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Abstract

A fundamental challenge in genomics is to map DNA sequence variants onto changes in gene expression. Gene expression
is regulated by cis-regulatory elements (CREs, i.e., enhancers, promoters, and silencers) and the trans factors (e.g.,
transcription factors) that act upon them. A powerful approach to dissecting cis and trans effects is to compare F1 hybrids
with F0 homozygotes. Using this approach and taking advantage of the high frequency of polymorphisms in wild-derived
inbred Cast/EiJ mice relative to the reference strain C57BL/6J, we conducted allele-specific mRNA-seq analysis in the adult
mouse retina, a disease-relevant neural tissue. We found that cis effects account for the bulk of gene regulatory divergence
in the retina. Many CREs contained functional (i.e., activating or silencing) cis-regulatory variants mapping onto altered
expression of genes, including genes associated with retinal disease. By comparing our retinal data with previously
published liver data, we found that most of the cis effects identified were tissue-specific. Lastly, by comparing reciprocal F1
hybrids, we identified evidence of imprinting in the retina for the first time. Our study provides a framework and resource
for mapping cis-regulatory variants onto changes in gene expression, and underscores the importance of studying cis-
regulatory variants in the context of retinal disease.
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Introduction

Photoreceptors mediate vision by converting light into an

electrical signal, which is then processed by the inner retina and

sent to the brain as visual information. Photoreceptors constitute

the vast majority (.70%) of cells in the mouse retina [1], and they

are prominent targets for disease: the majority of more than 200

genetic forms of retinal degeneration affect photoreceptors [2].

Many of the key transcriptional regulators in photoreceptor

development are known, and the transcriptomes of these cells have

been profiled over normal development as well as in disease states

[3–5]. Furthermore, the regulatory regions of mature photorecep-

tors in adult mouse retinas have been mapped genome-wide,

based on the binding patterns of two key photoreceptor

transcription factors, CRX (cone-rod homeobox) [6] and NRL

(neural retina leucine zipper) [7], as well as the patterns of

ENCODE DNaseI hypersensitivity sequencing (DNase-seq) data

[8]. Photoreceptors therefore represent a disease-relevant cell type

well-suited for studying the mechanisms of mammalian gene

regulation.

Changes in gene expression give rise to cell-type identity,

intraspecies variation, and interspecies diversity, thereby acting as

the molecular underpinnings for development, disease, and

evolution, respectively [9,10]. Alterations in gene expression can

arise from changes in cis-regulatory elements (CREs, i.e.,

enhancers, promoters, and silencers), or from changes in the trans
factors (e.g., transcription factors) that interact with CREs. To

distinguish between cis and trans effects, a powerful approach is to

compare F1 heterozygous hybrids with F0 homozygotes. In F1

hybrids, both alleles of a gene are contained within the same

nucleus and are exposed to the same set of trans factors. A trans-
regulatory difference (‘‘trans effect’’) manifests as conserved

expression between the two alleles in the F1 hybrids, despite

differential expression of the gene in the F0 homozygotes. In

contrast, a cis-regulatory difference (‘‘cis effect’’) manifests as an

allelic expression imbalance (AEI)—i.e., differential expression

between the two alleles of a gene in the F1 hybrids, with an allelic

ratio that recapitulates the ratio of gene expression levels in the F0

homozygotes. By measuring allele-specific gene expression, the

relative contributions of cis and trans effects can be dissected

genome-wide. AEI can also arise from parent-of-origin effects (e.g.,
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imprinting). Importantly, by conducting reciprocal crosses, parent-

of-origin effects can be identified and filtered to avoid confounding

the analysis of cis and trans effects.

Prior studies utilizing the F1 hybrid study design in yeast and

Drosophila have yielded a range of results: earlier pyrosequencing

and microarray-based studies found that cis effects predominate

[11,12], while more recent RNA-seq studies indicate a greater role

for trans effects [13,14]. Regardless, all studies acknowledge a high

prevalence of cis effects. The F1 hybrid study design has been used

to investigate gene regulation in one mammalian tissue thus far,

the mouse liver [15]. In that study, the authors found that cis and

trans effects often act together in opposite directions, with the net

effect of stabilizing gene expression. Here, we conduct an F1

hybrid study using allele-specific mRNA-seq analysis to chart the

regulatory landscape of a portion of the mature mammalian

central nervous system, the adult mouse retina. We utilize two

distantly related strains of mice, Cast/EiJ and C57BL/6J, whose

retinas are known to exhibit phenotypic differences [16,17]. The

primary goal of our study is to dissect the contributions of cis and

trans effects on gene regulation in photoreceptors. As part of our

study, we identify parent-of-origin effects in the retina, a tissue in

which imprinting has not previously been studied. By re-analyzing

available liver data [15] and comparing them to our data from the

retina, we assess the degree of tissue specificity of the observed cis-
and trans-regulatory effects. Furthermore, we integrate our gene

expression data with knowledge about the location of CREs,

thereby providing insights into the effects of cis-regulatory variants

on gene expression.

Results

The ancestors of two inbred Mus musculus strains, the standard

reference strain C57BL/6J and the wild-derived inbred strain

Cast/EiJ, diverged ,1 million years ago [18]. Cast/EiJ harbors

,18 million single nucleotide polymorphisms (SNPs) and ,3

million insertions/deletions (indels) relative to C57BL/6J, involv-

ing nearly 1% of the accessible genome [19]. In addition, Cast/EiJ

retinas show substantial phenotypic differences, namely reduced

photopic and scotopic electroretinogram amplitudes compared to

C57BL/6J retinas [16,17]. We reciprocally crossed these two

strains to obtain four genotypic classes for analysis (Figure 1A): F0

C57BL/6J, F0 Cast/EiJ, F1 B6xCast (resulting from C57BL/6J

male6Cast/EiJ female), and F1 CastxB6 (resulting from Cast/EiJ

male6C57BL/6J female). For each class, we analyzed three

biological replicates, each consisting of a pool of retinas.

We collected retinas from adult mice at age 8 weeks, a time

point at which mouse retinal CRX ChIP-seq [6] and ENCODE

DNase-seq [8] were previously conducted. To control for sex-

linked effects and because the X chromosome of Cast/EiJ is

preferentially expressed in F1 hybrid females [20], we used retinas

from male mice only and focused our analyses on autosomal genes.

We conducted paired-end mRNA-seq and calculated gene

expression for F0 samples and allele-specific expression for F1

samples by mapping reads to the C57BL/6J and Cast/EiJ

transcriptomes using MMSEQ (Figure 1B; see Methods) [21].

We verified that biological replicates for each F0 or F1 class

exhibited a high degree of agreement for gene expression or allele-

specific expression estimates, respectively (Table 1 and Table 2).

We also verified the accuracy of our mapping strategy by

examining the X chromosomal reads in the F1 samples. Since

samples derived solely from male retinas, the X chromosomal

reads should map exclusively to the maternal genome. Accord-

ingly, X chromosomal reads for F1 B6xCast should map to Cast/

EiJ, while those for F1 CastxB6 should map to C57BL/6J. In

validation of our mapping strategy, we found high accuracy (.

99%) of X chromosomal reads for all F1 samples (Table 3).

Importantly, the accuracy of mapping to the X chromosome of F1

B6xCast and F1 CastxB6 samples was similar, indicating that

there was no substantial read-mapping bias toward the standard

reference genome, C57BL/6J, a potential confounding factor in

the allele-specific quantification [22].

Strongly imprinted genes in other tissues show evidence
of imprinting in the retina

To evaluate cis and trans effects on gene expression in the

retina, we first needed to filter genes affected by parent-of-origin

effects (e.g., imprinting). Genomic imprinting is an epigenetic

phenomenon that causes an imbalance in allelic expression

depending on whether the allele is maternally or paternally

derived [23]. In the extreme case, one allele is completely silenced,

rendering the locus functionally monoallelic; for this reason, many

mutations in imprinted loci are associated with human disease

[24]. Differential methylation of alleles provides a molecular basis

for imprinting, but because methylation can occur in a tissue-

specific manner, a gene can be imprinted in one tissue but not

another, despite being expressed in both [25]. Although imprint-

ing has been extensively studied in a number of human and mouse

tissues, including brain and placenta [25–27], it has not previously

been studied in the retina.

By analyzing the reciprocal F1 hybrids, we identified autosomal

genes that exhibited a significant maternal bias (maternally

expressed, paternally silenced) or paternal bias (paternally

expressed, maternally silenced) (Figure 2A and 2B; Supporting

Information S1). To determine whether these genes have been

identified as imprinted in other tissues, we searched for known

imprinted mouse genes in four databases (see Methods). Using a

Bayesian model selection approach implemented in the MMDIFF

program [28], we ranked genes in our dataset by the probability of

imprinting and observed a clear enrichment of known imprinted

genes among highly-ranked genes (Figure 2C). Among the top-

ranked genes, the vast majority were well-characterized imprinted

genes listed in multiple imprinting databases (see Methods) and

displayed the same allelic bias as previously reported (Figure 2D).

We identified 75 genes as highly likely to be imprinted (Bayes

factor $10). Among these, 39 genes were extremely likely to be

imprinted (Bayes factor $30), of which 29/39 (74%) were known

imprinted genes. In 27 out of 29 cases, the direction of parental

bias that we observed was consistent with that reported in the

literature. For instance, Peg3 (paternally expressed 3) and Meg3
(maternally expressed 3) were our 2nd and 3rd ranked imprinting

genes, respectively. Igf2 and Igf2r were our 30th and 34th ranked

imprinted genes, respectively. Igf2 and its receptor Igf2r were the

first imprinted mouse genes discovered and remain among the

best-characterized, with paternally expressed Igf2 promoting

growth and maternally expressed Igf2r inhibiting growth

[29,30]. Consistent with an emerging view of imprinting occurring

on a spectrum rather than being an all-or-none event [15,27], we

found varying degrees of allelic bias even for well-characterized

imprinted genes, ranging from subtle (e.g., ,2-fold preference for

the maternal over the paternal allele of Igf2r) to extreme (e.g., .

1000-fold preference for the maternal over the paternal allele of

Rian).

Rtl1, also known as Peg11, is a gene in the Dlk1-Dio3
imprinted cluster [31]. In our dataset, reads mapped preferentially

to the maternal allele at the Rtl1 locus. Previous studies in other

tissues found that Rtl1 is expressed from the paternal allele, while

an antisense RNA, anti-Rtl1, is transcribed from the same locus

on the maternal allele and gives rise to two maternally expressed

Gene Regulatory Effects in the Mouse Retina
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microRNAs [31,32]. Since our RNA-seq was not strand-specific,

we could not discern whether Rtl1 or anti-Rtl1 is maternally

expressed in the adult mouse retina.

Grb10 is unique among imprinted genes in that it exhibits

opposite patterns of imprinting depending on the tissue where it is

expressed. In adult mice, Grb10 is maternally expressed in some

tissues, such as muscle and adipose, where it plays a role in glucose

metabolism [33]. However, it is paternally expressed in the brain,

where it affects social behavior [34]. This tissue-specific parent-of-

origin effect is associated with usage of a paternal-specific Grb10
promoter during neural fate commitment [35]. Interestingly, in

the retina, we found that Grb10 follows the pattern of muscle and

adipose tissue, with preferential expression of the maternal allele.

Thus, although the retina belongs to the central nervous system, it

does not follow the imprinting pattern observed in the brain for

this locus.

Together, these analyses indicate that imprinting occurs in the

retina, and that the pattern of imprinting is largely, but not always,

concordant between the retina and the brain. Notably, the

developing retina expresses the DNA methyltransferase

DNMT3A, which is required for the germline methylation of

imprinted loci [36,37]. Methylation analysis (e.g., bisulfite

sequencing) of the retina would confirm whether the parent-of-

origin effects identified here correspond to differentially methyl-

ated regions (DMRs), as methylation-independent parent-of-origin

effects have also been reported [26,38].

One-third of differentially expressed genes between
Cast/EiJ and C57BL/6J retinas are associated with
photoreceptor CREs

Previous microarray studies have suggested substantial gene

expression differences between C57BL/6J and Cast/EiJ retinas

[17]. Thus, we surveyed differentially expressed (DE) genes

between the adult male F0 Cast/EiJ and F0 C57BL/6J retinas.

We identified 3,799 autosomal DE genes between the F0 samples

at a false discovery rate (FDR) of 5% using DESeq [39]

(Supporting Information S2). Among these, 1,701/3,799 (45%)

showed higher expression in Cast/EiJ.

CRX is a key photoreceptor transcription factor required for

the expression of many rod and cone genes [40,41]. Previous CRX

ChIP-seq studies conducted in adult C57BL/6 mouse retinas

demonstrated that CRX-bound regions (CBRs) demarcate both

known and putative photoreceptor CREs [6]. CBRs have a

propensity to cluster around genes expressed in photoreceptors,

and knowledge of CBR locations has helped pinpoint novel

human retinal disease genes [42,43].

We used available adult mouse retinal CRX ChIP-seq data to

determine whether the differentially expressed genes were CBR-

associated [6]. We found that among all 34,964 autosomal genes,

6,257 (18%) had at least one CBR assigned to them. However,

among the 3,799 DE genes between the two strains, 1,275 (34%)

were CBR-associated, representing a significant enrichment (P,

10214, hypergeometric distribution). Thus, among all autosomal

genes, those that were differentially expressed between Cast/EiJ

and C57BL/6J were more likely to be CBR-associated.

Furthermore, differentially expressed CBR-associated genes

more often had lower expression in Cast/EiJ than C57BL/6J

when compared to differentially expressed non-CBR-associated

genes (Figure 3A). This effect was especially pronounced for genes

with greater fold change between the two strains. Together, these

findings suggest that Cast/EiJ overall has lower expression of

photoreceptor genes than C57BL/6J, consistent with a previous

microarray analysis [17]. The physiological function of rods,

which constitute .97% of the photoreceptors in the mouse retina

[44], can be measured by the a-wave of the scotopic electroret-

inogram (ERG). Interestingly, the gene expression differences may

be reflected in the rod photoreceptor physiology of Cast/EiJ,

which has a scotopic a-wave amplitude ,40–50% that of C57BL/

6J, despite intact morphology [17,45].

Cis-regulatory effects account for the bulk of gene
regulatory divergence between Cast/EiJ and C57BL/6J
retinas

Next, we determined whether gene expression divergence was

attributable to cis effects, trans effects, or a combination of both.

For this analysis, we examined allele-specific expression in the F1

hybrids in conjunction with gene expression in the F0 parents

(Figure 4A; Supporting Information S3). After excluding 306

genes with an imprinting Bayes factor .3, we were able to classify

11,484 autosomal genes with high confidence (see Methods).

Among these, 6,380/11,484 (56%) were best modelled as

conserved (i.e., no significant difference), 3,537/11,484 (31%) as

Figure 1. Study design. (A) F0 and F1 mice were generated via the depicted crosses. The schematic diagram illustrates example expression
patterns for a cis effect, trans effect, and parent-of-origin effect. For a cis effect, in the F1 hybrids, the Cast/EiJ allelic expression relative to the C57BL/
6J allelic expression recapitulates the ratio of gene expression levels in the F0 homozygotes. For a trans effect, the F1 hybrids express the Cast/EiJ and
C57BL/6J alleles equally. For a parent-of-origin effect, there is preferential expression of the maternal allele (as depicted) or the paternal allele, as seen
by comparison of the reciprocal F1 hybrids. (B) An overview of the workflow is shown.
doi:10.1371/journal.pone.0109382.g001
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Table 3. Accuracy of X chromosomal read mapping in F1 samples.

F1 B6xCast F1 CastxB6

Maternal allele: Cast/EiJ Maternal allele: C57BL/6J

R1 99.4% R1 99.5%

R2 99.5% R2 99.5%

R3 99.5% R3 99.5%

Percentages of X chromosomal unique hits (i.e., read pairs mapping uniquely to C57BL/6J or Cast/EiJ) that mapped to the correct genome. Since only males were used,
reads should derive only from the maternal allele.
doi:10.1371/journal.pone.0109382.t003

Figure 2. Characterization of parent-of-origin effects in the retina. Autosomal genes polymorphic between C57BL/6J and Cast/EiJ were
analyzed in retinas from reciprocal F1 hybrids. Higher Bayes factors indicate greater likelihood of imprinting. (A) Non-imprinted genes with Bayes
factor ,0.1 (gray) and ,0.001 (orange) are depicted. (B) Parent-of-origin effects with preferential expression of the paternal (blue) or maternal (red)
allele with Bayes factor $10 (light) and $30 (dark) are depicted. (C) Top-ranked (low rank number) genes are enriched for known imprinted genes. (D)
Genes with strong evidence of imprinting in the retina (Bayes factor $30) that exhibit preferential expression of the paternal (blue) or maternal (red)
allele are depicted. Green, special cases—see text for discussion of Rtl1 and Grb10. Filled squares, genes previously reported as imprinted in other
tissues. Empty triangles, not previously reported as imprinted. A230006K03Rik appears twice because it is associated with two Ensembl ID’s, a
protein-coding gene and a lincRNA.
doi:10.1371/journal.pone.0109382.g002
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divergent due to cis effects, 850/11,484 (7%) as divergent due to

trans effects, and 717/11,484 (6%) as divergent due to a

combination of cis and trans effects. Therefore, cis-regulatory

effects were the primary mechanism of gene regulatory divergence

between Cast/EiJ and C57BL/6J retinas.

We then subcategorized the genes whose divergence was due to

a combination of cis- and trans effects into the following classes: (1)

CIS2trans (cis and trans effects acting in opposite directions, with

cis effects stronger) had 195/717 (27%) of the genes, (2)

TRANS2cis (cis and trans effects acting in opposite directions,

with trans effects stronger) had 327/717 (46%) of the genes, (3)

CIS+trans (cis and trans effects acting in the same direction, with

cis effects stronger) had 60/717 (8%) of the genes, and (4)

TRANS+cis (cis and trans effects acting in the same direction, with

trans effects stronger) had 135/717 (19%) of the genes (Figure 4B).

When cis and trans effects acted together in the retina, they

acted in opposite directions to stabilize gene expression in the

majority (522/717 or 73%) of cases, while they acted in the same

direction to shift gene expression in a minority (195/717 or 27%)

of cases. However, the primary mechanism of gene regulatory

divergence was cis-regulatory effects acting with little or no

contribution from trans-regulatory effects, accounting for 3,537/

5,104 (69%) of gene regulatory divergence. This suggests that

functional cis-acting sequence variants in the Cast/EiJ genome

often drive altered gene expression.

We further examined the 3,537 cis-effect genes, of which 1,751/

3,537 (50%) showed higher expression of the Cast/EiJ allele than

the C57BL/6J allele, and of which 1,256/3,537 (36%) were CBR-

associated. We found that cis-effect genes that were CBR-

associated more often had lower Cast/EiJ allele expression than

cis-effect genes that were not CBR-associated, for genes with

higher fold change between the two alleles (Figure 3B). These

results are consistent with the notion that the Cast/EiJ genome

overall harbors many cis-regulatory variants whose net effect is to

diminish photoreceptor gene expression.

Trans effects could arise from differential activity of transcrip-

tion factors. Therefore, we inspected the rod photoreceptor

transcriptional network, whose members include the transcription

factors CRX, RORb, NRL, and NR2E3 [5]. We found that Crx
and Nrl transcript levels were both conserved in the F0 and F1

retinas. Rorb was a solely trans-effect gene, with lower expression

in Cast/EiJ, suggesting that the upstream regulators of RORb in

the retina (whose identities are unknown) have altered activity in

Cast/EiJ. Nr2e3 was also a solely trans-effect gene, with higher

expression in Cast/EiJ. Since NR2E3 is known to be regulated by

CRX and NRL [46], and the mRNA levels of Crx and Nrl were

unaltered, we examined whether CRX or NRL harbored coding

mutations that might alter their protein activity. However, we did

not find any non-synonymous mutations in Nrl or in the best-

characterized isoform of Crx [41,47]. Thus, we identified

differential trans-regulation of Rorb and Nr2e3 in Cast/EiJ

relative to C57BL/6J, but the reasons for these trans effects are

unknown.

Higher frequency of variants in photoreceptor CREs
correlates with differential expression

Whereas trans-regulatory effects are due to the levels or

activities of upstream signaling cascades and transcriptional

regulators (e.g., transcription factors), cis-regulatory effects can

arise from functional cis-acting variants within CREs. We

undertook a survey of Cast/EiJ variants relative to C57BL/6J

that fell within CBRs. First, we asked whether CBRs were depleted

or enriched for Cast/EiJ variants by tabulating the number of

SNPs and indels across the 2 kb region centered on CBRs. We

found that the frequency of variants decreased toward the center

of CBRs (Figure 5A). The bulk of the depletion occurred within

the central 300 bp, consistent with the previous finding that

phylogenetic conservation, as measured by PhastCons scores [48],

is markedly elevated within the central region of CBRs [6]. Also

consistent with this result, a recent functional analysis of ,1,300

Figure 3. Comparison of differentially expressed and cis-effect genes associated with photoreceptor CREs. Genes were classified as
being associated with CRX ChIP-seq peaks (CBR-associated) or not. (A) Differentially expressed (DE) autosomal genes were identified using DESeq at
5% FDR. The proportions of genes with higher expression in F0 Cast/EiJ than F0 C57BL/6J at various fold changes are shown. (B) Cis-effect autosomal
genes were identified using MMDIFF. Proportions of genes with higher expression in F1 Cast/EiJ allele than F1 C57BL/6J allele at various fold changes
are shown. P-values were calculated with two-tailed Fisher’s exact test. N.S. = not significant, *,0.05, **,0.01, ***,0.001, **** ,0.0001.
doi:10.1371/journal.pone.0109382.g003
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CBRs in the mouse retina demonstrated that short fragments

corresponding to the central 84 bp of CBRs possess substantial cis-
regulatory activity [49]. When we conducted the same analysis of

variant depletion for Spret/EiJ, an inbred strain of Mus spretus
that diverged from Mus musculus ,2 million years ago [50], we

obtained similar results (Figure 5A). Thus, CBRs are functionally

constrained and have likely undergone selection in the mouse

lineage, particularly in the central-most portion of the CBR.

If cis effects are due to altered transcriptional activity driven by

cis-regulatory variants, we would expect to find a higher frequency

of functional variants in the CREs around cis-effect genes

compared to the trans-effect genes. We first observed that the

proportion of genes that were CBR-associated was approximately

equal across categories: 2,149/6,380 (34%) of conserved genes,

1,256/3,537 (36%) of cis-effect genes, 300/850 (35%) of trans-
effect genes, and 242/717 (34%) of cis- and trans-effect genes. We

then tabulated the Cast/EiJ variants (SNPs and indels) within the

central 1 kb centered on the CBRs associated with each gene

(Supporting Information S4). For all 10,212 CBRs, we found

86,389 variants, for a frequency of 8.46 variants per kb. When we

examined the cis-effect genes, we found 21,174 variants in the

2,185 associated CBRs, for a frequency of 9.69 variants per kb.

This was significantly higher than the variant frequency in all

CBRs (P,10214, hypergeometric distribution). In contrast, for the

trans-effect genes, we found 4,068 variants in 487 CBRs,

corresponding to a frequency of 8.35 variants per kb, which was

not significantly different from the variant frequency in all CBRs

(P = 0.2, hypergeometric distribution). The tendency for CBRs

associated with cis-effect genes to have a higher frequency of

variants than CBRs associated with trans-effect genes is also

evident from the distributions of variants across individual CBRs

(Figure 5B). Collectively, we find that CBRs associated with cis-
effect genes are enriched for variants, whereas CBRs associated

with trans-effect genes are not. These results suggest that CBRs

contain functional cis-regulatory variants that alter transcriptional

activity, but future empirical testing is needed to demonstrate the

causality of specific variants.

The Cast/EiJ genome harbors both activating and
silencing cis-regulatory variants associated with retinal
disease genes

Given that hundreds of genes can contribute to retinal disease,

we asked whether any of the cis-effect genes were associated with

human retinopathies (Supporting Information S5). We found 62

cis-effect genes with human orthologues that were listed in the

Figure 4. Classification of genes by mechanism of gene regulatory divergence. (A) Genes were classified as conserved (yellow; largely
obscured), cis (green), trans (red), or cis and trans (purple). (B) Cis- and trans-effect genes were further subcategorized as to whether the cis and trans
effects acted in the same (‘‘+’’ sign; pink and brown) or opposite (‘‘2’’ sign; orange and blue) directions, and whether the cis (CAPS; orange and pink)
or trans (CAPS; blue and brown) effect was stronger. Insets, magnified views.
doi:10.1371/journal.pone.0109382.g004
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RetNet database, an up-to-date and comprehensive compendium

of retinal disease genes [51]. Of these, 30/62 (48%) showed higher

expression of the Cast/EiJ allele. Therefore, although Cast/EiJ

mice have diminished rod and cone ERG responses compared to

C57BL/6J, they harbor both activating and silencing cis-
regulatory variants.

We further focused on the cis-effect genes associated with retinal

disease that are CBR-associated (Figure 6A). Consistent with

previous observations that CBRs are enriched around retinal

disease genes [6,42,43], we found that 38/62 (61%) were CBR-

associated. Of these CBR-associated genes, 20/38 (53%) showed

higher expression of the Cast/EiJ allele.

One of the CBR-associated cis-effect genes was Sag, which

encodes S-arrestin, a protein important for the recovery phase of

the phototransduction cascade in rods [52,53]. Loss-of-function

coding mutations in Sag are associated with Oguchi disease,

whose clinical features include night blindness and delayed rod

adaptation [54]. We found that the Cast/EiJ allele drives ,2-fold

higher Sag expression than the C57BL/6J allele, suggesting the

presence of cis-regulatory variants conferring increased activity.

Figure 6. Cis-effect genes associated with retinal disease and photoreceptor CREs. (A) Cis-effect genes associated with CRX ChIP-seq peaks
were matched against the RetNet database of retinal disease genes. The yellow circle highlights Sag. (B) Sag locus, mm9. Top: Screenshot from UCSC
Genome Browser [77]. DNaseI hypersensitivity site (DHS) signals are from ENCODE data [8]. Bottom: Enlargement of boxed region. The 0.7 kb
promoter region is depicted here. Locations of known Cast/EiJ variants [19] are depicted as green tic marks (SNPs) or blue tic marks (indels). (C)
Retinal explant electroporation was used to assay the activity of the 0.7 kb Sag promoter region of B6 and Cast alleles. Representative images are
shown here for the B6 (top) and Cast (bottom) 0.7 kb Sag promoter constructs driving DsRed expression. Rho-CBR3-eGFP served as the loading
control. (D) Quantification of the cis-regulatory activity measured by the explant electroporation assay. Error bar represents SEM. P-value was
calculated with one-tailed Wilcoxon rank-sum test.
doi:10.1371/journal.pone.0109382.g006

Figure 5. Analysis of variant density in photoreceptor CREs. (A) The number of Cast/EiJ (top) or Spret/EiJ (bottom) SNPs and indels relative to
C57BL/6J was determined in 50 bp windows (sliding 25 bp at a time) across the 2 kb region centered on CBRs. Phylogenetic conservation for CBRs is
based on PhastCons scores as found in [6]. The highlighted area corresponds to the central 300 bp region. (B) Histogram showing frequency of
variants (SNPs+indels) in the 1 kb region centered on all CBRs (black), CBRs associated with cis-effect genes (green), and CBRs associated with trans-
effect genes (red). Total bar height was normalized to 1 for each category.
doi:10.1371/journal.pone.0109382.g005
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Upon inspection of the Sag locus, we identified a CRX ChIP-seq

peak located in the promoter/59 UTR region and present in both

CRX ChIP-seq biological replicates. This CBR corresponds to a

DNaseI-hypersensitivity site (DHS) that is present at three

developmental time points and is highly specific to the retina

(Figure 6B) [8].

We hypothesized that Sag promoter variants contributed to the

differential gene expression between C57BL/6J and Cast/EiJ. To

test this hypothesis, we compared the activity of a 0.7 kb promoter

region cloned from C57BL/6J genomic DNA (‘‘B6 allele’’) or from

Cast/EiJ genomic DNA (‘‘Cast allele’’). This 0.7 kb region

encompassed 5 known SNPs and 1 indel (Figure 6B). We cloned

the 0.7 kb fragment upstream of a reporter gene, DsRed, and

conducted a retinal explant electroporation assay to quantify CRE

activity based on fluorescence (see Methods) [55].

Consistent with our hypothesis, we found that the Cast allele

showed ,22% higher CRE activity than the B6 allele (Figure 6C

and 6D; P = 0.036, one-tailed Wilcoxon rank-sum test). Since Sag
had ,2-fold higher expression in Cast than B6, additional variants

beyond this 0.7 kb promoter region likely contribute to the

differential gene expression. Three other CBRs besides the

promoter region were assigned to the Sag gene, containing 37

variants in the 1 kb windows centered on these CBRs (Supporting

Information S4). Therefore, the higher expression of Sag in Cast

compared to B6 likely results from variants in both the assayed

region and other regions.

The majority of isolated cis effects and isolated trans
effects are tissue-specific

To determine whether the isolated cis effects and isolated trans
effects we identified were confined to the retina, we compared our

data from retina with previously published data from liver [15]

(Supporting Information S6). To ensure uniformity of analysis, we

reprocessed the previously published liver data using our analytic

pipeline, beginning with raw reads. After filtering 571 possibly

imprinted polymorphic autosomal genes (Bayes factor .3), we

were able to classify 9,865 polymorphic autosomal genes with high

confidence (Figure 7A and 7B).

We found 5,494/9,865 (56%) were best modelled as conserved,

2,371/9,865 (24%) were best modelled as divergent due to cis
effects, 1,495/9,865 (15%) as divergent due to trans effects, and

505/9,865 (5%) as divergent due to a combination of cis and trans
effects. For genes in the latter category, 145/505 (29%) were best

modelled as CIS2trans, 278/505 (55%) as TRANS2cis, 26/505

(5%) as CIS+trans, and 56/505 (11%) as TRANS+cis. Thus, as

previously reported for liver, and as we found for retina, when cis
and trans effects act together, they more often act to stabilize (423/

505 or 84%) than to destabilize (82/505 or 16%) gene expression

[15].

We then compared the classification of genes between liver and

retina. To avoid misattributing tissue-specific gene expression as

tissue-specific cis or trans effects, we restricted our analysis to genes

classifiable in both liver and retina. In particular, for comparison

of cis-effect genes, we required that genes be classified as cis-effect

in one tissue and conserved in the other tissue, or cis-effect in both

tissues. Similarly, for the comparison of trans-effect genes, we

required that genes be classified as trans-effect in one tissue and

conserved in the other tissue, or trans-effect in both tissues. Using

these criteria, we found that the vast majority of cis effects (1,661/

2,242 or 74%) were tissue-specific. Additionally, most trans effects

(871/976 or 89%) were tissue-specific (Figure 7C and 7D;

Supporting Information S7). Thus, most of the isolated cis and

isolated trans effects identified were tissue-specific.

Recent studies suggest that variants in a given CRE may

modulate target gene expression in a tissue-dependent manner;

i.e., different tissues may show differential susceptibility to CRE

variants [56]. To test for tissue-specific variant effects in our

system, we examined the 581 genes classified as cis-effect in both

liver and retina. We found a positive correlation between the

expression estimates for the F0 liver and F0 retina samples

(Pearson r = 0.56, two-tailed P,1025), and between the expression

estimates for the F1 liver and F1 retina samples (Pearson r = 0.58,

two-tailed P,1025) (Figure 7E). This suggests that there exists

differential susceptibility between the liver and retina to CRE

variants, but that there is also significant shared susceptibility.

For the 105 genes classified as trans-effect in both tissues, we

found a positive correlation between the expression estimates for

the F0 liver and F0 retina samples (Pearson r = 0.76, two-tailed P,

1025) (Figure 7F), suggesting that the same trans-acting factors

regulate many of these trans-effect genes in both tissues. In

contrast, there was no correlation between the F1 liver and F1

retina samples (Pearson r = 0.089, two-tailed P = 0.37) for these

genes. This is not surprising, since by definition, trans-effect genes

do not show AEI in F1 hybrids, and hence the log2 (Cast allele/B6

allele) ratios are all close to 0. Collectively, these analyses

underscore the notion that cis effects and trans effects are largely

tissue-specific, but when they are shared, they tend to have similar

effects on gene expression.

Discussion

Genomic techniques such as ChIP-seq and DNase-seq have

greatly expanded our knowledge of cis-regulatory regions in

various tissues and cell types in recent years [8]. Concurrently,

whole-genome sequencing of thousands of individuals [57] and

genome-wide association studies (GWAS) have catalogued thou-

sands of disease-associated variants, many of which fall within

regulatory regions [58]. The next phase of genomic medicine will

require mapping of regulatory variants onto disease-relevant

phenotypes. Here, we have taken a first step toward understanding

the role of regulatory variants in retinal disease by dissecting cis-
and trans-regulatory effects in the mouse retina, a tissue that

models many key aspects of human retinal biology [59].

In contrast to expression quantitative trait loci (eQTL) studies,

which are feasible in the human population and are largely

powered to detect cis effects, the F1 hybrid study approach in

model organisms provides tremendous power to detect both cis
effects and trans effects [60]. A major finding in our study is that

cis effects predominate in the mouse retina. While estimates of the

relative contributions of cis effects and trans effects based on F1

hybrid studies in Drosophila and yeast vary [11–14], all studies

acknowledge a substantial contribution of cis effects. The

variability of estimates is likely due at least in part to methodo-

logical differences in gene expression estimates and statistical

modelling. For instance, when we re-analyzed the raw data from

the previously published study of cis and trans effects in mouse

liver [15], we assigned a greater fraction of gene regulatory

divergence to isolated cis and isolated trans effects than the

original study, which assigned a greater fraction of gene regulatory

divergence to combined cis and trans effects. These differences

may be attributable to the fact that in our analysis pipeline, we

used an updated reference transcriptome and Bayesian statistical

models instead of maximum likelihood estimates (MLE).

Another key finding in our study is that the cis effects are largely

tissue-specific, with only 26% being shared between liver and

retina. Importantly, for this comparison, we included only genes

with sufficient power for analysis in both tissues, and hence the
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observed tissue specificity is not an artifact of tissue-specific

expression. Our estimate agrees well with an eQTL study of

lymphoblastoid cell lines, skin, and adipose tissue in human twins,

which found that 30% of cis-eQTLs were shared by the three

tissues [61].

Predicting the effect of any given regulatory variant is a

challenge, even in the face of complete genetic information, and

even at the level of a molecular phenotype such as transcription

factor binding [62] or, as in our case, gene expression. Moreover,

regulatory variants act in combination, rather than in isolation, to

modulate gene expression. Furthermore, gene expression is not

always a reliable surrogate for protein levels [63,64], and the path

from protein to organismal phenotype is even more convoluted.

With these layers of complexity in mind, we have taken a step

toward understanding the links between cis-regulatory variants

and retinal phenotypes by prioritizing variants within photore-

ceptor CREs that are associated with cis-effect genes.

Our work reveals that cis-regulatory effects predominate in the

murine retina and are associated with functional cis-regulatory

variants, with implications for retinal disease. In an approach

complementary to eQTL studies, we have demonstrated a strategy

for mapping cis-regulatory variants onto changes in gene

expression by harnessing the power of inbred model organisms.

Future empirical testing of such variants in living tissue, e.g., using

high-throughput massively parallel reporter assays [65,66], will

further elucidate the precise causal effects of specific cis-regulatory

variants on gene expression.

Methods

Ethics Statement
All experiments were conducted in strict accordance with the

Guide for the Care and Use of Laboratory Animals of the National

Institutes of Health (NIH), and were approved by the Washington

University in St. Louis Institutional Animal Care and Use

Committee (IACUC) (protocol #20110089). Animals were

euthanized with CO2 anesthesia followed by cervical dislocation,

and all efforts were made to minimize suffering.

Animals
C57BL/6J (stock #664) and Cast/EiJ (stock #928) mice were

purchased from Jackson Laboratory. Mice were maintained on a

12-hour light/dark cycle at ,20–22uC with free access to food and

water. Mating cages were maintained on 5K54 diet (LabDiet) and

supplemented with autoclaved shepherd shacks (Shepherd Spe-

cialty Papers). Offspring were weaned at age 3 weeks and

maintained on 5053 diet (PicoLab) until age 8 weeks, at which

point they were sacrificed. Eyes were enucleated immediately after

sacrifice. To minimize circadian effects [67], samples were

collected at approximately the same time of day (late evening).

Sample collection and sequencing
Each biological replicate consisted of a pool of 6–8 retinas from

8 week old male mice. Retinas were dissected in cold sterile HBSS

with calcium and magnesium (Gibco) and stored at 280uC until

use. Total RNA was extracted using TRIzol (Invitrogen) and

purified using the RNeasy Mini Kit (Qiagen) with on-column

DNaseI digestion (Qiagen). Integrity of total RNA was verified on

the Agilent 2100 Bioanalyzer. Polyadenylated mRNA was

captured from total RNA using Dynabeads (Invitrogen). The

mRNA was fragmented and reverse-transcribed to double-

stranded cDNA using random hexamers. The cDNA was blunt-

ended and 39-adenylated before ligation to sequencing adapters.

Ligated fragments were amplified for 12 cycles with primers to

incorporate unique sample barcodes. Libraries were subjected to

paired-end 26101 bp sequencing on the Illumina HiSeq 2000 at

the Genome Technology Access Center at Washington University

School of Medicine. One lane of sequencing was conducted for all

F0 and F1 samples, and a second lane of sequencing was

conducted for the F1 samples only.

Read alignment and quantification
Reads were filtered and trimmed with Trim Galore! v0.2.6 [68]

prior to alignment with Bowtie v0.12.9 [69] to a strain-specific

reference transcriptome (for F0 data) or a hybrid reference

transcriptome (for F1 data). Transcriptomes were constructed

using the mouse_strain_transcriptomes.sh script within the

MMSEQ package [21]. The reference transcriptomes were based

on the Ensembl Release 67 cDNA files and the Wellcome Trust

Mouse Genomes Project Release 2 VCF files (which use mm9/

NCBI37 as the reference genome) based on November 2012

HiSeq 26100 bp sequencing with 39x coverage of the Cast/EiJ

genome [19]. MMSEQ v1.0.0 beta was used to estimate gene

expression levels for the F0 samples and allele-specific gene

expression levels for the F1 samples [21]. Of the 37,991 Ensembl

Release 67 mouse genes, 34,964 were autosomal, of which 29,160

had known exonic polymorphisms between Cast/EiJ and C57BL/

6J. Gene-level expression estimates in units roughly equivalent to

FPKM (fragments per kb of transcripts per million mapped read

pairs) were derived from exponentiation of the log expression

estimates. For differential expression analysis of F0 samples with

DESeq v1.10.1 [39], normalized count equivalents were used and

a negative binomial test was performed.

Identification of imprinted genes
Using MMDIFF, a null model (no imprinting) was compared to

an imprinting model, as recently described [28]. In brief, the null

model assumes that allelic expression differences are the same in

F1 B6xCast and F1 CastxB6, while the imprinting model assumes

that allelic expression differences have equal magnitude but

opposite signs in F1 B6xCast as in F1 CastxB6. Only autosomal

genes with known exonic polymorphisms between Cast/EiJ and

C57BL/6J were included in this analysis.

Mouse imprinting databases
We examined four online databases that are continually

updated with known imprinted mouse genes: WAMIDEX (atlas.-

genetics.kcl.ac.uk) [70], MouseBook Imprinting Catalog (www.

mousebook.org) [71], Geneimprint (www.geneimprint.com) [72],

Figure 7. Comparison of cis effects and trans effects between liver and retina. (A) Using the same analytic pipeline as for retina, genes in the
liver were classified as conserved (yellow; largely obscured), cis (green), trans (red), or cis and trans (purple). (B) Cis- and trans- regulated genes were
further subcategorized as to whether the cis and trans effects acted in the same (‘‘+’’ sign; pink and brown) or opposite (‘‘2’’ sign; orange and blue)
directions, and whether the cis (CAPS; orange and pink) or trans (CAPS; blue and brown) effect was stronger. (C) Number of genes classified as cis in
liver and conserved in retina, cis in both tissues, or cis in retina and conserved in liver. (D) Number of genes classified as trans in liver and conserved in
retina, trans in both tissues, or trans in retina and conserved in liver. (E) Correlation between genes classified as cis in both tissues. Pearson r values for
F0 samples (left) and F1 samples (right) are shown. (F) Correlation between genes classified as trans in both tissues. Pearson r values for F0 samples
(left) and F1 samples (right) are shown. Insets, magnified view.
doi:10.1371/journal.pone.0109382.g007
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and Catalogue of Parent of Origin Effects (igc.otago.ac.nz) [73].

For each database, we excluded genes whose imprinting status was

listed as ambiguous or disproven. To resolve nomenclature

disparities between databases, we converted gene names to Mouse

Genome Informatics (MGI) gene names. We combined the gene

lists from the four databases into a master gene list of 189 genes, of

which 143 had Ensembl Release 67 IDs and 137 were autosomal.

After filtering out non-polymorphic genes, we were left with 120

autosomal Ensembl ID’s, corresponding to 116 MGI genes. Each

Ensembl 67 gene was then assigned a ‘‘database score’’ ranging

from 0 to 4, indicating the number of databases that listed the gene

as being imprinted (see Supporting Information S1).

Categorization of genes according to cis and trans effects
A comparison of four models (conserved model, cis model, trans

model, and cis and trans model) was performed using MMDIFF,

as recently described [28]. In brief, the conserved model assumes

there is no differential expression (DE) between the F0’s and no

allelic expression imbalance (AEI) in the F1’s. The cis model

assumes there is DE between the F0’s that is equal to the AEI in

the F1’s. The trans model assumes there is DE between the F0’s

but no AEI in the F1’s. The cis and trans model assumes that there

is DE in the F0’s, but it is unequal to the AEI in the F1’s.

Included in the analysis were the 29,160 autosomal genes

polymorphic between C57BL/6J and Cast/EiJ. In our retinal

dataset, after excluding 306 possibly imprinted polymorphic

autosomal genes (imprinting Bayes factor .3), we had sufficient

statistical power to classify 11,484 genes confidently as conserved,

cis, trans, or cis and trans based on the following criteria: the

winning model must have a posterior probability .0.5, and the

posterior probability of the winning model must be at least twice

that of the second-best model, assuming an equal prior probability

of 0.25 for each of the four models. In the previously published

liver dataset [15], after excluding 571 possibly imprinted

polymorphic autosomal genes (imprinting Bayes factor .3), we

had sufficient statistical power to classify 9,865 genes confidently

using these criteria.

Genes best modelled by a combination of cis and trans effects

were then subdivided into the following categories, where x is the

weighted log fold change between the strains within the F1’s, and y

is the weighted log fold change between the strains within the F0’s

[15]:

(1) CIS2trans (opposite direction with cis stronger than trans):
x*y.0 and |x|.|y|

(2) TRANS2cis (opposite direction with trans stronger than cis):
x*y,0

(3) CIS+trans (same direction with cis stronger than trans): x*y.0

and |x|,|y|,|2x|

(4) TRANS+cis (same direction with trans stronger than cis):
x*y.0 and |y|.|2x|

Calculation of weighted log fold change
The weighted log fold change for each gene was calculated by

weighting the allele-specific posterior mean of the log expression

parameter by the inverse of its posterior variance across biological

replicates for each strain and subtracting the results. Let B1, B2,

and B3 be the log expression parameters for the F0 C57BL/6J

samples, and let C1, C2, and C3 be the log expression parameters

for the F0 Cast/EiJ samples. Then the weighted log fold change

between the F0 C57BL/6J samples and the F0 Cast/EiJ samples is

given by

X3

i~1
Bi=var(Bi)

X3

i~1
1=var(Bi)

{

X3

i~1
Ci=var(Ci)

X3

i~1
1=var(Ci)

. The same

approach was used to compare the two sets of F1 samples.

Assignment of genes to CRX ChIP-seq peaks
Previously published CRX ChIP-seq data conducted on 8 week

old C57BL/6 retinas [6] were used to assign wild-type (WT)

CRX-bound regions (CBRs) to genes. CBRs were assigned to all

autosomal and sex chromosomal Ensembl Release 67 gene

transcripts using custom Perl scripts following a proximity-based

algorithm as previously described: if a CBR was located within a

gene, it was assigned to that gene; otherwise, it was assigned to the

gene with the nearest transcriptional start site (TSS) [6].

Batch identification of variants
Variant calls (SNPs and indels) were downloaded as Variant

Call Format (VCF) files from the Wellcome Trust Sanger

Institute’s Mouse Genomes Project. These calls (December 2012

release) were based on the latest high-quality, high-coverage

HiSeq sequencing data of the strains. The Cast/EiJ variants

relative to the reference genome (C57BL/6J NCBI Build 37) were

extracted at regions of interest using VCFtools v0.1.10 [74] and

BEDtools v2.19.1 [75]. Only variant sites where the genotype was

homozygous were included. The genomic coordinates of CBRs

based on NCBI Build 37 were used. Custom Perl scripts were

written to tabulate the variants for CBRs associated with Ensembl

Release 67 genes.

Identification of variants at individual regions
Individual loci of interest were manually inspected for variants

by querying an online database, the Wellcome Trust Sanger

Institute’s Mouse Genomes Project Mouse SNP Viewer Release

1211 (NCBI Build 37), available at http://www.sanger.ac.uk/

sanger/Mouse_SnpViewer/rel-1211.

RetNet genes
Genes associated with human retinal disease in the RetNet

database [51] were retrieved. Human gene symbols were

converted to Mouse Genome Informatics (MGI) symbols using

the MGI Batch Query [76].

DNA constructs
Polymerase chain reaction (PCR) with Phusion High-Fidelity

DNA Polymerase (New England BioLabs) was used to amplify the

0.7 kb Sag promoter region at 2558 to +105 (mm9

chr1:89,699,697–89,700,359) relative to the TSS. Genomic

DNA purified from C57BL/6J and Cast/EiJ liver tissue was used

as the template for the B6 and Cast construct, respectively. The

forward primer 59-TGAGGCAATGACACTTGGTC-39 and

reverse primer 59-GCAGGGAGCTGATTGGATTA-39 with

XhoI and EcoRI restriction enzyme site overhangs, respectively,

were used. The fragments were subcloned upstream of DsRed in

the no-basal vector (described previously in [4]) using the SalI
(compatible with XhoI) and EcoRI sites. Constructs were

confirmed with Sanger sequencing that encompassed the entire

0.7 kb region. We note that based on our high-quality Sanger

sequencing of this region, the genomic DNA of our Cast/EiJ mice

differed from the reference Cast/EiJ sequence [19] by two bases at

chr1:89,700,191 (ARC) and chr1:89,700,187 (ARC), as con-

firmed by Sanger sequencing three different Cast/EiJ mice

(representing the three Cast/EiJ RNA-seq biological replicates)
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Retinal explant electroporation and quantification of
promoter activity

Electroporation and explant culture of mouse retinas were

performed as described previously [55]. In brief, retinas were

dissected from newborn (P0) CD-1 mouse pups and coelectropo-

rated with one of the Sag promoter DsRed constructs and a

control green fluorescent protein (GFP) reporter that expresses in

rod photoreceptors, Rho-CBR3-eGFP [6], each at a concentration

of 0.5 mg/mL. Retinas were grown in explant culture and

harvested 8 days later, whereupon they were fixed and whole-

mounted for quantitative imaging of DsRed fluorescence intensity

normalized to GFP fluorescence intensity using a monochromatic

camera (Hamamatsu ORCA-AG), as described [55]. For each Sag
promoter construct, 10–11 retinas were quantified. Representative

images using a color camera (Olympus DP70) were also taken (see

Figure 6C). For all retinal imaging, 4X magnification was used,

and the exposure times for the red and green channels were

consistent across retinas.

Data Access
RNA-seq, MMSEQ, and MMDIFF data have been deposited

in Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.

gov/geo/) (accession number GSE60545).

Supporting Information

Supporting Information S1 Analysis of parent-of-origin
effects in the retina. This Excel file summarizes the analysis of

all 29,160 polymorphic autosomal genes (ranked by Bayes factor)

for parent-of-origin effects, as determined by allele-specific

expression estimates in the reciprocal F1 hybrids using MMSEQ

and MMDIFF. Red shading, loge expression measures for

maternally derived alleles. Blue shading, loge expression measures

for paternally derived alleles. Yellow shading, weighted log2 fold

change values.

(XLSX)

Supporting Information S2 RNA-seq differential expres-
sion analysis of F0 C57BL/6J and F0 Cast/EiJ adult
retinas. This Excel file summarizes the DESeq analysis of F0

samples. The first sheet contains all 37,991 genes, the second sheet

contains all 34,964 autosomal genes, and third sheet contains the

3,799 autosomal genes found to be differentially expressed at 5%

false discovery rate (FDR). Each sheet is sorted on FDR-adjusted

P-values. Unique CBR identifiers and tally of CBR read counts are

based on data from [6].

(XLSX)

Supporting Information S3 Classification of gene regu-
latory divergence in the retina. This Excel file summarizes

the classification of cis and trans effects in the F0 and F1 retinal

samples based on MMDIFF. The first sheet contains the primary

classification (conserved, cis, trans, or cis and trans) of the 11,484

classifiable genes. The second sheet contains the subcategorization

of the 717 genes whose regulatory divergence is due to a

combination of cis and trans effects. Orange shading, posterior

probability of model based on prior probability of 0.25. Yellow

shading, weighted log2 fold change values. Unique CBR identifiers

and tally of CBR read counts are based on data from [6].

(XLSX)

Supporting Information S4 Analysis of Cast/EiJ variants
within CBRs. This Excel file summarizes the analysis of Cast/

EiJ variants (SNPs and indels) within CBRs. The first sheet

contains a list of information for all 10,212 CBRs, including the

locations of variants within the central 1 kb of each CBR [6].

‘‘Doublehit’’ CBRs are those found in both CRX ChIP-seq

replicates. ‘‘Singlehit’’ CBRs are those found in one CRX ChIP-

seq replicate. The second sheet contains a list of all 37,991

Ensembl 67 genes, the unique CBR identifiers assigned to each

gene, and the number of variants within the central 1 kb of all

CBRs associated with each gene. The third sheet gives the number

of variants within the central 1 kb of CBRs associated with cis-
effect genes in the retina. The fourth sheet gives the number of

variants within the central 1 kb of CBRs associated with trans-
effect genes in the retina.

(XLSX)

Supporting Information S5 Cis effect genes associated
with retinal disease. This Excel file lists the 62 genes that were

classified as cis-effect in the retina and whose human orthologues

were found in the RetNet [51] database of human retinal disease

genes. Yellow shading, weighted log2 fold change values. Unique

CBR identifiers and tally of CBR read counts are based on data

from [6]. Note that the unique CBR identifiers can be cross-

referenced with the first sheet in Supporting Information S4,

which lists the locations of the CBRs by CBR identifier.

Expression level values (in FPKM units) are provided. Light gray

shading, F0 C57BL/6J values. Light brown shading, F0 Cast/EiJ

values. Dark gray shading, F1 B6 allele values. Dark brown

shading, F1 Cast allele values.

(XLSX)

Supporting Information S6 Classification of gene regu-
latory divergence in the liver. This Excel file summarizes the

re-analysis of previously published F0 and F1 liver data [15]. Note

that F1i is equivalent to F1 B6xCast (resulting from B6 male6Cast

female) and F1r is the reciprocal cross. The first sheet contains the

9,865 classifiable genes after filtering non-polymorphic genes and

genes with imprinting Bayes factor .3. The second sheet contains

the subcategorization of the 505 genes whose regulatory

divergence is due to a combination of cis and trans effects.

Orange shading, posterior probability of model based on prior

probability of 0.25. Yellow shading, weighted log2 fold change

values.

(XLSX)

Supporting Information S7 Comparison of cis and trans
effects in the liver and retina. This Excel file summarizes the

comparison of cis-effect genes and trans-effect genes in the liver

and retina. The first sheet contains the Ensembl ID’s of cis effects

and trans effects specific to, or shared between, the liver and

retina. The second sheet contains the F0 and F1 weighted log2 fold

change values for genes classified as cis-effect in both tissues. The

third sheet contains the F0 and F1 weighted log2 fold change

values for genes classified as trans-effect in both tissues.

(XLSX)
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