tectable, suggesting that possibly the levels of the truncated
protein are so strongly reduced or a key epitope of the protein
is compromised because of the truncation. Once again the
reductions in Mrp20 and MrpL40 levels did not appear to be
caused by a general loss of ribosome assembly, as the levels of
MrpL36, MrpL32, and Mrp49 (and Mrpl0 [data not shown])
were not reduced in the mrpL40AC mitochondria. On the
contrary, the levels of the MrpL32 and Mrp49 proteins were
observed to be somewhat elevated in the MrpL40,, and
mrpL40AC mitochondria (Fig. 4B). The stability of ribosomal
protein subunits known to be susceptible to proteolytic turn-
over when their assembly is defective due to the loss of rRNA
is an indication that the MrpLA40y;, and mrpL40AC strains do
not exhibit a high degree of rho ™~ /rho® formation. This conclu-
sion has been supported through the level of 4’,6-diamidino2-
phenylindole (DAPI)-stained mitochondrial DNA in the
MrpL40y 4 and mrpL40AC cells (results not shown).

Taken together, we conclude that the reduced levels of
Mrp20 in MrpL40y- and mrpL40AC-containing mitochon-
dria do not simply reflect a gross perturbation in overall ribo-
some assembly. Rather, we propose that these data argue for a
dependency of the Mrp20 protein on MrpL40 for its full sta-
bility within the ribosome/mitochondria.

In addition to displaying an altered pattern of protein syn-
thesis and protein composition, the mitochondrial ribosomes
from the MrpL40;, mutant strain displayed an altered stabil-
ity state compared to those isolated from the wild-type control
mitochondria. Mitochondria isolated from both the MrpL40;
and wild-type control strains were solubilized with detergent
and subjected to a clarifying spin, and the assembly state of the
solubilized ribosomal proteins was analyzed by sucrose gradi-
ent centrifugation (Fig. 5C). The sedimentation behavior of
the large and small ribosomal subunits was monitored by the
immunological detection of proteins contained within these
complexes, such as Mrp20, MrpL40, MrpL36, and Mrp49,
components of the large ribosomal subunit, and Mrpl0, a
component of the small ribosomal subunit (21). Cofraction-
ation of Mrp20, MrpL40, MrpL36, and Mrp49 toward the

gradient) and were analyzed by SDS-PAGE and Western blotting.
Immunodecoration was performed with antibodies directed against
large ribosomal subunits, MrpL40, Mrp20, MrpL36, and Mrp49, and
the small ribosomal subunit protein Mrp10. The * indicates a cross-
reactivity signal from the MrpL40 antiserum. The fractionation behav-
ior of a control soluble (non-ribosome-associated) protein, cytochrome
b, (Cyt b,), was also studied.
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bottom of the gradient indicated the fractionation behavior of
the large ribosomal subunit in the wild-type control sample.
Mrp10 was recovered in the fractions just prior to the Mrp20/
MrpL40/MrpL36/Mrp49 proteins, indicating that the large and
small ribosomal subunits do not remain together under these
fractionation conditions (Fig. 5C, upper panel). A fraction of
the MrpL36 protein did not comigrate with the large ribosomal
subunit under these conditions but rather was detected toward
the top of the gradient, where smaller protein complexes such
as cytochrome b, (240 kDa) were recovered. The presence of
MrpL36 toward the top of the gradient indicates that a signif-
icant fraction of this protein in the mitochondrial extract is
assembled into the large ribosomal subunit, an observation
consistent with a previous analysis of the MrpL36 protein
(29, 30).

The stable assembly state of the mitochondrial ribosomes
was significantly altered in the MrpL40,;, mitochondria. In
contrast to wild-type mitochondria, the majorities of the
Mrp20, MrpL40y, 5, Mrp49, and MrpL36 proteins were recov-
ered toward the top of the gradient. Only a minor fraction of
these proteins was assembled into a complex, which from its
migration behavior may correspond to the assembled large
ribosomal subunit (Fig. 5C, lower panel). Note that MrpL40,
which is not assembled into ribosomes (i.e., from rho® mito-
chondria), is recovered exclusively at the top of the sucrose
gradient under these conditions (results not shown). The as-
sembly state of the small ribosomal subunit, as evidenced by
the unaltered migration behavior of Mrpl0, appeared unaf-
fected in the MrpL40,,, mitochondria, however.

Taken together, the presence of the HA tag at the C termi-
nus of the MrpL40 protein appears to compromise the stability
of the large ribosomal subunit. As functional, translationally
active ribosomes can assemble in the MrpL40y, , mitochondria,
we conclude that the assembly state of the ribosome must be
somewhat altered by this modification in the MrpL40 protein,
such that the large ribosomal subunit does not remain as a
single entity during the process of detergent/salt extraction and
sucrose gradient centrifugation.

DISCUSSION

Oxal is a component of a protein insertion machinery which
facilitates the insertion of nascent chains synthesized on the
mitochondrial ribosomes tethered to the inner membrane. A
physical interaction between the Oxal protein and the large
ribosomal subunit has previously been demonstrated (19, 32).
Furthermore, the large ribosomal subunit component, Mrp20,
can be chemically cross-linked to Oxal (19). Mrp20 is the yeast
mitochondrial homolog of the bacterial ribosomal protein L.23,
known to be located at the ribosomal polypeptide exit site (3,
10, 27, 30). Thus, the demonstrated proximity of Mrp20 and
Oxal indicates that the region of the large ribosomal subunit
where the nascent chain emerges is intimately related to the
Oxal protein, a site where the nascent chains are integrated
into the inner membrane. We have sought here to further map
the ribosome-Oxal interface, with the goal of identifying fur-
ther ribosomal components which are physically and possibly
functionally close to the Oxal protein.

We have demonstrated here that Mrp20 does not represent
the only large ribosomal protein which is in close proximity to
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Oxal in the inner membrane. Following chemical cross-link-
ing, monomeric (i.e., non-cross-linked) ribosomal proteins can
be affinity purified with Oxal,y; in a cross-linking-dependent
fashion and under detergent conditions which preserve the
assembled large ribosomal subunit. Thus, within a given pop-
ulation of mitochondria different ribosomes may become
cross-linked to Oxal by forming adducts with different ribo-
somal components. We demonstrated here that one of these
large ribosomal subunit components close to Oxal is MrpL40.
Initially, by using C-terminally HA-tagged MrpL40 and subse-
quently by analyzing the authentic MrpL40 protein with a
specific polyclonal antibody, we demonstrated that MrpL40; 4
can be chemically cross-linked to, and affinity purified with,
Oxalyy;,. Taking these results together with our previous anal-
ysis of Mrp20, we conclude that the ribosome-Oxal interface
involves at least two large ribosomal subunit proteins in close
proximity to Oxal, Mrp20, the L23 homolog, and the MrpL40
protein.

We propose here that the MrpL40 protein represents the
yeast mitochondrial homolog of the bacterial ribosomal pro-
tein L24. The bacterial L24 protein is located close to the L23
protein at the ribosomal polypeptide exit site (3, 23, 27, 30). In
addition to containing a KOW motif, a feature which is con-
served through L.24 family members, BLASTp searches indi-
cate homology of MrpL40 to bovine MrpL24 protein, the bo-
vine mitochondrial L24 counterpart. Furthermore, our findings
here support a close physical and functional relationship be-
tween the MrpL40 and Mrp20 proteins. First, MrpL40 can be
chemically cross-linked to Mrp20 in intact wild-type mitochon-
dria, indicating their close proximity to each other in the as-
sembled ribosome. The close physical relationship of MrpL40
to Mrp20 places MrpL40, like the bacterial L.24 protein, close
to the polypeptide exit site of the large ribosomal subunit.
Second, the truncation or alteration of the C-terminal region
of MrpL40 was observed to negatively impact the steady-state
levels of Mrp20 specifically, in contrast to other control ribo-
somal proteins, thus supporting their close physical relation-
ship and possibly their dependence on each other for stability
and hence stable accumulation within the mitochondria.

The bacterial L24 protein homologs are small proteins (usu-
ally in the range of 100 amino acid residues). The yeast
MrpLA40 protein is significantly larger (297 amino acid resi-
dues) and in addition to the conserved KOW motif has a
predicted noncleavable N-terminal mitochondria targeting sig-
nal (C. Meisinger and N. Pfanner, personal communication).
MrpLA40 contains a large C-terminal extension, a mitospecific
domain (residues 89 to 297). Conserved largely among fungal
relatives, and only distantly related to the mitospecific domains
of mammalian mitochondrial L24 proteins, we provide evi-
dence here for the functional importance of this domain, in
particular the extreme C-terminal region. HA tagging of the C
terminus of MrpL40 caused an alteration in the translation
pattern of the ribosome, with a noticeable decrease in Coxl
and Cox2 synthesis and an elevation in the levels of some of the
newly synthesized proteins, in particular Varl, cytochrome b,
and Atp9. Truncation of the C-terminal region of MrpL40 by
the removal of the final 28 residues caused a severe disruption
in the ability of the ribosomes to translate. Although the ribo-
somes from the MrpL40;;, mitochondria remained transla-
tionally competent, sucrose gradient centrifugation analysis in-
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dicated that the stability of the large ribosomal subunit, but not
of the small ribosomal subunit, was compromised as a result of
tagging the MrpL40 in this manner. We conclude, therefore,
that the extreme C-terminal region of MrpLA4Q is either directly
or indirectly required (e.g., through affecting Mrp20 levels) to
ensure stability of the assembled ribosomes to detergent ex-
traction.

Modification of the C-terminal region of the mitospecific
domain of MrpL40 severely compromised the mitochondria’s
ability to assemble functional OXPHOS machinery. The levels
of the cytochrome bc,, cytochrome ¢ oxidase enzymes, and the
assembled F,F,-ATP synthase complex were strongly im-
pacted in the MrpL40;;, and mrpL40AC mitochondria. The
observed decrease in the OXPHOS complex assembly was to
be anticipated from the mrpL40AC mitochondria due to their
severe defect in mitochondrial translational capacity. The
OXPHOS assembly defect was, however, unexpected for the
MrpLA40y, o mitochondria, where mitochondrial protein trans-
lation, albeit at altered ratios, occurred at relatively normal
levels. The observed detrimental effects of the MrpL40,, and
MrpL40AC proteins on the OXPHOS complex may be directly
due to the modification of the mitospecific domain of MrpL40
and/or indirectly due to the adverse impact that these modifi-
cations have on the levels of Mrp20 (and/or possibly on other
as-yet-uncharacterized proteins located at the ribosomal
polypeptide exit site). We propose that the mitospecific do-
main of MrpL40 (and/or Mrp20) may function to secure the
assembly and/or activity of the mitochondrial ribosome to spe-
cific locations of the inner membrane, where the events of
OXPHOS complex assembly could occur. It is conceivable that
regions of the inner membrane exist which are enriched in
various assembly chaperones and/or nonassembled nuclear-
encoded proteins which coassemble with the mitochondrially
encoded proteins following their synthesis and membrane in-
sertion. Thus, according to this model the mitospecific regions
of MrpL40, Mrp20, and possibly other ribosomal proteins may
function to bind or recruit inner membrane-localized proteins
with domains exposed to the matrix, which would ensure the
targeting of/assembly of ribosomes to these specific assembly
locations within the inner membrane.

Do the mitospecific domains of Mrp20 and MrpL40 directly
interact with the C-terminal region of Oxal? Known to support
the ribosome-Oxal interaction, it is conceivable that the C-
terminal region (approximately 90 residues) of Oxal directly
binds to the mitospecific domain of MrpL40 and/or MrpZ20.
Using a bacterium-expressed Oxal C-terminal region and the
mitospecific regions of MrpL40 and Mrp20, no evidence could
be obtained to support a direct interaction between these re-
gions of Oxal, MrpL40, and Mrp20 (L. Jia and R. A. Stuart,
unpublished data). Although these results are negative evi-
dence, they may reflect that the mitospecific domains of
MrpL40 and Mrp20 do not directly bind to the C-terminal
region of Oxal in a stable manner but that they possibly bind
to other inner membrane-anchored proteins in close associa-
tion with Oxal. Although the OXPHOS assembly is seriously
perturbed in the MrpL40y; , mitochondria, we propose that the
initial ribosome-Oxal interaction can still productively occur
despite the HA tagging of MrpL40. First, the MrpL40;, pro-
tein, like the authentic MrpL40, existed in close proximity to
Oxal, as evidenced by the abilities for both to cross-link with
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Oxaly;,. Second, the in organello labeling experiment indi-
cated that the newly synthesized Cox2 species was present in its
mature form in the MrpL40y,, mitochondria, and no evidence
of the precursor form of Cox2 (pCox2) was obtained. In oxal-
defective mitochondria, pCox2 (1 to 2 kDa larger in size than
the mature Cox2 species due to the presence of its uncleaved
N-terminal signal sequence) is observed to accumulate. Mat-
uration of pCox2 requires the prior Oxal-dependent mem-
brane insertion step, as the protease responsible for its matu-
ration, Imp1, is exposed to the mitochondrial intermembrane
space (14, 15, 28). Accumulation of newly synthesized Cox2 in
its precursor form is observed in mitochondria harboring C-
terminally truncated oxal-encoded protein, i.e., under condi-
tions where the Oxal-ribosome interaction is known to be
physically compromised (19, 32). The observed lack of pCox2
species in MrpL40y;, mitochondria indicates that at least the
initial Oxal-dependent cotranslational events resulting in the
N-terminal tail export of pCox2 species are not inhibited in
the MrpL40,,, mitochondria.

Finally, our work has furthered our understanding and map-
ping of the mitochondrial ribosome-Oxal interface, by identi-
fying two large ribosomal subunit components, Mrp20 and
MrpL40, homologs of bacterial ribosomal proteins L23 and
L24, respectively, in close proximity to Oxal. The findings
reported here extend a recent study by Kohler et al. (23), who
investigated the interactions of Oxal and YidC (the bacterial
Oxal homolog) with the bacterial ribosomes. Using purified
bacterial (E. coli) ribosomes and bacterially expressed and
purified YidC and Oxal proteins, a mapping of the contact
points between YidC/Oxal and the purified ribosome was per-
formed, largely using cryo-electron microscopy analysis. This
elegant study identified ribosomal proteins .23, L24, and L29
and the helix H59 of the 23S rRNA as physical contact points
of YidC and the ribosome. Interestingly, these ribosomal con-
tact points for YidC overlapped with those previously shown
for the SecY translocon, although no direct sequence similarity
exists between SecY and YidC (26). Overlapping contact
points 123, .29, and H59 were observed with the Oxal protein
and the E. coli ribosome; however, evidence for the L.24 pro-
tein interacting with the Oxal protein was lacking. The L24
protein in E. coli is significantly shorter and is lacking the
mitochondria-specific domain of the MrpL40 protein. Thus, it
is possible that the mitospecific domain of MrpL40 may form
a critical feature of the Oxal-mitochondrial ribosome inter-
face. Further characterization of the mitospecific domain of
MrpLA40 and the identification of possible interacting partners
of this domain are currently being investigated in our labora-
tory.
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