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in the presence of interleukin-2 (IL-2).8 However, we and oth-
ers showed that p12 is important for viral infectivity in quies-
cent PBL and the establishment of persistent infection in rab-
bits.9,10

Human immunodeficiency virus type 1 (HIV-1) encodes a
Nef protein. It consists of 206 aa, and it is highly conserved in
HIV-1, 2, and simian immunodeficiency virus (SIV).12 Similar
to HTLV-1 p12, Nef has a PXXP motif.12 Nef modulates T cell
signaling including T cell receptor activation and expression of
NF-AT, and it interacts with cellular tyrosine kinases Hck and
Fyn through PXXP motifs.13–15 Although Nef is dispensable
for infectivity in culture, it is important for efficient infectivity
of quiescent PBLs in vitro, and in SIV-infected animal mod-
els.16,17 Thus, HTLV-1 p12 and HIV Nef are structurally dis-
tinct retroviral accessory proteins, which are able to alter some
T cell signaling pathways and play a critical role in enhancing
viral infectivity in primary lymphocytes and infected animals.

MATERIALS AND METHODS

To construct Nef mutants, p102.ATG or p125.ATG clones, a
six-nucleotide sequence including the initiation codon of Nef,
GATGGG was replaced with CTCGAG (XhoI site) by a poly-
merase chain reaction, and then the viral clones were digested
with XhoI and religated, to remove the region of Nef encoding
1–33 aa (Fig. 2).18 For chimeric p102.p12 or p125.p12 clones a
full-length p12 cDNA from an HTLV-1 molecular clone ACH

INTRODUCTION

HUMAN T CELL LEUKEMIA TYPE 1 (HTLV-1) infects and im-
mortalizes human CD4 T cells in vitro and is associated

with the development of adult T cell leukemia/lymphoma
(ATLL).1,2 HTLV-1 is a complex retrovirus. The 39 region of
its genome, called pX, encodes the unique viral accessory pro-
teins, in addition to the structural genes common to most retro-
viruses (i.e., gag, pol, and env). The pX region contains four
open reading frames, termed pX-I to pX-IV. pX-III and pX-IV
encode the posttranscriptional regulator protein Rex and the vi-
ral oncoprotein, Tax, respectively, which are well character-
ized.3 On the other hand, much less is known regarding the
roles of HTLV-1 replication and pathogenesis of pX-I- and pX-
II-encoded proteins p12, p13, and p30.

The pX-I-encoded protein p12 consists of 99 amino acids
(aa) and is highly conserved in related viruses HTLV-1, 2, and
simian T cell leukemia virus type 1.4 The protein has four pro-
line-rich SH-3 binding motifs (PXXP), which are found in pro-
teins involved in the intracellular signaling pathway (Fig. 1).
Recently, several groups demonstrated that expression of p12
induces nuclear factor of activation of T cells (NF-AT) and tran-
scriptional factor Stat 5 activation in T cells suggesting that p12
may alter T-cell signaling.5–7 Using a p12-deficient mutant
within an HTLV-1 molecular clone ACH, we demonstrated that
p12 is dispensable for replication in B5 macaque cells (T.
Tsukahara and L. Ratner, unpublished observations), and im-
mortalization of human peripheral blood lymphocytes (PBLs)
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ABSTRACT

Human retroviruses, such as HTLV-1 and HIV-1, encode accessory proteins, which regulate viral pathogen-
esis. The p12 protein of HTLV-1 is encoded from the pX-I open reading frame, and is critical for efficient
virus replication in rabbits. Although dispensable for infection, replication, and immortalization of activated
lymphocytes in culture, p12 expression is important for infection of quiescent lymphocytes. Similar to HTLV-1 
p12, Nef is important for virus infectivity in SIV animal models. We questioned whether p12 could replace
Nef in HIV-1, and reconstitute virus replication in culture. We found that p12 could complement for effects
of Nef on HIV-1 infection of Magi-CCR5 cells or macrophages.
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was inserted into the Nef coding region at the XhoI site of
p102.ATG or p125.ATG (Fig. 2). The primers used for p12 were
as follows: a forward primer, 59-ccgctcgaggcactatgctgtttcgc-
cttctcag-39, and reverse primer 59-ccgctcgagcttagaagaggaaagc-

cgcg-39, respectively. The frame shift Nef mutants p102.Xh or
p125.Xh clones were used as described previously.18,19

Two micrograms of each proviral clone was transfected by
a calcium precipitation method, and viral proteins were ana-

EXCHANGE OF HTLV-1 p12 AND HIV-1 NEF 939

FIG. 1. Diagram of p12 and Nef with predicted functional motifs. aa, amino acid; TM, transmembrane region; LZip, leucine
zipper motif; DxxxLL, dileucine motif; PxxP, SH-3 binding motif; MGG, myristoylation site; EEEE, required for MHC I down-
regulation; RR, NAK binding site; LL, AP-2 binding site.

FIG. 2. Structure of HIV.p12 chimeric viruses. The panel shows mutants in a T cell line-tropic strain of HIV-1, NL4-3, also
designated p102, and a macrophage-tropic strain, NL4-3.ADA, also designated p125. In each case a frameshift mutation was in-
troduced at the XhoI (Xh) at residue 33 of the Nef coding sequence, a deletion of the first 33 codons of Nef, or substitution of
the p12 coding sequence, including a termination codon (*). MAGI-CCR5 cell infectivity assays with HIV.p12 chimeric viruses.
The number of blue cells was determined on plates after infection with 75, 15, or 3 ng of NL4-3-based viruses, or 225, 150, or
75 ng of NL4-3.ADA-based viruses. Similar results were obtained in three independent experiments.
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lyzed by immunoblot using cell lysates obtained 48 hr posttrans-
fection.20,21 Cell lysates were separated on 12.5% sodium dode-
cyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). Im-
munoblots were performed using an HIV-1 patient serum,
followed by treatment with an antihuman horseradish peroxidase-
conjugated secondary antibody and visualization was with an ECL
western detection system (Amersham, United Kingdom).

To check the presence of virus particles, the p24gag in the
supernatants from the 293T transfected cells was quantified by
a p24 antigen enzyme-linked immunosorbent assay (p24
ELISA) (Coulter Corp., Hialeah, FL).

Expression of p12 mRNA was examined by an RNase pro-
tection assay (RPAIII kit, Ambion, Austin, TX), since there are
no antibodies against p12. Total RNA was isolated from 293T
cells transfected with each HIV-1 clone at 48 hr posttransfec-
tion, and hybridized with 32P-labeled p12 antisense RNA probe
(263 nt). The protected RNAs (188 nt) were separated on a 5%
acrylamide gel with 8 M urea and visualized by autoradiogra-
phy.21 The mRNA levels of glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) in all samples were analyzed as an inter-
nal control (Pharmingen, San Diego, CA).

For quantitation of infectious particles, we used Magi-CCR5
cells, which express CD4, CXCR4, and CCR5 on the surface,
and contain a reporter gene b-galactosidase (b-Gal) driven by
the HIV-1 long terminal repeat.22 The indicator cell line al-
lowed detection of X4 or R5 HIV-1 strains by b-Gal staining
after a single cycle of replication. Virus stocks were generated
by transfection of 293T with each wild-type, Nef mutant, or
chimeric HIV-1.p12 clones at 48 hr posttransfection, and ex-
amined for p24gag concentration by the p24 antigen ELISA. In-
oculation of Magi-CCR5 cells (4 3 104) was initiated with var-
ious amounts of filtered virus supernatants. At 48 hr after
infection, the cells were fixed and stained with 5-bromo-4-
chloro-3-indolyl-b-D-galactopyranoside as described previ-
ously, and the number of blue cells enumerated.22 Under these
conditions the dilution of the viral stocks and the number of in-
fected cells were in the linear range.

PBLs were purified by Ficoll–Hypaque density gradient cen-
trifugation, and were obtained from healthy donors and stimu-
lated with 5 mg/ml phytohemagglutinin and 50 units IL-2 for 3
days. Inoculation of PBLs (1 3 106) was initiated with 100 or
20 ng of p24gag in the presence of IL-2. Supernatants from these
cultures were collected every 3 or 4 days and stored. Fresh PBLs
were added weekly as feeder cells. The infectivity of clones
was monitored by a reverse transcriptase (RT) assay, as de-
scribed previously.23

Terminally differentiated, noncycling macrophages were in-
fected with equal amounts of p24gag from a wild-type macro-
phage tropic p125 clone, Nef mutant, and chimeric p12 clones
generated in 293T cells transfected with proviral clones. Infec-
tions were initiated with 100 or 4 ng of p24gag.

RESULTS

In this study, we examined whether p12 could replace ef-
fects of Nef in viral replication. Therefore, Nef-defective mu-
tants and chimeric HIV-1 clones containing p12 were gen-
erated within the T cell line-tropic NL4-3 (p102) or macro-
phage-tropic (p125) strain, which is a chimera of the NL4-3,
HXB2, and ADA strains of HIV-1 (Fig. 2).23

TSUKAHARA AND RATNER940

FIG. 3. Gene expression from HIV.p12 chimeric viruses.
Each of the chimeric or parental HIV clones was transfected
into 293T cells, and cell lysates analyzed by immunoblot for
(A) Gag and Env expression with HIV-infected patient anti-
serum, or (B) Nef expression with rabbit antiserum, or (C) by
RNase protection assay for p12 mRNA expression. Positions
of molecular mass standards are indicated on the left side of A
and B. Positions of input probe are indicated on the left side of C.
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To confirm that chimeric HIV-1.p12 clones were able to pro-
duce Gag and Env proteins, wild-type p102 or p125 clone, Nef
mutant, and chimeric HIV-1.p12 clones were transfected into
293T cells, and viral proteins were analyzed by immunoblot us-
ing cell lysates obtained 48 hr posttransfection. Immunoblot
analysis with the patient serum showed similar levels of Gag
proteins including p55prgag, p24CA, p17MA and p41, as well as
envelope proteins gp160 and gp120 for each HIV-1 clone (Fig.
3A). Envelope expression was faint but with prolonged expo-
sure, bands were readily detectable. All clones tested produced
similar amounts of p24 antigen (data not shown). To confirm
that Nef mutants were unable to produce Nef proteins, cell
lysates were used as described above. Immunoblot analysis with
a polyclonal Nef antibody revealed that Nef protein was ex-
pressed from clones with a wild-type Nef coding sequence, but
not from those with mutations in the Nef coding domain (Fig.
3B). Chimeric p102.p12 and p125.p12 clones showed similar
levels of p12 mRNA compared to that of a p12 expression vec-
tor driven by mouse stem cell virus promoter (MSCV-p12) as
a positive control (Fig. 3C). No p12 mRNA was observed in
total RNAs from cells transfected with a wild-type p102 clone
or untransfected 293T cells.

We then examined whether p12 could substitute for the ef-
fects of Nef on HIV-1 replication. Over 500 infected cells were
observed in a well with a wild-type T cell line-tropic p102 clone
at the highest virus concentration (Fig. 2). Nef-defective mu-
tants p102.Xh and p102.ATG showed approximately 50% re-
duction in infectivity at each virus concentration, compared to
the wild-type p102 strain. This observation was consistent with
the data that Nef enhances infectivity of HIV-1 in these cells.24

The infectivity of chimeric p102.p12 clones was also reduced
similar to Nef mutants. On the other hand, over 200 infected
cells were detected with a wild-type macrophage-tropic p125
clone. Nef mutants p125.Xh and p125.ATG also showed ap-
proximately 50% of wild-type infectivity. Interestingly, the in-
fectivity of chimeric p125.p12 was comparable to the wild-type
p125 clone in each case. These findings suggest that p12 may
complement effects of Nef on infection of the HIV-1 p125 clone
in Magi-CCR5 cells.

Finally, we examined effects of p12 on macrophage infec-
tion. At high viral inoculation, Nef mutant virus was released
two- or three-fold less efficiently than wild-type virus, as ex-
pected (Fig. 4).25 Chimeric p12 virus was released two- or three-
fold even more efficiently than the wild-type virus. Similar re-
sults were observed after inoculation of macrophages with
lower titers of virus. These findings suggest that p12 may sub-
stitute for effects of Nef on infection of the p125 clone in mac-
rophages. However, p12 did not compensate for loss of Nef in
replication studies in proliferating PBLs.

DISCUSSION

In this study, we questioned whether p12 could substitute for
effects of Nef on viral replication in culture systems through
effects at the same or a different virus replication step modu-
lated by Nef. We showed that p12 rescued effects of Nef on
HIV-1 infection of Magi-CCR5 cells or macrophages using a
macrophage-tropic strain of HIV-1. These findings suggest that
Nef and p12 may represent examples of convergent evolution
for efficient retrovirus infection.

We constructed chimeric HIV-1 clones that contain p12 in
places of Nef (Fig. 2). The resulting viral clones highly ex-
pressed p12 mRNA, which was used as a surrogate for the pres-
ence of p12 protein. Nef protein was not detected in 293T cells
transfected with these clones. Immunoblot analysis of Gag and
Env and the p24 antigen ELISA demonstrated that there were
no differences in viral protein expression between the wild-type
and chimeric p12 clones, suggesting that HTLV-1 p12 did not
affect viral transcription or translation (Fig. 3).

Expression of p12 in a macrophage-trophic HIV-1 strain
complemented for effects of Nef on viral infectivity of Magi-
CCR5 (Fig. 2), suggesting that p12 may be important for the
initial step of infection since this is a single round replication
assay. However, this p12 function was not found in a T cell
line-tropic virus, although Nef enhances viral infectivity inde-
pendently of HIV-1 tropism.26 We do not know the reason for
the discrepancy. Using a macrophage-tropic HIV-1 clone, p12

EXCHANGE OF HTLV-1 p12 AND HIV-1 NEF 941

FIG. 4. Replication of HIV.p12 chimeric viruses in primary macrophages. Macrophages were infected with 100 ng (left) or 4
ng (right) of each virus, and cell-free reverse transcriptase activity expressed as cpm/ml. Similar results were obtained at the in-
dicated doses in three independent experiments with three different donors.
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complemented the effects of Nef on viral infectivity on mac-
rophages suggesting that p12 may be important for efficient in-
fection in quiescent and nondividing cells (Fig. 4).

The p12 protein is a positive factor for HTLV-1 infectivity
in quiescent cells.9 However, its mechanism of action is not
clear. Although the mechanism by which Nef enhances viral
infectivity is also not fully understood, there are several possi-
ble explanations. Nef does not modify the ability of the virus
to fuse or bind to target cells, suggesting that Nef may func-
tion at a postentry step in the viral life cycle.27 Indeed, virions
produced in Nef-positive cells were shown to more efficiently
initiate reverse transcription.28–30 Thus, p12 may also affect vi-
ral DNA synthesis.

Nef also modifies activation of infected cells in culture.31

Expression of Nef in a T cell line, Jurkat, induces IL-2 in the
presence of CD3 and CD28 antibody, but cell growth is not
changed.31,32 Therefore, we established stable p12-expressing
Jurkat cells (Jurkat-p12) using a retroviral vector system (data
not shown). In contrast to HIV-1 Nef, IL-2 induction was not
observed in Jurkat-p12 cells under the same experimental con-
ditions, as determined by an IL-2 ELISA (Ebioscience, San
Diego, CA). However, the clones of Jurkat cells expressing the
highest levels of p12 exhibited a more rapid rate of cell prolif-
eration than the parental cells, especially under low serum con-
ditions (data not shown). Cell cycle analysis showed acceler-
ated transition of G1 cells to S phase in the Jurkat-p12 cells than
in the parental cells, under these conditions. Thus, p12 may be
directly or indirectly involved in cell cycle regulation. If so, this
might provide an explanation for p12 effects on viral infectiv-
ity in quiescent cells. Interestingly, apoptosis was also reduced
in Jurkat-p12 cells with serum starvation compared to the
parental cells (data not shown). Nef also prevents cells from
undergoing apoptosis through activation of the Fas receptor,
and interaction between Nef and an apoptosis regulator ASK1
is associated with this Nef function.33,34 Therefore, p12 may be
involved in resistance of apoptosis observed in HTLV-1-in-
fected cells.3,35 However, additional studies of p12 mutants are
required to determine the relevance of these findings to the de-
scribed effects on HIV-1 replication.

The p12 protein has particular protein motifs including four
PXXP motifs, two leucine zipper motifs, a dileucine motif, and
IL-2 receptors binding site (Fig. 1).4 In contrast, Nef has a PXXP
motif and a CD4 binding site. Mutations in the PXXP sites of p12
did not alter HTLV-1 infectivity or NFAT activation (data not
shown). Moreover, p12 localizes to the endoplasmic reticulum
and cis Golgi apparatus, whereas Nef has been found in mem-
brane, cytoskeletal, and cytosolic fractions.36,37 We do not know
which domains could be responsible for effects of p12 on retro-
viral infection. Our chimeric HIV-1 clones containing the p12
open reading frame could be a useful tool for analyzing the role
in viral infectivity of each domain of p12. We found that p12 sub-
stituted for Nef in our culture system. These findings suggest that
Nef and p12 may represent examples of convergent evolution for
efficient retrovirus infection, and will help to define p12-medi-
ated effects on infectivity of HTLV-1.
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