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INTRODUCTION

THE MECHANISMS behind the irreversible loss of dopamin-
ergic neurons in the nigrostriatal pathway that results in

Parkinson’s disease (PD) remain undefined. Although recent
findings have implicated genetic and environmental factors,
these account for only a small percentage of cases. Postmortem
studies of PD brains have provided evidence of a variety of
abnormalities, most notably, evidence of increased oxidative
stress, decreased mitochondrial function, inflammation, and
aberrant protein degradation (1, 8, 19, 28). However, the path-
ways by which these factors lead to cell death and whether
these factors are causative or a downstream symptom are un-
clear. In addition, the neurotransmitter dopamine itself is con-
sidered a major factor in PD pathology because it is easily oxi-
dized into a variety of reactive metabolites (1, 6, 11, 29, 30).
Both animal and cell culture models have been widely used to
investigate possible mechanisms of cell death in dopaminergic

neurons. Two of the most commonly studied models involve
the neurotoxins, 1-methyl-4-phenylpyridinium (MPP+) and 6-
hydroxydopamine (6-OHDA) (1, 7). Both reagents are able
to mimic some of the characteristics of PD, including motor
impairment, selective loss of dopaminergic neurons, increased
oxidative stress, inflammation, and energy impairment.

Earlier studies have shown that MPP+ and 6-OHDA trigger
morphologically distinct types of cell death in dopaminergic
cells, although both depend on new protein synthesis (3, 4,
12, 15). Using microarray analysis to determine the underly-
ing patterns of gene expression occurring in response to these
parkinsonian mimetics, we previously reported that 6-OHDA
triggered multiple signaling pathways associated with cel-
lular stress and unfolded protein response, whereas MPP+

seemed to activate a more limited stress response (15). Be-
cause these studies focused on transcriptional changes associ-
ated with the time point at which cells became committed to
die, upstream signaling events would not have been detected.
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ABSTRACT

The parkinsonian mimetic 6-hydroxydopamine (6-OHDA) has been shown to cause transcriptional changes
associated with cellular stress and the unfolded protein response. As these cellular sequelae depend on up-
stream signaling events, the present study used functional genomics and proteomic approaches to aid in deci-
phering toxin-mediated regulatory pathways. Microarray analysis of RNA collected from multiple time points
following 6-OHDA treatment was combined with data mining and clustering techniques to identify distinct
functional subgroups of genes. Notably, stress-induced transcription factors such as ATF3, ATF4, CHOP, and
C/EBP� were robustly up-regulated, yet exhibited unique kinetic patterns. Genes involved in the synthesis
and modification of proteins (various tRNA synthetases), protein degradation (e.g., ubiquitin, Herpud1,
Sqstm1), and oxidative stress (Hmox1, Por) could be subgrouped into distinct kinetic profiles as well. Real-
time PCR and/or two-dimensional electrophoresis combined with western blotting validated data derived
from microarray analyses. Taken together, these data support the notion that oxidative stress and protein dys-
function play a role in Parkinson’s disease, as well as provide a time course for many of the molecular events
associated with 6-OHDA neurotoxicity. Antioxid. Redox Signal. 7, 639–648.
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In the present study, microarray experiments at earlier times
were conducted to identify genetic events associated with ini-
tial 6-OHDA-mediated signaling cascades. Using a combina-
tion of data mining techniques, we have confirmed and ex-
tended our previous results showing that 6-OHDA activates
cellular stress pathways via a common set of genes. More-
over, expression profile clustering has revealed additional,
novel groups of genes involved in the death of dopaminergic
cell types. Finally, real-time PCR and proteomic approaches
have confirmed the ability of our microarray groupings to
predict changes.

MATERIALS AND METHODS

Cell cultures and neurotoxin treatment

MN9D cells (2) were plated on dishes coated with 0.5
mg/ml poly-D-lysine (Sigma, St. Louis, MO, U.S.A.) for 1 h at
37°C and then rinsed with sterile water. Cells were maintained
in Iscove’s Dulbecco’s modified Eagle’s medium with 10%
fetal bovine serum (Atlas, Fort Collins, CO, U.S.A.) in an in-
cubator with 10% CO2 at 37°C. Cells were switched to serum-
free 1:1 Iscove’s Dulbecco’s modified Eagle’s medium/Ham’s
F-12 supplemented with 1� B27 (Invitrogen, Carlsbad, CA,
U.S.A.) prior to addition of 6-OHDA with ascorbic acid
(Sigma). 6-OHDA was resuspended in water at a concentra-
tion of 20 mM before addition into cell culture medium.

Microarray analysis

MN9D cells were plated at a density of 200,000 cells/well
in six-well plates. After 3 days, cells were treated with 75 µM
6-OHDA, or left untreated for control comparisons. Total
RNA was isolated after 3 and 6 h of 6-OHDA treatment using
an RNeasy kit (Qiagen, Valencia, CA, U.S.A.) according to
the manufacturer’s protocol. Equal amounts of total RNA
from three independent experiments were pooled for each
GeneChip hybridization. A minimum of 20 µg/sample of total
RNA was sent to the Alvin J. Siteman Cancer Center
GeneChip Core Facility (Washington University, St. Louis,
MO, U.S.A.) for generation of labeled cRNA target and hy-
bridization against Affymetrix Murine Genome U74Av2
GeneChip arrays (Santa Clara, CA, U.S.A.) using standard
protocols (pathbox.wustl.edu/˜mgacore/protocols.htm). Data
were analyzed using Affymetrix Microarray Suite version
5.0. Data mining was performed using Spotfire Decision Site
for Functional Genomics (Somerville, MA, U.S.A.). For
those transcripts designated both “present” and “increasing”
by the software, a threshold of a signal log2 ratio of 0.5 (~1.5-
fold change) was set. Transcripts for which signal was <3% of
the maximum signal were filtered out.

Real-time PCR analysis of gene expression

MN9D cells were plated and treated exactly as described
for microarray experiments. Total RNA was isolated after
1, 2, 4, 6, 8, 10, and 12 h, as well as from untreated control.
Reverse transcription of total RNA was done with AMV-RT
(Promega, Madison, WI, U.S.A.) using gene-specific primers
to generate cDNAs for use in real-time PCR analysis. Primer
sequences used for quantitative analysis of each gene are
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available upon request. Real-time PCR analysis was per-
formed with the ABI Prism 7000 Sequence Detection System
(Applied Biosystems, Foster City, CA, U.S.A.) to determine
the expression levels of selected genes. PCR product accumu-
lation was monitored in real time by measuring the fluores-
cence of SYBR Green as described (21, 22). A standard curve
of serial dilutions of cDNA from samples containing the
highest expression of selected genes was used to determine
relative expression levels. The average fold induction rela-
tive to control untreated cells was determined after normaliz-
ing to levels of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). Standard deviation was obtained from three to six
replicate measurements of each sample.

Two-Dimensional electrophoresis and western
blot analysis

MN9D cells were plated and treated exactly as described for
microarray experiments. Cell lysates were collected at 3, 6, 9,
and 12 h following 75 µM 6-OHDA treatment and subjected
to sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS-PAGE) and western blot analysis as described previously
(15). Two-dimensional electrophoresis was used to assess pro-
tein changes at 6 h following 75 µM 6-OHDA, 75 µM 6-OHDA
plus 5 mM N-acetylcysteine (NAC), or 50 µM MPP+ treatment,
as well as untreated controls. Samples were prepared by lysing
cells in 5% SDS, 5% �-mercaptoethanol, 10% glycerol, and
60 mM Tris, pH 6.8. Samples were then snap-frozen and
shipped to Kendrick Labs (Madison, WI, U.S.A.) for two-
dimensional electrophoresis and transblotting. Filters were sub-
sequently probed in this laboratory using antibodies directed
against heme oxygenase-1 (Hmox1, rabbit polyclonal, 1:5,000;
StressGen, San Diego, CA, U.S.A.), CHOP (Ddit3/Gadd153)
(mouse monoclonal, 1:100; Santa Cruz Biotechnology, Santa
Cruz, CA, U.S.A.), and Hsp60 (goat polyclonal, 1:500; Santa
Cruz Biotechnology). Anti-rabbit horseradish peroxidase-
conjugated secondary antibody (1:2,000) was purchased from
Cell Signaling Technologies (Beverly, MA, U.S.A.). Anti-
mouse secondary (1:5,000) and anti-goat secondary (1:5,000)
were from Sigma. Specific protein bands were detected by
enhanced chemiluminescence substrate detection (ECL Plus;
Amersham Biosciences, Piscataway, NJ, U.S.A.).

RESULTS

Microarray expression profiling

Previous microarray experiments revealed that 6-OHDA
treatment increased the expression of many genes associated
with cellular stress. Inasmuch as the prior studies looked only
at a 9-h end point, the latest time that macromolecular syn-
thesis inhibitors could block cell death (15), current studies
were directed at establishing earlier hierarchical changes. In
order to examine early toxin-induced changes in gene profiles,
RNAs prepared from untreated control and 3- and 6-h 6-
OHDA-treated cells were subjected to microarray analysis as
described in Materials and Methods. Data from these experi-
ments were combined with information from our prior 9-h time
point to identify changes, generate expression profiles of tran-
scriptional differences over time, and group genes according to
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their profiles. In keeping with the ability of cycloheximide to
block 6-OHDA-induced cell death (15), transcription was in-
creased at all time points tested. Of the ~12,000 genes present
on the GeneChip, the number of genes that met the criteria for
increasing over control was 128 at 3 h, 236 at 6 h, and 239 at 9
h. Of the 128 genes increased at 3 h, 95 were in common with
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those increasing at 6 h, and 53 were in common with the tran-
scripts increasing at 9 h. Of the 236 genes that were increasing
at 6 h, 113 were in common with those increasing at 9 h. Of the
53 transcripts that were increased at both 3 and 9 h, 49 were
also increased at 6 h. Thus, all but four genes increased at 3 and
9 h were also increased at 6 h (Table 1).

TABLE 1. LIST OF 49 TRANSCRIPTS INCREASED BY 6-OHDA OVER UNTREATED CONTROL AFTER 3, 6, AND 9 H.

Normalized microarray
change (z score)

Gene symbol Gene name 3 h 6 h 9 h

CHOP/Ddit3 DNA damage-inducible transcript 3 0.38 1.11 2.42
Hmox1 Heme oxygenase 1 0.37 1.24 2.29
Sqstm1 Sequestosome 1 0.44 1.33 2.38
Ubc Ubiquitin C 0.82 1.02 2.50
Sars1 Seryl-aminoacyl-tRNA synthetase 1 0.94 1.51 2.21
Erdr1 Erythroid differentiation regulator 1 0.96 1.46 2.18
Por P450 (cytochrome) oxidoreductase 0.55 0.82 2.29
Myd116 Myeloid differentiation primary response gene 116 0.61 1.66 2.21
Nupr1 Nuclear protein 1 1.06 1.63 2.17
Herpud1 Homocysteine-inducible, endoplasmic reticulum stress-inducible, 1.16 1.55 2.28

ubiquitin-like domain member 1
Mt2 Metallothionein 2 0.93 1.37 1.91
Gtpbp2 GTP binding protein 2 0.83 1.76 2.21
1810045K07Ril RIKEN cDNA 1810045K07 gene 0.45 1.23 2.52
Gclm Glutamate-cysteine ligase, modifier subunit 0.86 1.94 2.05
Jund1 Jun protooncogene-related gene d1 1.30 0.69 2.36
Rnu22 RNA, U22 small nucleolar 1.32 1.94 2.02
Atf4 Activating transcription factor 4 1.45 1.94 1.98
Ier3 Immediate early response 3 1.50 1.21 2.34
Cars Cysteinyl-tRNA synthetase 1.55 2.18 1.71
Csrp1 Cysteine and glycine-rich protein 1 1.29 1.33 2.35
Psph Phosphoserine phosphatase 1.55 2.18 1.71
Slc7a5 Solute carrier family 7 (cationic amino acid transporter, y+ system), member 5 1.47 1.56 2.19
Ddr2 Discoidin domain receptor family, member 2 1.24 2.09 1.86
Mthfd2 Methylenetetrahydrofolate dehydrogenase (NAD+-dependent) 1.76 1.79 1.95
Dusp1 Dual-specificity phosphatase 1 1.61 1.79 2.01
Csrp1 Cysteine and glycine-rich protein 1 1.42 2.16 1.76
1500005G05Ril RIKEN cDNA 1500005G05 gene 1.32 1.99 1.92
Aars Alanyl-tRNA synthetase 1.49 2.14 1.77
Slc3a2 Solute carrier family 3 (activators of dibasic and neutral amino acid transport), 1.41 2.05 1.84

member 2
5730493B19Ril RIKEN cDNA 5730493B19Rik 1.95 2.20 1.39
Gas 5 Growth arrest specific 5 1.17 1.56 2.16
Sui1-rs1 Suppressor of initiator codon mutations, related sequence 1 (S. cerevisiae) 1.32 1.60 2.11
Lars Leucyl-tRNA synthetase 0.91 2.23 1.61
Gdf15 Growth differentiation factor 15 1.57 2.01 1.78
E430001P04Ril RIKEN cDNA E430001P04 gene 1.53 1.79 1.91
Slc6a9 Solute carrier family 6 (neurotransmitter transporter, glycine), member 9 1.98 2.37 1.16
Tars Threonyl-tRNA synthetase 1.38 1.53 1.99
Atf3 Activating transcription factor 3 1.80 1.53 2.04
Nfe2l1 Nuclear factor, erythroid-derived 2,-like 1 2.26 1.29 1.68
3110065C23Ril RIKEN cDNA 3110065C23 gene 1.66 1.81 1.65
Eif4ebp1 Eukaryotic translation initiation factor 4E binding protein 1 1.81 1.96 1.47
Ifld2 Induced in fatty liver dystrophy 2 2.12 1.90 1.41
Cebpb CCAAT/enhancer binding protein (C/EBP), beta 1.45 1.87 1.48
Clic4/D0Jmb3 Chloride intracellular channel 4/DNA segment, Jeremy M. Boss 3 1.83 1.57 1.28
ArhB Ras homologue gene family, member B 1.60 2.24 0.59
Slc1a4 Solute carrier family 1 (glutamate/neutral amino acid transporter), member 4 0.50 2.34 0.35
Nars Asparaginyl-tRNA synthetase 1.82 1.68 0.93
Zfp3612 Zinc finger protein 36, C3H type-like 2 1.33 1.73 0.83
Ddit4 DNA damage-inducible transcript 4 2.17 0.96 0.81

Z score: zi = (xi � xa)/�, for the ith value, where xa = average signal value, and � = standard deviation.
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points are ranked according to the correlation of their ex-
pression profile with that of CHOP (Gadd153/Ddit3). There-
fore, Hmox1 and Sqstm1 have expression profiles closest to
CHOP, whereas Slc1a4, Nars, and Ddit4 are the most dis-
similar. It should be noted that signal level ranking does not
necessarily correlate to fold inductions. 

Clustering analysis

Analysis of all genes noted in Table 1 (transcripts in-
creased at all time points) using the K-means clustering algo-
rithm generated three distinct kinetic profiles (Fig. 2). The
first, Group 1, are early genes that increase in expression
quickly, peaking between 3 and 6 h. Group 2 genes also in-
crease early, but maintain their level of expression, whereas
Group 3 genes are generally increasing throughout the time
period measured. Overall, most of the gene profiles could be
clustered into one of the three subgroups shown in Fig. 2.

Real-time PCR and expression profile comparison

To verify the kinetic profiles and subgroupings identified
on the basis of microarray data, we performed real-time PCR
analysis on selected genes. Figure 3 compares data generated
from real-time PCR experiments (circles and solid lines) with
the expression profile generated from the normalized signal
values of the microarray (squares and dashed lines). The
stress-induced transcription factor CHOP has previously been
shown to be up-regulated by 6-OHDA (15). K-means cluster
analysis placed CHOP in Group 3 of more slowly rising late
genes described above. Figure 3A shows that the microarray
profile generated at 3, 6, and 9 h is virtually identical to real-
time PCR measurements up to 8 h. Because the microarray

FIG. 1. Kinetic profiling reveals differential gene induction in response to toxin treatment. Total RNA from MN9D cells
treated with 6-OHDA or untreated as control was used for Affymetrix MG-U74Av2 GeneChip Array probe hybridization. Data
were analyzed by Affymetrix Microarray Suite version 5, as well as Spotfire Decision Site for Functional Genomics. Multiple cri-
teria were defined to identify increasing genes as described in Materials and Methods. (A) Genes induced by 6-OHDA at 3 h are
plotted against genes induced at 6 h on the x axis and y axis, respectively, with a scale of log2. (B) Genes induced at 6 h versus
genes induced at 9 h. (C) Genes induced at 3 h versus those induced at 9 h. Several genes of interest have been labeled (see Table
1 for abbreviations). Solid red lines represent the threshold cutoff of a signal log2 ratio of 0.5 set to determine increasing genes.
Red circles represent genes that met all criteria for determining increasing genes at all three time points. Blue circles represent
genes increasing at less than three time points.

One way to visualize these temporally complex changes is
to plot the induction of genes increasing at one time point
versus those increasing at another (Fig. 1). Red horizontal and
vertical lines demarcate the threshold set for increasing tran-
scripts (0.5 signal log2 ratio, ~1.5-fold change). Genes that fall
to the right of the vertical red line were increased after 3 h;
those falling above the horizontal red line were increased after
6 h (Fig. 1A). Genes in the upper right quadrant were in-
creased at both 3 and 6 h (Fig. 1A). Similarly, data were plot-
ted for genes increasing at 6 versus 9 h and genes increasing
at 3 versus 9 h, respectively (Fig. 1B and C). Transcripts in-
creased at all three time points are represented by red closed
circles (Fig. 1). In accordance with previous results, these in-
clude genes involved in cellular stress responses, signaling,
transport, and the ubiquitin-proteasome pathway (Table 1).
Similarly, these new data sets confirm and extend our prior
findings showing that the stress-induced transcription factor
CHOP (Ddit3/Gadd153) is dramatically up-regulated at all
time points (Fig. 1, Table 1). Besides CHOP, the genes Atf3,
Ifld2, Hmox1, and Sqstm1 are also robustly increased at all
three times, whereas Gabarapl1, Armet, and Fkpb11 are in-
creased only at 6 and 9 h (Fig. 1, Table 1).

Another way to compare genes is by their individual signal
levels at each time point as opposed to the ratio of their sig-
nal levels compared with control. Here signal values are first
normalized across experiments via Z-scores to make them
directly comparable. The subsequent normalized values are
used to generate an expression profile for each gene. Data
mining software not only allows these expression profiles
to be searched for other genes with similar kinetic patterns,
but also clusters genes together according to their profiles.
Genes identified in Table 1 as increasing at all three time
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FIG. 2. K-means clustering of increasing genes reveals three distinct expression profiles. Microarray signal values from
51 genes up-regulated at all three time points were normalized by Z-score calculation using Spotfire DecisionSite for Functional
Genomics. K-means clustering of normalized values was used to generate the three distinct subgroups shown: Group 1, rapid rise
and decline; Group 2, rapid rise with plateau; and Group 3, late rise.

FIG. 3. Real-time PCR confirms microarray expression profiling. Treatment with 6-OHDA increased levels of CHOP, Sfrs5,
ATF3, and Sqstm1 as first indicated by microarray analysis and then confirmed by real-time PCR (A, B, C, and D, respectively).
Normalized microarray signal values (see legend of Fig. 2) from control and 3-, 6-, and 9-h time points were plotted to generate a
microarray expression profile for genes (squares and dashed lines). Total RNA was isolated from 6-OHDA-treated MN9D cells
and used for reverse transcription PCR and real-time PCR analysis using appropriate primers. Input RNA was monitored by mea-
suring GAPDH. Real-time PCR results (circles and solid lines) correspond to their microarray profiles. Values represent means ±
SE of three to six replicate real-time PCR reactions. **p < 0.01 compared with untreated control (one-way ANOVA with post-hoc
Dunnett’s multiple comparison test). Error bars of < 2% are buried in the symbol.
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results do not extend beyond 9 h, they do not predict the de-
crease observed by real-time PCR at 10 and 12 h. Microarray
analysis indicates that the splicing factor, serine/arginine rich
5 (Sfrs5) has a kinetic profile of a gene in Group 1, i.e., genes
that peak quickly and then decrease. This early peaking
profile was confirmed by real-time PCR results (Fig. 3B).
Activating transcription factor 3 (ATF3) was placed by
cluster analysis into the group of genes that increased rapidly
and remained elevated (Group 2). Real-time PCR corrobo-
rates this kinetic profile (Fig. 3C). The gene sequestosome 1
(Sqstm1/p62) was clustered into the same group of late genes
as CHOP, because the expression profiles of the two genes
were highly correlated (Table 1). This similarity in expression
profiles was confirmed by real-time PCR (compare Fig. 3D
and A). PCR time points after 9 h, however, reveal that
Sqstm1 continues to increase after CHOP levels begin to fall.
Taken together, the present microarray results were excellent
predictors of bona fide transcript responses following toxin
treatment.
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Hmox1 induction

Of the genes identified as increasing at all three micro-
array time points, Hmox1 has an expression profile most
closely correlated with CHOP. The Hmox1 kinetic profile
was verified via real-time PCR analysis, as well as western
blotting of cell lysates from 6-OHDA-treated MN9D cells
(Fig. 4). Both RNA and protein patterns indicate that Hmox1
expression parallels that of CHOP.

Two-dimensional gel electrophoresis

With the advent of proteomics, it is possible to examine
the consequences of toxin treatment in complex cellular sys-
tems. Thus, MN9D cells were treated for 6 h with 6-OHDA
alone, 6-OHDA together with the antioxidant NAC, or the
dopaminergic toxin MPP+ alone. Two-dimensional electro-
phoresis was used to evaluate alterations in the levels of pro-
teins following toxin exposure. Twenty-four proteins showed
differential expression, 12 increased and 12 decreased, as a
consequence of 6-OHDA treatment (Fig. 5). The majority of
these changes were blocked by pretreatment with NAC (data
not shown). Of these proteins, CHOP and Hmox1 were fur-
ther examined by western blotting. Both proteins were barely
detectable in untreated control samples, and both were ro-
bustly up-regulated in either 6-OHDA- or MPP+-treated cells.
Surprisingly, only CHOP activation was blocked by NAC pre-
treatment. Hmox1 was less affected (Fig. 5B). Taken together,
these data confirm and extend results derived from global
genome analysis to the level of the proteome.

DISCUSSION

Functional genomic and proteomic approaches are rapidly
becoming valuable tools in deciphering complex regulatory
pathways. Building on previous reports showing that cellular
stress plays a role in PD (15, 24), the present study identified
complex temporal changes associated with aberrant protein
degradation following neurotoxin treatment. By analyzing
microarray data, distinct functional subgroups of genes were
revealed. Notably, stress-induced transcription factors such as
ATF3, ATF4, CHOP, and C/EBP� were all robustly induced,
yet exhibited unique kinetic patterns. Multifaceted expres-
sion profiles were also observed for genes involved in the
synthesis and modification of proteins (e.g., six different
tRNA synthetases), protein degradation (e.g., ubiquitin, Her-
pud1, Sqstm1), oxidative stress (Hmox1, Por), etc. Taken to-
gether, these data support the notion that oxidative stress and
protein dysfunction play a role in PD, as well as provide a
time course for many of the molecular events associated with
6-OHDA neurotoxicity.

Clustering of genes involved in 6-OHDA-induced
cell death

The ability to group genes based on temporal expression
patterns is an important means by which functional relation-
ships or common regulatory mechanisms can be identified.
Despite the very large data sets generated from microarray
experiments, continually updated algorithms and software

FIG. 4. 6-OHDA induction of Hmox1 can be detected at the
mRNA and protein expression levels. (A) Normalized micro-
array signal values were used to generate a microarray expres-
sion profile for Hmox1 represented by squares and dashed line.
Hmox1 induction measured by real-time PCR (circles and solid
line) was similar to the microarray expression profile. (B) Pro-
tein lysates were prepared from 6-OHDA-treated MN9D cells.
Western blot analysis confirmed the up-regulation of Hmox1
protein with a time course of induction consistent with the mi-
croarray expression profile and real-time PCR results. Hsp60
western blot is shown as an equal loading control.
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FIG. 5. Two-dimensional gel electrophoresis identifies up-regulation of CHOP and Hmox1 protein levels. MN9D protein
lysates from control, 6-OHDA- and MPP+-treated cells, and cells pretreated with the antioxidant NAC prior to 6-OHDA, were
separated by isoelectric focusing followed by SDS-PAGE. Arrowheads denote the position of Hmox1 with a theoretical pI of 6.08
and molecular mass of 32 kDa. Mouse CHOP has a calculated pI of 4.65. Proteins were transferred onto polyvinylidene difluoride
membranes for immunoblot detection with anti-Hmox1 or anti-CHOP antibodies.
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can be utilized to filter raw information into smaller collec-
tions of significance, as well as to cluster transcripts into
distinct kinetic profiles. To identify sets of genes of interest,
we first filtered genes to single out those that were increas-
ing at each time point. Subsequent comparison of genes in-
duced at one time point against those induced at a different
time revealed genes that were distinct to those times, as well
as genes that were increased at multiple times (Fig. 1).
Genes could be further ranked according to their correlation
to a particular gene or profile (22). Because of its large in-
duction, and response to a broad range of insults, we ini-
tially focused on the transcription factor CHOP. Genes were
ranked according to their kinetic similarity to that of CHOP,
which was used as an “anchor” (Table 1). This approach al-
lows for identification of those genes that potentially share
functional properties or regulatory elements. By using other
genes of interest as anchors, and searching larger data sets
for similar expression profiles, de novo associations may be
discovered.

Application of K-means clustering revealed additional re-
lationships based on shared kinetic pattern profiles, including
Group 1 (rapid rise and decline), Group 2 (rapid rise with
plateau), and Group 3 (late rise). Conceivably, expression of
genes in Groups 1 and 2 may be closely linked to mechanisms
that sense cellular changes and thus be required to initiate
downstream responses. In contrast, genes in the third group
may be involved in either the cell’s adaptive response to stress
or the execution of a cell death program.

Identification of genes involved in 6-OHDA-induced
cell death

The Arg-Ser-rich domain protein, Sfrs5, is a member of a
conserved family of splicing factors that can regulate alterna-
tive splicing (10). Sfrs5 was identified as an immediate early
gene in insulin-treated rat hepatoma H35 cells (9), and identi-
fied as a Group 1, rapidly rising, then declining gene, in the
current study (Fig. 3B). Several examples exist of alternate
mRNA splicing being utilized as a mechanism for regulating
stress response. During the unfolded protein response, the
endoplasmic reticulum stress sensing protein, Ire1, mediates
the unconventional splicing of Xbp1 mRNA to generate an
active transcription factor (20, 32). This splicing event has
previously been confirmed following 6-OHDA treatment
(15). In addition, the stress-induced transcription factor ATF3
(see below) also undergoes stress-induced alternative mRNA
splicing to generate truncated isoforms that may modulate the
activity of the full-length protein (14, 23). Although Sfrs5
has not been directly implicated in alternative ATF3 splicing,
the early profile of this transcript is consistent with a role in
regulating downstream events.

Along with CHOP, the transcription factor ATF3 is one
of the most highly induced genes (Table 1). Studies have
shown that ATF3 is an integral part of the stress cascade, in-
creasing in response to activation of the eIF2 kinases PERK
or GCN2, which sense endoplasmic reticulum stress or amino
acid starvation, respectively (16). Induction of ATF3 depends
on the related bZIP transcription factor ATF4, which was
also induced by 6-OHDA exposure. Enhanced levels of ATF4
are achieved via increased transcription, as well as by selec-
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tive mRNA translation despite the general attenuation of
this process (13). Unlike CHOP, whose timing suggests a
more downstream role in stress response (compare Fig. 3A
and C), early induction of ATF3 is consistent with a more im-
mediate function in the coordination of stress-induced gene
expression. 

Sqstm1 (p62), a gene encoding a ubiquitin-binding protein,
has been shown to be up-regulated during apoptosis and pro-
teasomal inhibition in neuronal cells (17), as well as being lo-
calized to inclusion bodies in neurodegenerative disorders
such as Alzheimer’s disease and PD (17, 18, 33). In SH-
SY5Y neuroblastoma and PC12 cell lines, 6-OHDA has been
shown to increase the levels of ubiquitin-conjugated proteins
(7). Here, Sqstm1 expression was found to rise steadily over
10 h following 6-OHDA treatment (Fig. 3D). This pattern of
expression is consistent with Sqstm1 playing a role in the ag-
gregation of accumulating ubiquitinated proteins.

The late expression profile of Hmox1 was similar to that of
Sqstm1 (compare Fig. 3D and 4A). Hmox1 has been identi-
fied as a component of Lewy body inclusions in PD (27), as
well as being induced in response to a wide range of cellular
stresses, including oxidative insult of the nigral dopaminergic
cell line SN4741 with hydrogen peroxide or MPP+ (5, 25, 31).
Hmox1 functions as an important cellular antioxidant, and an
increase in its expression protects against 6-OHDA in PC12
cells (25). As with CHOP and Sqstm1, the timing of Hmox1
induction suggests a downstream role in the stress response,
instead of a regulatory role.

Validation of microarray expression profiling

Real-time PCR analysis confirmed that microarray re-
sults were predicative of changes for selected genes (Fig. 3).
Further, western blot analysis showed that the induction of
the gene Hmox1 at the transcript level was consistent with
induction of protein levels (Fig. 4). Finally, proteomic analy-
sis via two-dimensional electrophoresis also confirmed up-
regulation of Hmox1, as well as the previously identified
6-OHDA-induced stress marker CHOP (Fig. 5). The latter
approach has the power to resolve hundreds to thousands
of proteins on a single gel. Caveats exist, however. For exam-
ple, protein preparation using conventional techniques skews
results toward hydrophilic proteins. Because cellular stress
most likely involves membrane proteins from a variety of
sources such as the endoplasmic reticulum, mitochondria,
and/or plasma membranes, alternate protein separation tech-
niques may be required to assess complex protein changes
following neurotoxin treatments. Present findings indicate
that at least 24 proteins are changed in the narrow pI range of
5–8 due to 6-OHDA treatment (Fig. 5 and not shown). Exper-
iments including different pI ranges, as well as native gels
(26), will allow assessment of the complete proteome, as well
as protein–protein interactions. The latter may be particularly
important in the cell’s response to stress.

In conclusion, elucidating the biological processes by
which parkinsonian mimetics trigger cell death cascades is
important to accurately model this disorder. The present find-
ings provide a time frame for molecular events associated
with 6-OHDA neurotoxicity and support the role of cellular
stress in PD.
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