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Abstract: Tests of spectral modulation detection and speech understanding were 
administered to children and young adults with hearing loss who use bimodal 
devices (one cochlear implant and one hearing aid at the non-implanted ear). 

Spectral modulation detection performance increases with participant’s age, and 
better speech recognition scores are associated with better audibility (SII or 

PTA). 
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Introduction 

 Understanding and communicating through speech can be difficult for those with severe 

to profound hearing loss. These skills are usually diminished because of poor audibility and 

decreased speech clarity (Bernstein et al., 2013), but may have the ability to recover somewhat 

with the use of high-power hearing aids (HAs) or cochlear implants (CIs). While some 

individuals benefit from high-power HAs, audibility is generally restricted due to the severity of 

the loss combined with limitations in gain and output of the HA. In addition, hearing aids rarely 

restore speech clarity for profound losses, even when the output signal is made loud enough 

(Bernstein et al., 2013). When HAs are no longer a viable option for assisting with listening and 

speech understanding, CIs may be recommended. A CI can help restore audibility by sending an 

electrical signal directly to the auditory nerve, and can help with speech clarity following 

appropriate programming of the devices and aural rehabilitation or habilitation (National 

Institute on Deafness and Other Communication Disorders [NIDCD], 2011). However, the 

spectral information reaching the auditory nerve through a CI is limited and cannot necessarily 

compare to the natural hearing of those with normal hearing sensitivity (Henry, Turner, & 

Behrens, 2005). 

 One way that audiologists measure patient benefit from CIs is by performing speech 

perception testing in quiet and in noise. During these speech tests, the patient listens to words, 

sentences, or other speech sounds and is asked to repeat what he or she heard. Curiously, speech 

recognition ability tends to vary among individual CI users, and can even vary between two ears 

on bilateral CI users. This variability can be due to length of deafness or length of HA use prior 

to implantation, to name a few possible causes (Henry & Turner, 2003; Jung et al., 2012; Jones, 

Won, Drennan, & Rubinstein, 2013). According to some however, not all of the variability in 
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speech perception abilities in these individuals is fully explained or predicted by these factors 

(Litvak, Spahr, Saoji, & Fridman, 2007). 

 When people with normal hearing listen to speech, they can distinguish subtle differences 

in the spectral shape, or envelope, of each speech sound, which is critical for putting together 

words and meaning aurally. This discrimination ability comes from the sharp frequency tuning of 

the normal human auditory system; however, for individuals with sensorineural hearing loss 

(SNHL), frequency-tuning ability tends to be diminished (Henry et al., 2005). This can cause the 

spectral cues of speech sounds to blend together, thus decreasing speech clarity. 

Recent research suggests that CI users’ performance on spectral modulation detection 

(SMD) and spectral ripple tasks correlates with their speech recognition performance (Henry & 

Turner, 2003; Henry et al., 2005; Saoji, Litvak, Spahr, & Eddins, 2009; Spahr, Saoji, Litvak, & 

Dorman, 2011; Anderson, Oxenham, Nelson, & Nelson, 2012). During spectral ripple tasks, 

participants are asked to discriminate between a broadband noise that is modulated (rippled) in 

the frequency domain and another such rippled broadband noise with a phase-reversed spectral 

shape. The spectral ripple discrimination threshold is the highest modulation rate or modulation 

frequency, measured in cycles/octave, at which the participant can perceive a difference between 

the rippled noise and its phase-reversed counterpart when the modulation depth remains 

constant. In an SMD test, threshold is the smallest modulation depth at which the participant can 

perceive a difference between a noise modulated in the spectral domain and one with no 

modulation at all, when the modulation rate remains constant (Litvak et al., 2007). Because these 

two types of spectral discrimination tasks (ripple and modulation detection) and speech 

understanding rely so heavily on spectral resolution abilities, it is logical to assume that spectral 

performance abilities and speech recognition scores would be related. The mechanism 
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underlying this relationship in CI users has been debated. However, recent data (Jones et al., 

2013) demonstrate a strong relation between a listener’s CI electrode interaction indices and his 

or her spectral discrimination abilities (as measures by ripple or SMD tasks). Interaction indices 

were calculated using measured thresholds at which participants detected a test pulse train, either 

in the presence of a pulse train with the same polarity or with opposite polarity on a nearby 

electrode. This calculation determined how much interaction existed among pairs of internal CI 

electrodes, and acted as a direct method of measuring spectral resolution with CI users. 

Henry and Turner (2003) were among the first to examine the relationship between 

spectral resolution, measured by ripple thresholds, and speech perception for individuals with 

hearing loss, with a particular interest in exploring this relation for electrical hearing through a 

CI. The participants were eight individuals with normal hearing and twenty-one CI users. 

Spectral resolution was tested with a spectral ripple paradigm using a four-alternative forced-

choice adaptive method, and speech perception was tested in quiet with a vowel identification 

task. Participants with normal hearing performed the spectral ripple task with a CI simulation, 

and with an increase in channels in the CI simulation came an increase in spectral resolution 

abilities. For the CI users, with the number of channels controlled via a research speech-

processor, similar improvements with an increasing number of channels was not observed. The 

results showed that CI users performed more poorly on the test of spectral resolution than did the 

participants with normal hearing. The results also demonstrated a significant correlation between 

spectral resolution abilities and speech perception for the CI users. In a similar study, Henry et 

al. (2005) found that CI users performed more poorly than individuals with normal hearing or 

with hearing loss on spectral ripple tasks. The investigators also saw a significant correlation 

between spectral resolution and perception of consonants and vowels for each group of listeners. 
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The results from both studies indicated a need to develop CI technology to improve the user’s 

ability to resolve spectral differences. 

In an effort to learn more about the effects of spectral resolution on speech understanding 

when listening through a CI, Litvak et al. (2007) created vocoder simulations meant to mimic CI 

sound processing and neural excitation. Ten young adults with normal hearing participated and 

completed SMD, vowel identification, and consonant identification tasks with and without 

vocoder simulation. SMD thresholds were obtained using a two-alternative forced-choice 

method at spectral modulation frequencies of 0.25 and 0.5 cycles/octave. Litvak et al. (2007) 

found that their normal hearing participants’ average SMD thresholds and speech scores became 

poorer with the electrode-current-spread parameter in the vocoder simulations, and that the 

variability among these normal hearing participants compared somewhat to the variability among 

CI users from an earlier study (Saoji, Litvak, Emadi, & Spahr, 2005). This suggested that neural 

excitation and spread, whether in a CI user or in a vocoder simulation, influences spectral 

sensitivity. This spectral-sensitivity variability was also thought to be a main contributor to the 

variability found in the speech understanding abilities of individuals who use CIs. 

Saoji et al. (2009) expanded upon the research done by Litvak et al. (2007) by 

experimenting with a range of spectral modulation frequencies during SMD testing of the CI 

participants employed in the previous study (Litvak et al., 2007). Saoji et al. (2009) hypothesized 

that SMD threshold would have a greater likelihood of being correlated with speech perception 

scores at higher than lower spectral modulation frequencies. This postulation, based on the idea 

that speech perception requires the ability to resolve precise spectral details, was not supported 

by the results. The investigators instead found that thresholds at low modulation frequencies of 

0.25 and 0.5 cycles/octave were better predictors of vowel and consonant recognition in quiet 
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than were thresholds at higher modulation frequencies of 1 and 2 cycles/octave. These results 

suggested that the CI users depended more on detection of a spectral envelope than fine spectral 

details, and that envelope detection was related to their detection of speech segments. 

Spahr et al. (2011) further investigated the effects of diminished spectral resolution with 

eleven adult CI users. The investigators intended to learn more about the nature of spectral 

resolution’s effect on speech perception in quiet and noise by changing the noise spectrum in 

various ways during an SMD task. All SMD tasks required participants to choose the noise that 

differed from a reference noise in a two-alternative forced-choice adaptive paradigm. However, 

the target noises of each SMD task varied in terms of spectral modulation frequency and 

bandwidth of the SMD noise stimuli (1 or 4 octaves). The obtained thresholds were analyzed 

against scores on a sentence test performed in quiet and with background noise. Spahr et al. 

(2011) discovered that their CI-user participants’ speech scores in quiet were best predicted by 

the SMD thresholds at modulation frequencies of 0.5 and 1 cycle/octave using the narrowband (1 

octave wide) noise, whereas speech scores in noise were best predicted by the SMD thresholds at 

modulation frequencies of 0.25 and 0.5 cycles/octave using the broadband (4 octave wide) noise. 

The investigators noted that their small sample size (N=11) might have produced erroneous 

results, but also maintained that the mechanisms involved in speech understanding in quiet and 

noise seem to differ. 

Anderson et al. (2012) examined adult CI users’ performance on spectral ripple, SMD, 

and speech-related tasks. These investigators hoped to replicate the results found by Litvak et al. 

(2007) and Saoji et al. (2009) by finding a relationship between spectral resolution and speech 

perception. Anderson et al. (2012) used the same type of noise stimuli as were utilized by Litvak 

et al. (2007) and found thresholds for both ripple and SMD tasks for the same group of CI users, 
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using a three-alternative forced-choice adaptive method. Seven thresholds were found per 

participant for each of seven modulation rates. Anderson et al. (2012) found that a greater 

modulation depth (peak-to-valley ratio) was generally needed for higher spectral-ripple 

frequencies, suggesting that low ripple rate noises were the easiest to identify. The investigators 

also found a relationship between SMD performance and vowel and sentence recognition 

abilities, which were measured in a previous study (Anderson, Nelson, Kreft, Nelson, & 

Oxenham, 2011). Significant correlations were seen between low ripple rate SMD thresholds and 

both speech measures in quiet, but correlations only approached significance in the presence of 

background noise. The lack of an observable relationship between the two tasks at higher ripple 

rates was consistent with previous research (Litvak et al., 2007; Saoji et al., 2009). In addition, 

the lack of a significant finding with regard to speech in noise performance suggests that spectral 

resolving powers needed for understanding speech in quiet and in noise are different, as 

indicated by Spahr et al. (2011). 

Similar research by Won, Drennan, and Rubinstein (2007) also indicated a relationship 

between spectral resolution ability and speech perception in quiet and noise. Spectral ripple 

thresholds were significantly correlated with both speech reception thresholds in noise and word 

recognition scores in quiet for a group of CI users. This result differed somewhat from results 

obtained by Spahr et al. (2012) and Anderson et al. (2013) in that speech scores in quiet and 

noise were both correlated with the same measure of spectral resolution. 

The majority of studies regarding spectral resolution and speech perception for CI users 

have been performed with adults. Jung et al. (2012) endeavored to study this relationship in 

children to better understand this population’s varied outcomes with speech understanding. A 

group of eleven 8- to 16-year-old children with CIs were administered a spectral ripple 
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discrimination test using a three-alternative forced-choice adaptive method. The children’s 

speech perception abilities were also assessed with a consonant-nucleus-consonant (CNC) word 

test in quiet and a spondee word test in noise. Additionally, the children were given tests of 

music perception and phase discrimination, two tasks that involve the use of temporal 

discrimination. Jung et al. (2012) discovered a correlation between spectral resolution and speech 

perception for these children; this result is consistent with results previously reported for adults 

(Henry & Turner, 2003; Henry et al., 2005; Saoji et al., 2009; Spahr et al., 2011; Anderson et al., 

2012). Jung et al. (2012) also found that their child participants performed similarly to a group of 

adult CI users on spectral and speech tasks, but performed more poorly on the temporal tasks. 

The investigators attributed this difference to a lack of complete temporal development in the 

children, and stated that their spectral resolution abilities were a better predictor of speech 

performance. 

Another study looking at the effects of spectral resolution abilities in children was 

conducted by Rakita (2012) with twenty children aged 7 to 17 years. All children had hearing 

within the normal range and completed tests of SMD and sentence understanding in noise. Both 

the SMD and speech stimuli were processed to simulate listening through a CI, and each test was 

administered with and without the CI-simulation processing. The results demonstrated a 

significant correlation between the processed SMD and speech scores; this was consistent with 

results from previous studies with CI users and normal hearing listeners with CI simulation 

(Litvak et al., 2007; Won et al., 2007; Saoji et al., 2009; Spahr et al., 2011). The investigator also 

discovered a significant effect of participant age on SMD performance in the processed and 

unprocessed conditions, as well as on speech understanding in the unprocessed condition. 
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 In some cases a person with hearing loss may use a CI only at one ear and use a HA at 

the other ear. A person with this combination of devices, a bimodal user, typically has some 

usable hearing at the HA ear. The level of hearing may not be enough to understand speech on its 

own, but may provide the listener with a bimodal advantage when both devices are used 

together. That is, the listener may be able to combine the natural acoustic signal from the HA 

with the electrical signal from the CI in a way that is beneficial for speech understanding (Zhang, 

Spahr, Dorman, & Saoji, 2013). For a group of adult bimodal device users, Zhang et al. (2013) 

found a relationship between bimodal benefit on speech perception in quiet and in noise, and 

three different HA-ear measures: low-frequency audiometric threshold, aided speech perception 

ability, and aided SMD threshold. Test words in quiet and sentences in background noise were 

used to assess speech perception ability, and SMD thresholds were evaluated using a two-

alternative forced-choice method at a spectral modulation frequency of 1 cycle/octave. The 

researchers discovered that acoustic SMD threshold was the best predictor of bimodal benefit in 

terms of speech understanding. Unlike audiometric thresholds, acoustic (HA-only) SMD 

threshold also accounted for much of the variance seen in the speech understanding scores of 

individuals with similar levels of hearing loss. With their research, Zhang et al. (2013) hoped to 

shed light on a new way to predict levels of bimodal benefit by assessing spectral resolution 

performance with acoustic hearing. 

 An investigation by Golub, Won, Drennan, Worman, and Rubinstein (2012) studied users 

of hybrid CIs to examine the benefits of having both electric and acoustic hearing in a single ear. 

Hybrid CIs, devices that stimulate the high-frequency basal area of the cochlea and preserve the 

low-frequency apical area, are beneficial to individuals with severe to profound high-frequency 

hearing losses and usable low-frequency hearing. These investigators noted the benefits of 
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electroacoustic hearing, such as improved speech perception in noise, and hoped to demonstrate 

that this was due to the spectral resolution allowed by the low-frequency acoustic hearing. Golub 

et al. (2012) used a three-alternative forced-choice adaptive method to find five hybrid users’ 

spectral ripple thresholds, and tested speech perception by having the participants repeat 

spondees in the presence of background noise. Their results showed that the hybrid CI users 

performed better on spectral ripple tasks than a group of typical CI users. They also found no 

significant difference between hybrid CI users’ spectral ripple performance with electroacoustic 

hearing and with acoustic hearing alone. This suggests that a large portion of spectral resolution 

ability comes from natural acoustic hearing. These investigators also found a difference between 

speech-in-noise performance of the hybrid CI and typical CI groups that approached 

significance. 

Because two people with the same hearing loss rarely have the same speech 

understanding difficulties, Bernstein et al. (2013) attempted to find a better predictor of the 

speech understanding abilities of those with hearing loss than the Speech Intelligibility Index 

(SII), a calculated number that is based solely on an individual’s audiogram (American National 

Standards Institute [ANSI], 1997). These investigators used spectrotemporal modulation (STM) 

detection ability in conjunction with the participants’ audiograms for this purpose. The altered 

broadband noises were modulated in both the spectral and the temporal domains, and a two-

alternative forced-choice adaptive procedure was utilized to determine STM sensitivity 

thresholds. Results from participants with hearing loss were compared to their speech perception 

scores reported previously (Summers, Makashay, Theodoroff, & Leek, 2013) and to results from 

a group of participants with normal hearing. The sentences used for the speech test were 

presented in noise at 92 dB SPL in order to decrease the effects of audibility. In their analysis, 
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Bernstein et al. (2013) discovered that STM sensitivity, when added to the predictive ability of 

the SII, accounted for an added 41.3% of the variance in speech understanding. 

 All of the aforementioned studies have found relationships between spectral resolution 

and speech perception, which could have implications for patients in the audiology clinic. Using 

such tests could help clinicians estimate a patient’s greatest potential benefit from HAs 

(Bernstein et al., 2013), and be useful for determining which processing strategies to use for 

patients with CIs (Henry & Turner, 2003; Won et al., 2007). For bimodal users, this test may be 

a good way to determine the utility of their acoustic hearing in bimodal speech understanding, or 

to determine who may or may not benefit more from a second CI (Golub et al., 2012; Zhang et 

al., 2013). Finally, tests of spectral resolution could be useful tools for the pediatric audiology 

clinic. The ability to perform these tests, compared to the ability to perform speech tests, is less 

likely to be influenced by factors such as age, cognitive ability, and primary language used in the 

home. The fact that tests of spectral resolution are non-linguistic suggests that they would be a 

good option for use with children (Rakita, 2012; Bernstein et al., 2013). In addition to helping 

clinicians make more informed decisions about their pediatric patients with hearing loss, these 

tests could also be more time-efficient than tests of speech perception (Henry & Turner, 2003). 

 The purpose of the present study is to examine the relationship between spectral 

resolution and speech understanding in children and young adults with hearing loss, specifically 

those who use bimodal devices. If a correlation exists, then SMD threshold could be a useful 

non-linguistic predictor of speech understanding in this population. Learning more about this 

relationship may help audiologists make more informed decisions regarding device 

recommendations for their pediatric patients. Drennan, Anderson, Won, and Rubinstein (2014) 

recently tested a “clinical” version of a spectral ripple test with twenty-eight adult CI users. This 
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version used similar stimuli to that used by Won, et al. (2007), but presented it with a method of 

constant stimuli rather than an adaptive method, the latter of which has been used almost 

exclusively in this line of research. Drennan et al. (2014) found that results from using this 

method were not significantly different from results obtained using the more traditional (and 

more time-consuming) method on the same group of participants. The investigators also found 

that a relationship between the new clinical test and the participants’ speech perception scores, as 

expected. Previously, Won, Clinnard, Kwon, and Drennan (2011) tested spectral ripple 

sensitivity in CI users with a method of constant stimuli and found similar results. In this 

Capstone study, a method of constant stimuli is also used, although the stimuli vary in 

modulation depth and not modulation rate. The stimuli and presentation method are the same as 

those used by Rakita (2012). It was hypothesized that a significant correlation would be found 

between the SMD threshold and speech understanding. 

A secondary goal is to explore changes in spectral resolution abilities that may occur as a 

function of age. Rakita (2012) determined that a relationship between age and SMD score did 

exist in children with normal hearing, both in the CI-simulation condition and the unprocessed 

stimuli condition. It is important to know whether age has an effect on the SMD threshold in 

children with hearing loss so that appropriate conclusions can be made about the results of this 

test for each pediatric patient. It is expected that performance on SMD tasks will improve with 

the age of the participant. This study was approved by the Washington University School of 

Medicine Human Research Protection Office (HRPO). 

Methods 

Participants 

 Inclusion criteria were: 
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1) Participants between the ages of 7 years, 0 months and 21 years, 11 months 

2) Individual’s hearing loss identified before 4 years of age 

3) Consistent use of a HA and/or CI since identification of the individual’s hearing loss 

4) Experience with a CI for 9 months or longer 

Children and young adults with significant developmental diagnoses and those who did not 

fit the inclusion criteria were excluded from the study. Participants were compensated for taking 

part in the study. 

Eight participants (four male, four female) were recruited from Central Institute for the 

Deaf (CID) in St. Louis and St. Louis Children’s Hospital (SLCH) and consented or assented to 

participation in the study. All participants were bimodal device users and fit the inclusion 

criteria. The participants ranged from 8.9 to 19.0 years of age (mean: 13.3 years; SD: 3.8) at the 

time of testing. Demographic data for the participants are shown in Table 1. 

Procedure 

 One test of spectral resolution and two tests of speech understanding were administered. 

Measures included the Consonant-Nucleus-Consonant (CNC) word test (Peterson & Lehiste, 

1962), an SMD test, and the Bamford-Kowal-Bench Speech-In-Noise (BKB-SIN) sentence test 

(Bench, Kowal, & Bamford, 1979; Etymōtic Research, 2005), completed in this order. Each test 

was completed in three conditions: bimodal, CI-only, and HA-only. Testing was completed 

within a total of 1.5 to 2 hours for participants who had not had any of these tests done clinically. 

Some families requested to have the testing done in multiple sessions. For those who had 

completed some of these tests clinically within six months of participating in the study, those 

particular tests were not repeated. Results of prior tests were obtained from audiological patient 

records. For testing completed during the study, test list choice and condition order were 
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randomized using FreeMat software. Tests were performed in sound booths in the audiology 

departments at CID and SLCH. 

 Audiometry. Aided detection thresholds were obtained for participants at the HA ear and 

the CI ear in order to ensure audibility consistent with proper functioning of each device. 

Frequency-modulated (FM) tones were presented in the sound field at octave frequencies 

between 250 and 4000 Hz and at the inter-octave frequency 6000 Hz, as well as at 3000 Hz if the 

difference between thresholds at 2000 and 4000 Hz was equal to or greater than 20 dB. The 

participant was seated roughly one meter from the speaker and was asked to respond by raising a 

hand whenever the tone was heard. Step sizes of 5 dB were used with the modified Hughson-

Westlake procedure. Previous unaided audiograms were obtained from the participants’ 

audiologic charts. 

 Electroacoustic measures. Prior to the study, each participant’s HA had been 

programmed by his or her regular clinician to approximate Desired Sensation Level (DSL v 5.0 

[Scollie et al., 2005]) targets across a frequency range of 250 Hz to 6000 Hz. During the study, 

each HA’s output was verified using simulated real-ear measures (SREM) and real-ear-to-

coupler-differences (RECDs) when available in the participants’ audiologic records. The fitting 

tool Speechmap was used to measure the HA output levels with soft (50 dB SPL), medium (60 

dB SPL), and loud (70-75 dB SPL) inputs. The stimulus utilized was calibrated speech of a male 

talker, one of the stimuli available in the Speechmap environment (Audioscan, 2012). 

Electroacoustic measures were completed using an Audioscan Verifit system, and measurements 

were completed within one month of study enrollment. This verified optimal programming and 

functioning of each HA. Output Speech Intelligibility Index (SII) at 50 and 60 dB were each 

calculated automatically during SREM. SII measurements are used to estimate audibility of 
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different levels of speech, and are sometimes used to predict speech understanding performance 

(Audioscan, 2012). 

 CNC word test. Recorded lists were used for CNC testing. All ten CNC lists of 50 words 

were available for use, and each participant completed one distinct list for each of the three 

conditions. Words were presented in the sound field at 50 dB SPL with the participant seated 

roughly one meter from the speaker. The reason for using this soft presentation level was to 

avoid any ceiling effects in CNC scores. Participants were asked to repeat the recorded words 

and were encouraged to guess if uncertain. Tests were scored by the percent of words repeated 

correctly. If a participant was unable to correctly identify the first ten words of a list, the test for 

that condition was discontinued and the participant received a score of 0%. 

 SMD test. Spectrally modulated noise recordings were obtained from colleagues at 

Arizona State University (A. Spahr, personal communication), similar to those used by Eddins 

and Bero (2007) in a study with normal hearing listeners. These stimuli are the same as those 

used by Rakita (2012). The stimuli were created by modifying a four-octave wide (~300-5600 

Hz) white noise with the application of a desired spectral modulation depth and frequency, and 

with a random starting phase in the spectral modulayion. Inverse Fourier transform of the noise 

spectrum produced a waveform with a specified spectral shape, with spectral modulation 

frequencies of 0.5 or 1.0 cycles/octave and modulation depths of 10, 11, 13, 14, or 16 dB. 

Reference stimuli, four-octave-wide noises with no spectral modulation, were also provided. 

Each stimulus was 350 ms in length. 

 Four sequences of SMD trials were provided. Three of the four SMD sequences were 

used for testing, and the fourth was used to briefly familiarize the participant with the task. Each 

sequence was composed of sixty trials, with each trial consisting of three broadband noises (two 
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reference and one modulated in the spectral domain). The modulated stimulus was randomly 

placed in the first, second, or third interval of the trial. Each spectral modulation depth was 

presented ten times per sequence, each spectral modulation frequency presented thirty times, and 

each depth and frequency combination presented five times. The task represents the method of 

constant stimuli; thus, each sequence (or list) included the same stimuli presented in different 

random orders. Lists were presented in the sound field at 65 dB SPL with the participant seated 

roughly one meter from the speaker. The lists were played from an Apple computer with the 

program Audacity (Ash, Chinen, Crook, & Ijbulatov, 2010) and routed through a GSI-61 

audiometer to a speaker inside a treated sound booth. Sound level of the stimulus was set using 

the calibration tone for the stimuli and a sound level meter (SLM, A-weighted, fast setting). 

 After as many as five practice trials, participants began the three-alternative forced-

choice task, during which they were asked to select the noise in each trial that sounded 

“different” by stating their choice or pointing to a sheet labeled “1, 2, 3” (or 1st, 2nd, or 3rd). 

Participants were encouraged to guess if uncertain. A score of 44% was calculated as the 

minimum value at which one could have 95% confidence that the participant was performing 

above the chance level. Tests were scored by calculating the percent correct and the number of 

errors made for each modulation frequency. 

 BKB-SIN sentence test. Recorded lists were used for BKB-SIN testing. Only list pairs 

9-18, which have been recommended for CI users, were utilized. Each list within a list pair 

contained eight sentences with three to four keywords per sentence. Sentences and background 

noise were presented from the same speaker (0° azimuth) in the sound field at 65 dB SPL with 

the participant seated roughly one meter from the speaker. Sentences were presented with an 

increasing level of multi-talker babble, starting with a +21 dB signal-to-noise ratio (SNR). For 
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each consecutive sentence, the SNR decreased by 3 dB. Participants were asked to repeat each 

sentence to the best of their abilities, and encouraged to guess if uncertain. Tests were scored by 

calculating the average SNR-50 (SNR for 50% accuracy) for each list pair (BKB-SIN User 

Manual). If a participant was unable to correctly identify any of the keywords from the first two 

sentences of any list, testing of that list was discontinued and the participant received an SNR-50 

score of 23.5. Lower scores indicate better performance. Each participant completed two list 

pairs for each of the three listening conditions. The scores from the two list pairs were averaged 

for data analysis. 

Results 

 All participant data was collected during the study’s testing period or was obtained within 

six months of the test date by the participants’ regular clinicians, except for HJB01. Subject 

HJB01 was scheduled to receive a second CI shortly after enrollment in the study and did not 

have sufficient time to complete the speech tests. Thus, this participant’s CNC scores at 50 dB 

SPL were obtained outside of six months, but within one year, of study participation. 

Unfortunately, no prior CNC score at 50 dB SPL in the HA-only condition was available. In 

addition, electroacoustic measures for the HA of HJB01 were obtained outside one month, but 

within six months. Another participant, HJB05, misplaced his HA following testing and was not 

able to have electroacoustic measures conducted at that time. However, electroacoustic 

measurements from within six months were used for analysis. 

Unaided and Aided Audiometric Results 

Pure-tone averages (PTAs) for each ear in unaided and aided conditions were calculated 

by averaging audiometric thresholds at frequencies of 500 Hz, 1000 Hz, and 2000 Hz. In cases 

where no response was obtained, the threshold was recorded as 120 dB HL, which is beyond the 
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limits of the equipment. Unaided PTAs for the CI ear ranged from 98.3 dB HL to 120 dB HL 

(mean: 112.3, SD: 8.4). Unaided PTAs for the HA ear ranged from 63.3 dB HL to 93.3 dB HL 

(mean: 86.5, SD: 10.5). Aided PTAs for the CI ear ranged from 20.0 dB HL to 30.0 dB HL 

(mean: 24.8 SD: 4.2). Aided PTAs for the HA ear ranged from 20.0 dB HL to 40.0 dB HL 

(mean: 33.3, SD: 6.2). Aided low-frequency PTAs were also calculated by averaging 

audiometric thresholds obtained at 250 Hz, 500 Hz, and 1000 Hz. Aided low-frequency PTAs for 

the CI ear ranged from 16.7 dB HL to 28.3 dB HL (mean: 24.0, SD: 4.7). Aided low-frequency 

PTAs for the HA ranged from 20.0 dB HL to 33.3 dB HL (mean: 30.2, SD: 5.0). Unaided and 

aided audiometric thresholds for the participants are shown in Figures 1-4. 

Bimodal Benefits for SMD and Speech Perception 

 CNC scores for the participants ranged from 18% to 72% correct (mean: 40.8, SD: 19.9) 

in the CI-only condition, 0% to 50% correct (mean: 20.3, SD: 17.9) in the HA-only condition, 

and 30% to 78% correct (mean: 52.0, SD: 17.3) in the bimodal condition. Bimodal speech 

perception benefit was calculated by subtracting each participant’s best single-ear score (either 

HA-only or CI-only) from the bimodal score of the test. For the CNC test, benefit values ranged 

from -4.0 to 28.0 percentage points (mean: 7.0, SD: 10.5), indicating a trend toward 

improvement in the bimodal condition. Averages of each participant’s BKB-SIN SNR-50 scores 

from two list pairs ranged from 4.8 dB to 22.8 dB (mean: 11.5, SD: 6.3) in the CI-only condition, 

4.8 dB to 23.0 dB (mean: 15.9, SD: 6.3) in the HA-only condition, and 3.3 dB to 15.5 dB (mean: 

7.9, SD: 4.7) in the bimodal condition. Bimodal benefit values ranged from -2.5 dB to 1.5 dB 

(mean: -0.7, SD: 1.3), indicating that SNR-50 scores changed very little in the bimodal 

condition. SMD scores ranged from 32% to 88% correct (mean: 61.0, SD: 22.2) in the CI-only 

condition, 35% to 95% correct (mean: 55.0, SD: 22.4) in the HA-only condition, and 30% to 
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90% correct (mean: 65.9, SD: 23.2) in the bimodal condition. Bimodal benefit values ranged 

from -25 to 5 percentage points (mean: -4.6, SD: 9.6), indicating that the participants tended to 

perform more poorly with both devices than with their best single-ear device alone. Scores for 

the participants can be viewed in Figures 5-7. 

Effect of Age 

 The effect of age on performance for the various tests completed was calculated to 

address the study’s second hypothesis. Data analysis revealed a significant correlation between 

participant age and SMD percent correct performance in the CI-only condition (r=0.81, p=0.02). 

A significant negative correlation was also seen in this CI-only condition between age and 

number of errors made with the 0.5 cycles/octave SMD stimuli (r=-0.84, p=0.009). A negative 

trend was observed between age and errors made with the 1.0 cycles/octave stimuli in the CI-

only condition, but this was not significant (r=-0.66, p=0.08). All other correlations between 

participants’ performance (speech or SMD) and age were not significant (see Figures 8-12). A 

comparison of the SMD performance by children with normal hearing in the study by Rakita 

(2012) and in the CI-only condition in the present study is displayed in Figure 9. 

 A two-tailed unpaired t-test was performed to determine whether or not any significant 

differences existed between the ages of the participants in the current study and the study 

performed by Rakita (2012). This analysis revealed the two groups to be statistically similar in 

age (p=0.59). 

Relation between Spectral Resolution (SMD) and Speech Perception 

 Analysis of data regarding a relation between spectral resolution and speech perception in 

the bimodal participants revealed one significant correlation between SMD performance and 

speech performance. This correlation was between number of errors made with the 1.0 
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cycles/octave stimuli in the HA-only condition and SNR-50 value in the CI-only condition (r=-

0.72, p=0.04). This relationship was unexpected due to the measurements being from two 

different ears. It is possible that, since no other correlations were seen between these variables in 

the other conditions, this relationship occurred coincidentally. 

Relation between SII/PTA and Speech Perception 

 The effect of audibility, determined with measurements of aided audiometric thresholds 

from each device and SII calculations from the HA ear, was examined with regard to 

measurements of speech perception. Aided HA-ear PTA and SII at 50 dB SPL (r=-0.95, 

p=0.0004) and aided HA-ear PTA and SII at 60 dB SPL (r=-0.87, p=0.005) were highly 

correlated, suggesting that SII and aided PTA represent roughly equivalent measures of 

audibility. Analysis of aided PTA revealed a significant positive correlation between aided PTA 

at the HA ear and SNR-50 for that ear (r=0.77, p=0.02). This correlation indicates that higher 

(poorer) thresholds were related to higher (poorer) SNR-50 values on the BKB-SIN test. A 

correlation was also seen between aided PTA at the HA ear and CNC score for that ear (r=-0.70, 

p=0.052); that is, the lower (better) the aided PTA, the higher the CNC score. This correlation 

approached significance. The data for PTA are displayed in Figures 13-14. 

 Analysis of SII from the HA ear also revealed some trends. Significant negative 

correlations were found between SII at 50 dB SPL and SNR-50 at the HA ear (r =-0.77, p=0.02), 

as well as between SII at 60 dB SPL and SNR-50 at the HA ear (r=-0.77, p=0.02), indicating that 

performance on the BKB-SIN test increased with increased audibility in that condition. 

Relationships that approached significance were also seen between SII at 50 dB SPL and CNC 

score at the HA ear (r=0.72, p=0.07), and between SII at 60 dB SPL and CNC score at the HA 
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ear (r=0.71, p=0.07), possibly indicating that performance on the CNC test with the HA 

increased with increased audibility. The data for SII are displayed in Figures 15-20. 

 Two significant correlations were seen between SII at 50 dB SPL and bimodal benefit on 

the CNC test (r=0.73, p=0.04) and between SII at 60 dB SPL and bimodal benefit on the CNC 

test (r= 0.73, p=0.04). Correlations that approached significance were also seen between aided 

PTA at the HA ear and bimodal benefit on the CNC test (r=-0.66, p=0.08), and between aided 

low-frequency PTA at the HA ear and bimodal benefit on the CNC test (r=-0.65, p=0.08). These 

results indicate that an increase in audibility at the HA ear resulted in an increase in bimodal 

benefit for the CNC word test. 

 In the study by Zhang et al. (2013), investigators calculated “normalized acoustic 

benefit,” a percentage value that determines how much bimodal benefit a person gets from the 

addition of a HA without the influence of ceiling effects. This is calculated by dividing the 

individual’s actual improvement (from CI-only to bimodal) by his or her potential improvement 

on the task, or by his or her initial CI-only score in cases when bimodal performance decreases. 

Like the bimodal benefit correlations seen earlier, these “normalized acoustic benefit” values for 

the CNC test were significantly correlated with SII at 50 dB SPL at the HA ear (r=0.80, p=0.02), 

SII at 60 dB SPL at the HA ear (r=0.78, p=0.02), aided PTA at the HA ear (r=-0.76, p=0.03), and 

aided low-frequency PTA at the HA ear (r=-0.74, p=0.04). Data regarding bimodal benefit and 

normalized acoustic benefit are displayed in Figures 21-25. 

Spectral Modulation Frequency 

 Errors associated with the 0.5 cycles/octave SMD stimuli were analyzed against the 

errors associated with the 1.0 cycles/octave SMD stimuli for each condition. A one-tailed paired 
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t-test detected a significant difference between the number of errors for the two stimuli in the 

bimodal condition (p=0.0003), but not for the other two listening conditions. 

Discussion 

 Rakita (2012) noted that all of her normal hearing participants were able to complete the 

SMD task above chance level, even at 7 years of age. In the present study, some of these 

participants with hearing loss performed at chance (<44% correct) for at least one of the 

conditions. Participant HJB05, the youngest of the group, performed close to the chance level in 

all listening conditions. Whether this level of performance was due to age, attention, level of 

hearing loss, or the use of listening devices is unclear. Future research in this area may benefit 

from taking extra measures to ensure the task is understood and holds the participant’s attention. 

Regardless, it is worth noting that the task was harder for some of these participants than for the 

participants in the Rakita (2012) study. 

 Rakita (2012) discovered significant correlations between age and unprocessed BKB-SIN 

performance, age and unprocessed SMD score, and age and CI-simulation SMD score. A trend 

between age and CI-simulation BKB-SIN performance that approached significance was also 

noted. In the Rakita (2012) study, this indicated that with increasing age came increasing 

performance on speech perception and SMD tasks. In the present study, significant correlations 

were seen between age and SMD performance (percent correct and errors made with the 0.5 

cycles/octave stimuli) in the CI condition. A correlation approaching significance also 

demonstrated a trend toward decreasing errors with the 1.0 cycles/octave stimuli in the CI-only 

condition as age increased. These combined results indicate that children are able to perform 

better on SMD tasks as they grow older, whether they have hearing loss or not. Whether this is 

due to a better ability to understand the task or to a maturational process in the auditory system is 
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unknown. In the present study, no relationships were observed between age and SMD in the 

other listening conditions (HA-only or bimodal). Additionally, no significant relationships were 

observed between age and any of the speech measures. The results regarding the other two 

listening conditions (HA-only and bimodal) differ slightly from what was observed by Rakita 

(2012), despite the similarity of the two participant groups with regard to age. However, those 

subjects were not administered a HA-simulation or bimodal-simulation version of the SMD test, 

so a true comparison for these conditions cannot be made. To learn more about the mechanisms 

involved in SMD and speech processing, further spectral resolution research with young bimodal 

participants must be completed. 

 Surprisingly, the anticipated relationship between SMD abilities and speech perception 

performance was not seen in the data. The one correlation that was seen, between number of 

errors with the 1.0 cycle/octave stimuli in the HA-only condition and SNR-50 in the CI-only 

condition was not expected, seems illogical, and is inconsistent with other data. The results also 

did not support the postulation that SMD performance is correlated with bimodal benefit or 

normalized acoustic benefit. One would imagine that SMD, which has reportedly been associated 

with speech perception in the past (Saoji et al., 2009; Spahr et al., 2011; Zhang et al., 2013), 

would be able to help predict bimodal speech perception benefit, but that was not the case in this 

study. With more subjects, perhaps the expected relationship between SMD and speech 

perception would have been observed. To determine whether or not tests of spectral resolution 

can help predict bimodal children’s speech understanding, more studies with a greater number of 

bimodal participants need to be conducted. 

 The data regarding audibility as measured by aided PTA and SII at the HA ear all suggest 

that audibility is related to speech perception outcomes at that ear. SII measurements for the 
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participants with hearing loss in the Bernstein et al. (2013) study did account for some of the 

variance in speech perception scores, but not as much as with the addition of STM detection 

scores. That study did not report any effects of audibility, likely because the investigators 

attempted to reduce the effects of audibility by presenting the speech stimuli at a high level of 92 

dB SPL. In the present study, audibility appeared to play a role in speech understanding. 

Although no correlations were seen among aided thresholds and speech perception scores in the 

CI-only or bimodal conditions, it may be beneficial for future studies to calculate SII in these 

listening conditions to determine whether or not this measurement can better help predict speech 

understanding in bimodal device users. 

 In this study, PTA and SII were also both related to bimodal benefit and normalized 

acoustic benefit on the CNC test. This seems to make sense because, as discussed earlier, better 

audibility at the HA ear was related to better speech perception outcomes. It follows that better 

HA-ear audibility would allow for greater speech perception benefit in the bimodal condition. 

 The significant difference between SMD errors at the two different spectral modulation 

frequencies (0.5 and 1.0 cycles/octave) in the bimodal condition suggests that the 0.5 

cycles/octave stimuli were easier to distinguish than the 1.0 cycle/octave stimuli. Saoji et al. 

(2009) found that lower modulation frequency detection, such as for frequencies of 0.25 and 0.5 

cycles/octave, was better correlated with speech perception scores than was higher modulation 

frequency detection. Similarly, Spahr et al. (2011) found that detection of low spectral 

modulation frequencies applied to a broadband noise was better correlated to speech in noise 

performance than was detection of higher spectral modulation frequencies. These combined data 

suggest that future studies of SMD with bimodal children may benefit from using low spectral 

modulation frequency stimuli to test their participants. 
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Conclusion 

 Conducting a study to analyze the relationship between spectral resolution and speech 

perception in bimodal children was important for several reasons. Firstly, if a relationship were 

discovered, using SMD or spectral ripple testing could be a useful way of determining which 

listening devices help patients with hearing loss most, or what programming changes need to be 

made to an individual’s HA or CI. Secondly, previous studies in this realm of research have 

examined this relationship in CI users, but few have worked with a bimodal population. 

Oftentimes it is difficult to predict which of these users would benefit from a second CI and 

which do best with an added HA. Research with this population could assist hearing care 

professionals in making more appropriate recommendations with regard to amplification options. 

Thirdly, very few studies have examined spectral resolution performance in children and young 

adults. The discovery of a reliable, non-linguistic, time-efficient test to predict bimodal speech 

understanding in this age group would be invaluable to clinicians, especially considering that 

speech in this often difficult-to-test population can be delayed. This study’s main hypothesis was 

that spectral resolution abilities and speech perception would be correlated, as seen in numerous 

other studies with adult CI users (Saoji et al., 2009; Spahr et al., 2011; Anderson et al., 2013). 

However, this was surprisingly not supported by the data. Rather, the data indicated an age effect 

on SMD performance with the CI alone, and a relationship between aided audibility and word 

understanding with the HA alone. In addition, measures of audibility were related to bimodal 

benefit on the CNC word test, whereas SMD performance was not. 

 Due to the small sample size of eight participants, the results must be interpreted 

cautiously. Perhaps with a greater number of participants a correlation would have been observed 

between SMD abilities and speech perception, or between SMD abilities and bimodal benefit. 
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However, it is worth noting the significant correlation observed between audibility measures and 

speech perception on the CNC score in the HA condition. This suggests that SII and PTA, tools 

that audiologists are already familiar with, can help predict speech performance in the clinic, at 

least in a HA-only condition. Fortunately, SII and PTA, like SMD, can be obtained quickly and 

without the use of speech or language. Future research focused on the young population of 

bimodal users should examine this relationship more closely, as well as the effects of age. Future 

studies should also attempt to include more participants to determine whether or not a 

relationship exists between spectral resolution and speech understanding in bimodal children, as 

it appears to in adults with hearing loss. 
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Appendix A 

Participant Performance of SMD Tasks 

 CI HA Bimodal 
Subject 

ID 
SMD 

Percent 
Correct 

Errors 
at 0.5 

c/o 

Errors 
at 1.0 

c/o 

SMD 
Percent 
Correct 

Errors 
at 0.5 

c/o 

Errors 
at 1.0 

c/o 

SMD 
Percent 
Correct 

Errors 
at 0.5 

c/o 

Errors 
at 1.0 

c/o 
HJB01 45 17 16 35 18 21 50 12 18 
HJB02 85 3 6 77 6 8 78 4 9 
HJB03 73 8 8 37 20 18 78 5 8 
HJB04 32 21 20 63 11 11 38 17 20 
HJB05 38 22 15 35 24 15 30 20 22 
HJB06 88 5 2 58 13 12 88 1 6 
HJB07 50 15 15 95 0 3 90 1 5 
HJB08 77 2 12 40 19 17 75 3 12 
Performance on SMD is shown in percent correct scores, errors made with the 0.5 cycles/octave 
stimuli, and errors made with the 1.0 cycles/octave stimuli in each condition. 
 
Participant Performance on Speech Perception Tests 

 CI HA Bimodal 

Subject 
ID 

BKB-SIN 
SNR-50 

CNC 
Percent 
Correct 

BKB-SIN 
SNR-50 

CNC 
Percent 
Correct 

BKB-SIN 
SNR-50 

CNC 
Percent 
Correct 

HJB01 5 58 18.3 N/A 4.3 58 
HJB02 6.3 56 17.8 0 6.5 64 
HJB03 4.8 72 13.0 32 3.3 68 
HJB04 15.8 24 4.8 50 4.3 78 
HJB05 14 20 23.0 0 15.5 30 
HJB06 14.5 36 23.0 14 14.5 42 
HJB07 22.8 18 10.3 26 8.3 38 
HJB08 9.3 42 16.8 20 6.8 38 

Performance is shown for each speech test in each condition. BKB-SIN SNR-50 scores represent 
an average of scores from two list pairs. 
 
  



  Bridges 
 

 31 

Appendix B 

Correlations between SMD Performance and Non-Speech Measures (N=8) 

 CI HA Bimodal 
 SMD 

Percent 
Correct 

Errors at 
0.5 c/o 

Errors 
at 1.0 

c/o 

SMD 
Percent 
Correct 

Errors 
at 0.5 

c/o 

Errors 
at 1.0 

c/o 

SMD 
Percent 
Correct 

Errors 
at 0.5 

c/o 

Errors 
at 1.0 

c/o 

Age r=0.81* 
p=0.02 

r=-0.84* 
p=0.009 

r=-0.66† 
p=0.08 

r=-0.11 
p=0.79 

r=0.52 
p=0.90 

r=0.18 
p=0.67 

r=0.59 
p=0.12 

r=0.05 
p=0.90 

r=-0.49 
p=0.22 

SII 50 r=-0.47 
p=0.24 

r=0.40 
p=0.33 

r=0.53 
p=0.18 

r=0.18 
p=0.67 

r=-0.12 
p=0.77 

r=-0.25 
p=0.55 

r=-0.42 
p=0.30 

r=0.45 
p=0.26 

r=0.37 
p=0.37 

SII 60 r=-0.51 
p=0.19 

r=0.45 
p=0.26 

r=0.55 
p=0.16 

r=0.27 
p=0.51 

r=-0.19 
p=0.65 

r=-0.37 
p=0.36 

r=-0.36 
p=0.38 

r=0.41 
p=0.32 

r=0.29 
p=0.49 

PTA 
CI 

r=-0.50 
p=0.21 

r=0.55 
p=0.16 

r=0.57 
p=0.39 

r=-0.51 
p=0.20 

r=0.44 
p=0.28 

r=0.57 
p=0.14 

r=-0.49 
p=0.22 

r=0.52 
p=0.19 

r=0.44 
p=0.28 

PTA 
HA 

r=0.26 
p=0.53 

r=-0.15 
p=0.73 

r=-0.41 
p=0.32 

r=-0.24 
p=0.56 

r=0.22 
p=0.60 

r=0.26 
p=0.53 

r=0.26 
p=0.53 

r=-0.26 
p=0.53 

r=-0.24 
p=0.56 

PTA 
CI LF 

r=-0.46 
p=0.25 

r=0.54 
p=0.17 

r=0.28 
p=0.51 

r=-0.41 
p=0.31 

r=0.38 
p=0.35 

r=0.43 
p=0.29 

r=-0.56 
p=0.15 

r=0.61 
p=0.11 

r=0.48 
p=0.23 

PTA 
HA LF 

r=0.25 
p=0.55 

r=-0.12 
p=0.78 

r=-0.41 
p=0.31 

r=-0.22 
p=0.59 

r=0.25 
p=0.56 

r=0.19 
p=0.66 

r=0.36 
p=0.38 

r=-0.32 
p=0.44 

r=-0.39 
p=0.34 

Age, SII at 50 and 60 dB SPL, PTA, and low-frequency PTA are compared to SMD percent 
correct scores and errors made with the 0.5 and 1.0 cycles/octave stimuli. Significant correlations 
and those approaching significance are in bold. The symbol (*) indicates significance at the 0.05 
level. The symbol (†) indicates approaching significance. 
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Correlations between Speech Perception and Non-Speech Measures (N=8) 

 CI HA Bimodal Bim. Benefit 

 
BKB-
SIN 

SNR-50 

CNC 
Percent 
Correct 

BKB-
SIN 

SNR-50 

CNC 
Percent 
Correct 

BKB-
SIN 

SNR-50 

CNC 
Percent 
Correct 

SNR-50 
Simple 

Diff. 

CNC 
NAB 

Age r=-0.26 
p=0.54 

r=0.29 
p=0.48 

r=0.42 
p=0.30 

r=-0.22 
p=0.64 

r=0.11 
p=0.79 

r=-0.24 
p=0.57 

r=-0.34 
p=0.41 

r=-0.52 
p=0.19 

SII 50 r=0.27 
p=0.52 

r=-0.31 
p=0.44 

r=-0.77* 
p=0.02 

r=0.72† 
p=0.07 

r=-0.33 
p=0.42 

r=0.54 
p=0.17 

r=0.004 
p=0.99 

r=0.80* 
p=0.02 

SII 60 r=0.43 
p=0.29 

r=-0.44 
p=0.28 

r=-0.77* 
p=0.02 

r=0.71† 
p=0.07 

r=-0.23 
p=0.59 

r=0.39 
p=0.35 

r=-0.02 
p=0.96 

r=0.78* 
p=0.02 

PTA CI r=-0.31 
p=0.46 

r=0.32 
p=0.44 

r=-0.25 
p=0.55 

r=0.60 
p=0.16 

r=-0.38 
p=0.35 

r=0.53 
p=0.18 

r=0.10 
p=0.81 

r=0.13 
p=0.77 

PTA 
HA 

r=-0.17 
p=0.69 

r=0.21 
p=0.62 

r=0.77* 
p=0.02 

r=-0.70† 
p=0.052 

r=0.43 
p=0.28 

r=-0.60 
p=0.11 

r=0.13 
p=0.77 

r=-0.76* 
p=0.03 

PTA CI 
LF 

r=-0.42 
p=0.30 

r=0.38 
p=0.35 

r=-0.15 
p=0.72 

r=0.24 
p=0.63 

r=-0.33 
p=0.42 

r=0.57 
p=0.14 

r=0.38 
p=0.35 

r=0.14 
p=0.74 

PTA 
HA LF 

r=-0.05 
p=0.92 

r=0.20 
p=0.64 

r=0.55 
p=0.15 

r=-0.42 
p=0.35 

r=0.38 
p=0.35 

r=-0.56 
p=0.15 

r=-0.02 
p=0.96 

r=0.74* 
p=0.04 

Age, SII at 50 and 60 dB SPL, PTA, and low-frequency PTA are compared to performance on 
each speech test. The symbol (*) indicates significance at the 0.05 level. The symbol (†) indicates 
approaching significance. 
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Correlations between SMD Performance and Speech Performance (N=8) 

  CI HA Bimodal Bim. Benefit 
 

 
BKB-
SIN 

SNR-50 

CNC 
Percent 
Correct 

BKB-
SIN 

SNR-50 

CNC 
Percent 
Correct 

BKB-
SIN 

SNR-50 

CNC 
Percent 
Correct 

SNR-50 
Simple 

Diff. 

CNC 
NAB 

C
I 

SMD 
Percent 
Correct 

r=-0.37 
p=0.37 

r=0.51 
p=0.20 

r=0.41 
p=0.31 

r=-0.40 
p=0.38 

r=0.08 
p=0.86 

r=-0.08 
p=0.86 

r=-0.19 
p=0.66 

r=-0.54 
p=0.16 

Errors 
at 0.5 

c/o 

r=0.39 
p=0.34 

r=-0.52 
p=0.19 

r=-0.28 
p=0.51 

r=0.29 
p=0.52 

r=0.09 
p=0.84 

r=0.04 
p=0.92 

r=0.37 
p=0.36 

r=0.53 
p=0.17 

Errors 
at 1.0 

c/o 

r=0.29 
p=0.48 

r=-0.44 
p=0.28 

r=-0.56 
p=0.15 

r=0.50 
p=0.25 

r=-0.30 
p=0.47 

r=0.12 
p=0.77 

r=-0.10 
p=0.82 

r=0.50 
p=0.21 

H
A

 

SMD 
Percent 
Correct 

r=0.62 
p=0.10 

r=-0.40 
p=0.33 

r=-0.41 
p=0.31 

r=0.08 
p=0.86 

r=-0.006 
p=1.00 

r=0.05 
p=0.91 

r=-0.14 
p=0.74 

r=0.49 
p=0.21 

Errors 
at 0.5 

c/o 

r=-0.52 
p=0.19 

r=0.28 
p=0.51 

r=0.45 
p=0.26 

r=-0.15 
p=0.75 

r=0.15 
p=0.73 

r=-0.14 
p=0.74 

r=0.24 
p=0.57 

r=-0.46 
p=0.25 

Errors 
at 1.0 

c/o 

r=-0.72* 
p=0.04 

r=0.55 
p=0.16 

r=0.33 
p=0.42 

r=0.01 
p=0.97 

r=-0.20 
p=0.64 

r=0.09 
p=0.83 

r=-0.001 
p=1.00 

r=-0.52 
p=0.19 

B
im

od
al

 

SMD 
Percent 
Correct 

r=0.07 
p=0.88 

r=0.27 
p=0.52 

r=0.03 
p=0.94 

r=-0.08 
p=0.86 

r=-0.06 
p=0.90 

r=-0.13 
p=0.75 

r=-0.54 
p=0.17 

r=-0.38 
p=0.35 

Errors 
at 0.5 

c/o 

r=-0.02 
p=0.97 

r=-0.29 
p=0.57 

r=-0.06 
p=0.89 

r=0.09 
p=0.85 

r=0.08 
p=0.84 

r=0.15 
p=0.72 

r=0.59 
p=0.13 

r=0.42 
p=0.30 

Errors 
at 1.0 

c/o 

r=-0.12 
p=0.78 

r=-0.24 
p=0.57 

r=-0.003 
p=0.99 

r=0.06 
p=0.88 

r=-0.12 
p=0.78 

r=0.10 
p=0.81 

r=0.47 
p=0.24 

r=0.32 
p=0.44 

SMD percent correct scores and errors made with the 0.5 and 1.0 cycles/octave stimuli were 
compared with speech scores and bimodal benefit in each condition. The symbol (*) indicates 
significance at the 0.05 level. 
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Appendix C 
 

Speechmap for HJB01 
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Speechmap for HJB02 
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Speechmap for HJB03 
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Speechmap for HJB04 
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Speechmap for HJB05 
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Speechmap for HJB06 
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Speechmap HJB07 
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Speechmap for HJB08 
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Tables and Figures 

Table 1 

Subject 
ID 

Test Age 
(Years) CI Ear 

Age at Dx 
of HL 

(Years) 

CI 
Experience 

(Years) 
CI Device HA Device 

HJB01 12.8 L 3.4 6.6 Harmony Naida SV UP 
HJB02 14.0 L 2.8 6.2 Harmony Naida III UP 
HJB03 12.1 L 1.7 7.0 Freedom Naida IX UP 
HJB04 9.7 L 4.0 1.9 N5 Nios Micro III 
HJB05 8.9 R 1.5 6.0 Harmony Naida DV UP 
HJB06 18.7 R 3.8 0.8 N6 Naida SII UP 
HJB07 10.8 L 3.9 4.3 N5 Naida SV UP 
HJB08 19.0 L 0.3 10.6 N5 Naida III UP 

Table 1. Demographic information is shown for each participant. Use of a HA began shortly 
after diagnosis of hearing loss. 
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Figure 1 

 
Figure 1. Unaided audiometric thresholds at the CI ear are shown. Symbols represent each 

participant’s thresholds at different frequencies. 
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Figure 2 

 
Figure 2. Unaided audiometric thresholds at the HA ear are shown. Symbols represent each 

participant’s thresholds at different frequencies.  
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Figure 3 

 
Figure 3. Aided audiometric thresholds at the CI ear are shown. Symbols represent each 

participant’s thresholds at different frequencies.  
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Figure 4 

 
Figure 4. Aided audiometric thresholds at the HA ear are shown. Symbols represent each 

participant’s thresholds at different frequencies. 
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Figure 5 

  
Figure 5. SMD performance for each participant in each condition is represented by an open 

circle. Average values for each listening condition are represented by horizontal bars. 
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Figure 6 

  
Figure 6. BKB-SIN performance for each participant in each condition is represented by an open 

circle. Average values for each listening condition are represented by horizontal bars. 
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Figure 7 

  
Figure 7. CNC performance for each participant in each condition is represented by an open 

circle. Average values for each listening condition are represented by horizontal bars. 
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Figure 8 

 
Figure 8. The effect of participant age on SMD performance is shown for the three conditions. A 

significant correlation is seen in the CI condition (r=0.81, p=0.02). 
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Figure 9 

 
Figure 9. The effect of participant age on SMD performance is shown for the CI-only condition. 

A significant correlation is seen in this condition (r=0.81, p=0.02). Average performance 
by normal hearing (NH) children from Rakita (2012) are displayed, and also demonstrate 
a positive trend. 
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Figure 10 

 
Figure 10. The effect of participant age on SMD performance in terms of errors with the 0.5 and 

1.0 cycles/octave stimuli is shown for the CI-only condition. A significant correlation is 
seen with the 0.5 cycles/octave stimuli (r=-0.84, p=0.009), and a correlation approaching 
significance is seen with the 1.0 cyclec/octave stimuli (r=-0.66, p=0.08). 
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Figure 11 

 
Figure 11. The effect of participant age on BKB-SIN performance is shown for the three 

conditions. No trends are observed. 
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Figure 12 

 
Figure 12. The effect of participant age on CNC performance is shown for the three conditions. 

No trends are observed. 
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Figure 13 

 
Figure 13. The relationship between PTA with a HA on BKB-SIN performance is shown for the 

three conditions. A significant correlation is seen in the HA-only condition (r=0.77, 
p=0.02). 
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Figure 14 

 
Figure 14. The relationship between PTA with a HA on CNC performance is shown for the three 

conditions. A correlation approaching significance is seen in the HA-only condition (r=-
0.70, p=0.052). 
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Figure 15 

  
Figure 15. The relationship between SII at 50 dB SPL with a HA on SMD performance is shown 

for the three conditions. No trends are observed. 
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Figure 16 

 
Figure 16. The relationship between SII at 50 dB SPL with a HA on BKB-SIN performance is 

shown for the three conditions. A significant correlation is seen in the HA-only condition 
(r=-0.77, p=0.02). 

  



  Bridges 
 

 59 

Figure 17 

 
Figure 17. The relationship between SII at 50 dB SPL with a HA on CNC performance is shown 

for the three conditions. A correlation approaching significance is seen in the HA-only 
condition (r=0.72, p=0.07). 
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Figure 18 

 
Figure 18. The relationship between SII at 60 dB SPL with a HA on SMD performance is shown 

for the three conditions. No trends are observed. 
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Figure 19 

 
Figure 19. The relationship between SII at 60 dB SPL with a HA on BKB-SIN performance is 

shown for the three conditions. A significant correlation is seen in the HA-only condition 
(r=-0.77, p=0.02). 
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Figure 20 

 
Figure 20. The relationship between SII at 60 dB SPL with a HA on CNC performance is shown 

for the three conditions. A correlation approaching significance is seen in the HA-only 
condition (r=0.71, p=0.07). 
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Figure 21 

 
Figure 21. The relationship between SII at 50 dB SPL with a HA on CNC bimodal benefit is 

shown. A significant correlation is seen (r=0.73, p=0.04). 
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Figure 22 

 
Figure 22. The relationship between SII at 60 dB SPL with a HA on BKB-SIN bimodal benefit is 

shown. No trend is seen. 
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Figure 23 

 
Figure 23. The relationship between SII at 50 dB SPL with a HA on CNC “normalized acoustic 

benefit” (Zhang, 2013) is shown. A significant correlation is seen (r=0.80, p=0.02). 
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Figure 24 

 
Figure 24. The relationship between SII at 60 dB SPL with a HA on CNC “normalized acoustic 

benefit” (Zhang, 2013) is shown. A significant correlation is seen (r=0.78, p=0.02). 
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Figure 25 

 
Figure 24. The relationship between aided PTA with a HA on CNC “normalized acoustic 

benefit” (Zhang, 2013) is shown. A significant correlation is seen (r=-0.76, p=0.03). 
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