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Abstract

Cell-to-cell variance in protein levels (noise) is a ubiquitous phenomenon that can increase fitness by generating phenotypic
differences within clonal populations of cells. An important challenge is to identify the specific molecular events that control
noise. This task is complicated by the strong dependence of a protein’s cell-to-cell variance on its mean expression level
through a power-law like relationship (s2/m1.69). Here, we dissect the nature of this relationship using a stochastic model
parameterized with experimentally measured values. This framework naturally recapitulates the power-law like relationship
(s2/m1.6) and accurately predicts protein variance across the yeast proteome (r2 = 0.935). Using this model we identified two
distinct mechanisms by which protein variance can be increased. Variables that affect promoter activation, such as
nucleosome positioning, increase protein variance by changing the exponent of the power-law relationship. In contrast,
variables that affect processes downstream of promoter activation, such as mRNA and protein synthesis, increase protein
variance in a mean-dependent manner following the power-law. We verified our findings experimentally using an inducible
gene expression system in yeast. We conclude that the power-law-like relationship between noise and protein mean is due
to the kinetics of promoter activation. Our results provide a framework for understanding how molecular processes shape
stochastic variation across the genome.
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Introduction

Stochastic fluctuations in the biochemical processes that

underlie gene expression produce cell-to-cell variation in protein

levels, or ‘‘noise’’ [1–3]. Noise performs several biological

functions. In unicellular organisms, noise improves fitness by

generating phenotypic differences within clonal populations of

cells, thus enabling a rapid response to fluctuating environments

[4–6]. In multi-cellular organisms, noise plays a role in develop-

ment, allowing identical progenitor cells to acquire distinct fates

[7–9]. Because of its functional importance, a fundamental goal is

to identify and dissect the molecular mechanisms that generate

and control noise.

Single-cell studies have connected pathway-specific (extrinsic)

and gene-specific (intrinsic) factors to changes in protein variance

[2,10,11]. These factors include the rate of transcript elongation

[12], the presence of a TATA-box [2,4,13,14], nucleosome

positioning at the promoter sequence [2,15–18], fluctuating

mRNA levels [19], translation rate [18,20,21], pathway-dependent

fluctuations [11,19], and asymmetric partitioning at cell division

[22]. However, it is unclear whether any of these processes evolved

specifically to produce high levels of protein variance, or whether

the observed variance is only a consequence of selective pressure

on protein mean levels. This issue is complicated by the strong

dependence of cell-to-cell protein variance on mean protein levels

[11,19,20]. Several studies have revealed that a protein’s cell-to-

cell variance is linearly related to its mean expression level when

plotted on a log-log scale, suggesting this relationship can be

approximated by a power-law (s2/mj) [19,23,24]. This relation-

ship is of paramount importance for investigations into the

evolutionary origins and consequences of noise, because it allows

to correctly normalize protein variances to identify proteins that

display unexpectedly high single-cell variance given their mean

levels. Although this relationship has been noted previously, two

important questions have not yet been resolved. First, how does

the process of gene expression specify this power-law relationship

and consequently protein variance? Secondly, which molecular

processes regulating gene expression have evolved to produce

substantially higher protein variance than would be expected given

the observed relationship?

To answer these questions, we analyzed a dataset of protein

variance using a stochastic model of gene expression parameter-

ized with experimentally measured kinetic rates. This model
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recapitulated the relationship (s2/m1.6) between mean and

variance and accurately predicted protein variance on a

proteome-wide scale (r2 = 0.935). We find that this result is

achieved under a general regime of promoter kinetics across the

yeast genome characterized by slow promoter activation followed

by rapid inactivation, resulting in mRNA production that is nearly

a Poisson process (s2/m1.1). However, the small non-linearity

between RNA mean and variance is amplified during protein

production, reproducing the observed power law. By further

analyzing this model, we found that the kinetics of promoter

activation dictate the exponent of the power-law. This finding

allowed us to identify two distinct classes of processes that

influence noise. Variables that influence processes downstream of

promoter activation, such as the synthesis and degradation of

mRNA and protein, increase variance by increasing mean levels,

which then causes an concomitant change in protein variance in

accordance with the power law. In contrast, variables that reduce

the rate of promoter activation, such as promoter-positioned

nucleosomes, increase variance by increasing the exponent of the

power-law-like relationship linking protein mean and variance.

Only the latter class of mechanisms generate protein variances that

are significantly higher than expected from protein mean levels.

In support of these conclusions, we performed experiments

demonstrating that changing the rate of promoter activation, but

not the rate of protein translation, modulates the exponent of the

power-law and consequently the scaling between variance and

mean. By providing a mechanistic interpretation of the power-law-

like relationship, our work provides the framework to achieve a

better understanding of the molecular processes that lead to cell-

to-cell variation in gene expression.

Results

Protein mean and variance are connected by a power-
law-like relationship

To characterize the relationship between mean protein levels

and cell-to-cell protein variance across the yeast genome, we

analyzed a published dataset consisting of ,2200 S. cerevisiae
GFP fusion strains for which protein levels had been measured at a

single-cell resolution by flow-cytometry [13]. This dataset serves as

a starting point to examine global trends between protein mean

and variance as it represents an unbiased sampling of the yeast

proteome. First, we performed a log-log regression analysis of cell-

to-cell protein variance as a function of the mean protein levels

and observed a power-law-like relationship with an exponent of

1.69 (Figure 1a), in agreement with previous findings [23]. Ninety-

seven percent of protein variance across the proteome can be

explained solely by mean levels through this relationship,

indicating that highly expressed genes naturally exhibit high cell-

to-cell variation whereas genes expressed at low levels are more

uniformly expressed across different cells. Although the residual

fraction of protein variance not explained by the power-law

accounts for only 3% of the total variation, we found that, for

certain genes, it increased protein variance up to 20-fold higher

than expected (Figure 1b). In contrast, very few genes displayed

smaller protein variances than expected given mean levels, as we

observed, at most, a 2-fold reduction (see Figure 1b). Taken

together, these results indicate that for most genes, protein

variance is largely explained by the protein mean through a

power-law-like relationship, except for a few notable cases in

which protein variances are increased substantially beyond their

expected values.

A stochastic model of gene expression recapitulates the
power-law-like relationship between protein mean and
variance

We next sought to understand the molecular origin of the

relationship between protein mean and variance. One hypothesis

is that this relationship originates purely as a consequence of

stochasticity in the steps underlying gene expression [19].

Alternatively, this relationship could result from mechanisms that

are independent of expression, such as asymmetric partitioning of

protein and RNA molecules at cell division [22] or pathway-

dependent fluctuations in trans-acting factors [11].

To distinguish between these two hypotheses, we tested whether

a stochastic model based only on the processes involved in gene

expression could recapitulate the observed power-law relationship.

We applied a model [25] that describes cell-to-cell protein

variance at steady-state as a function of kinetic parameters for

promoter activation/inactivation events and mRNA and protein

production/degradation (Figure 2a, Figure S1). For most param-

eter values, we used empirical measurements (see Supporting

Information S1, section 1.2). This was not possible, however, for

the rates of promoter activation and inactivation, which have only

been measured in a few genes [26]. Since no high-throughput

methods exist for measuring rates of promoter activation and

inactivation, we assumed that the promoter kinetics would be

similar across the genome and fit their values from the data

(Supporting Information S1, section 1.3). The model converged to

a regime in which promoter activation is an infrequent event that

is quickly followed by promoter inactivation, a result supported by

published experimental data [23] (Supporting Information S1,

section 1.4, and Figure S1). We obtained a rate of promoter

activation (Kon) of 0.59 min21, a value that agrees with

empirically measured activation rate for the GLT1 gene in yeast

(1.360.72 min21) [26]. Using this value for Kon, the model

naturally generates a power-law-like relationship between mean

and variance that is similar to the one observed empirically

(modeled relationship: s2/m1.60, observed relationship: s2/m1.69).

Furthermore, our framework correctly predicts protein variance

across the genome (log space r = 0.962, p,2.2*10216; linear space

r = 0.839, p,2.2*10216, Figure 2b). We tested for over-fitting by

performing 2-fold cross-validation 100 times and again found good

agreement (r = 0.95760.018, p,2.2*10216). Taken together,

these results support the validity of our model and suggest that

the power-law relationship between protein mean and variance

depends solely on the kinetics of the processes that underlie gene

expression.

The power-law-like relationship between protein
variance and mean depends on promoter kinetics

We next sought to determine which of the processes involved in

gene expression determine the exponent of the power-law-like

relationship. Using our biophysical model, we randomly sampled

transcription and translation rates, as well as degradation rates of

mRNA and protein, while maintaining the same promoter

activation regime we identified above (Kon = 0.59 min21,,

Koff). Virtually all permutations resulted in a power-law-like

relationship between mean and variance that was nearly identical

to the one observed experimentally (exponent = 1.61265.9*1023,

1000 permutations, Figure 3a). This result indicates that, when

Kon ,, Koff, the exact form of the power-law-like relationship

between mean and variance is independent of the rates of

transcription, translation, and protein and mRNA degradation.

In contrast, we found that the exponent of the power law was

strongly dependent on promoter kinetics. Using the same

Modeling of the Relationship between Protein Mean and Variance
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modeling framework, we changed the parameters governing

promoter transitions to enforce a slow kinetics regime (Kon and

Koff ,, Km,Dm,Kp,Dp). We found that protein mean and

variance followed a quadratic relationship (exponent = 1.97,

Figure 3a), which differs substantially from our previous results

and the observed power-law. Taken together these results suggest

that the power-law relationship between protein mean and cell-to-

cell variance is dictated by the kinetics of promoter activation, and

is largely insensitive to downstream steps.

The relationship between protein mean and variance
identifies different sources of variance

A strong prediction of our model is that perturbations that affect

processes downstream of promoter activation should increase

Figure 1. Relationship between mean and variance in protein expression. a) Protein mean and variance values in S. cerevisiae plotted
against each other in log-scale in arbitrary fluorescence, with corresponding Pearson’s correlation coefficient. b) Distribution of residual variance
values across the S. cerevisiae dataset. Red bars indicate residual variance value with Z-scores over 2 standard deviations from the mean.
doi:10.1371/journal.pone.0102202.g001

Figure 2. Stochastic model of gene expression: a) Schematic representation of the model. Each step transition is determined by a rate
constant. Promoter activation and inactivation occur at Kon and Koff rates respectively. When active, a promoter is transcribed at Km rate into an
mRNA molecule. The mRNA molecule can then be either degraded at Dm rate or translated at Kp rate into a protein. The protein molecule can then
be degraded at rate Dp. Kon, Koff, and Km determine the synthesis rate of mRNA, or Sm. Blue indicates that the parameter has been empirically
measured or calculated across the dataset, red indicates that the parameter has been simplified or fit across the dataset b) Model performance in
predicting protein variance in S. cerevisiae. Each point represents a single GFP fusion strain. Data is displayed in log-scale (linear scale r = 0.836).
doi:10.1371/journal.pone.0102202.g002

Modeling of the Relationship between Protein Mean and Variance
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noise only through changes in mean protein level, which will then

increase protein variance following the power law. In contrast,

perturbations which affect the kinetics of promoter activation

should increase protein variance by modulating the relationship

between protein mean and variance. As a result, this class of

perturbations are expected to show a much larger effect on protein

variance once normalized to the general power-law relationship

(s2/m1.69, Figure 1).

Several variables have previously been correlated with increases

in noise including changes in transcription [13] and translation

rates [2,20,21], the presence of a TATA box [2,13,21] and

promoter positioned nucleosomes [2,15,16,27]. Our model

suggested that only variables involved in promoter activation

should significantly increase protein variance when normalized to

their mean levels, whereas variables affecting downstream

processes would not.

To test this hypothesis, we correlated the protein variance

residuals with variables that reflect changes in promoter activation,

and with variables that affect downstream processes. Genes with

TATA boxes or promoter-positioned nucleosomes, factors which

influence promoter activation, had high values of residual variance

(Figure 3b), indicating that they increase noise by modulating the

power-law. In contrast, differences in measured rates of mRNA

synthesis and degradation [28], rates of protein degradation [29],

measures of ribosomal occupancy [30], and the Codon Adaptation

Index [31] showed little or no correlation with residual variance

(Figure 3b). This result demonstrates that these variables, which

affect processes downstream of promoter activation, influence cell-

to-cell protein variance almost exclusively by changing mean levels

of gene expression. Taken together, the results support our

hypothesis and suggest that positioned nucleosomes may account

for a large portion of the residual variance.

Promoter-positioned nucleosomes increase variance by
slowing promoter activation kinetics

Our model suggests that the increase in residual protein

variance caused by positioned nucleosomes is the result of slower

promoter activation in these genes. To test this hypothesis, we

examined single-cell mRNA measurements performed for differ-

ent genes in S. cerevisiae [32], since the relationship between

mRNA mean and variance can be used to clearly distinguish

groups of genes with different promoter kinetics [23] (see materials

and methods). Our prediction is that genes without promoter-

positioned nucleosomes (Figure 4b) will have fast promoter

activation kinetics and thus display an approximately linear

relationship between mean and variance (Figure 4a, blue line,

see Supporting Information S1, section 1.8). Indeed, this was

observed in the single-cell mRNA data (see Figure 4a, red dots). In

contrast, our model predicts that genes with promoter-positioned

nucleosomes (Figure 4c) will have slow promoter activation

kinetics and will therefore display a quadratic scaling between

mean and variance (Figure 4a, red line, see Supporting Informa-

tion S1, section 1.8). This was again confirmed as genes lacking a

nucleosome-free region displayed the predicted mean-variance

relationship (Figure 4a, red dots).

Experimental confirmation of the effects of promoter
kinetics on the mean-variance relationship

Finally, to obtain additional support for these findings, we

experimentally tested whether changes in nucleosome occupancy

could produce an increase in the mean-independent component of

protein variance. Using in vivo nucleosome positioning data [33],

we selected a set of S. cerevisiae TATA-containing genes whose

promoters are nucleosome free in glucose but which acquire a

positioned nucleosome in ethanol. A prediction of our analysis is

that such genes would display increased residual variance when

switched from glucose-containing medium to ethanol-containing

Figure 3. Promoter kinetics but not mRNA and protein synthesis and degradation rates modulate the relationship between mean
and variance. a) Predicted relationship between mean and variance using original model with original parameter set (grey squares), original model
with permuted sets of kinetic rates for mRNA/protein synthesis and degradation (purple), and slow promoter kinetics model with original parameter
set (orange). b) Fraction of residual variance explained (r2) by sources of noise operating at the promoter/initiation level (orange) or at a post-
initiation level (purple).
doi:10.1371/journal.pone.0102202.g003

Modeling of the Relationship between Protein Mean and Variance
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medium. We measured the distribution of fluorescence of GFP-

tagged fusion strains [29] in both glucose and ethanol by flow-

cytometry, and computed the residual variance above what is

expected from the mean-variance relationship. We observed a

significant increase in residual variance as cells were shifted from

glucose to ethanol relative to a control set of genes in which

nucleosomes do not change between the two conditions (p-value ,

0.05, T-test across 3 biological replicates, Figure 5a nucleosome

occupancy set).

Using this same gene set, we examined whether changes in

protein translation rate affected the mean-independent component

of the variance. Our model predicts that translation rate should

not correlate with residual variance, and we did not observe any

significant difference (p-value .0.4, T-test across 3 biological

replicates, Figure 5a translation rate set). These results support our

hypothesis that positioned nucleosomes are the major source of

mean independent noise. We conclude that nucleosome bound

promoters showed higher protein variance as a result of slowed

promoter activation kinetics, which increases the exponent of the

power-law-like relationship between protein mean and variance.

These results can be summarized in a general model: most of the

genes in S. cerevisiae exhibit promoter kinetics characterized by

fast inactivation rate and as a result display a protein mean-

variance scaling dictated by a general power-law relationship with

exponent equal to 1.69 (Figure 5b, purple dots and line). In

contrast, few genes characterized by slow promoter kinetics display

approximate quadratic scaling between protein mean and

variance (Figure 5b, orange dots and line). Changes in promoter

kinetics induced by nucleosome positioning can affect this

relationship, resulting in an increase in protein variance compared

to the general power-law.

Discussion

Single-cell variance in protein levels plays a major role in

generating phenotypic differences [4,5]. A fundamental property

of protein variance is its dependence on mean protein levels

through a power-law-like relationship. This relationship holds in

yeast (s2/m1.6), bacteria (s2/m1.5) [24] and human T-cells

(s2/m1.7) [34], suggesting the processes that determine the

power-law are common across different species.

Using a stochastic model of gene expression parameterized with

empirically measured kinetic rates [13,25,28], we found that the

power-law is a natural consequence of the kinetics of transcription

and translation, fundamental mechanisms shared between these

three organisms. Through the same framework, we also were able

to predict for the first time protein variance at a genomic scale.

Molecular processes that differ significantly between these species,

such as chromatin structure, nuclear export, or unequal partition-

ing during the cell cycle, were not required to explain the power-

law nor to predict protein variance.

These results were reached by fitting a global rate of promoter

activation and assuming the same promoter kinetic regime across

the whole genome. Although this is in fact an approximation as it

would be unrealistic to expect all promoter to be activated at the

same rate, we found this assumption to be largely true in promoter

bashing experiments [14]. Furthermore, this result suggests a

model where changes in promoter initiation arise mostly as a result

in changes of promoter inactivation rather than activation, a result

that has been empirically observed at a single gene level in

different organisms [23,35].

The global regime of promoter initiation that we captured

consisted in a fast promoter inactivation rate and slow activation

rates, resulting in short burst frequency (0.59 min21) and an

average small burst size (0.104 transcripts per burst on average).

These values are in agreement with the only direct empirical

measure of transcriptional initiation in S. cerevisiae [26]. In this

kinetic regime, most promoter transitions to the active state do not

produce an mRNA transcript – for the ‘‘average’’ gene,

approximately 89% are non-productive. Transitions that do

produce a transcript typically only produce a single mRNA

molecule (,9.4% of transitions, for the average of transitions, for

transitions produce multiple transcripts (0.5%). In this regime,

RNA production very nearly follows a Poisson process, with

s2/m1.1. However, this small non-linearity between mean and

variance is amplified at the protein level and the mean-variance

relationship follows the s2/m1.69 power-law-like relationship.

One practical application of understanding the power law is

that it allows to separate different mechanisms that contribute to

the increase of protein variance. By using the power-law obtained

under these rates, 97% of all protein variance across the genome

Figure 4. Analysis of mRNA distributions connects underlying promoter kinetics to nucleosome occupancy. a) mRNA mean and
variance in S. cerevisiae plotted against each other in log-scale. Blue dashed line indicates the expected relationship between mean and variance in a
regime of slow activation and fast inactivation rate (s2 = m), red dashed line indicates expected relationship at slow promoter kinetics (s2 = m+m2).
Circles represent experimental values of mRNA mean and variance (color matches best fit to promoter kinetics regime) b) Average nucleosome
occupancy between 2600 to +1000 relative to the TSS of S. cerevisiae genes exhibiting linear mRNA mean-variance scaling. The position of the
canonical nucleosome free region is indicated by the black arrow. c) Same as b) but with respect to S. cerevisiae genes exhibiting quadratic mRNA
mean-variance scaling.
doi:10.1371/journal.pone.0102202.g004

Modeling of the Relationship between Protein Mean and Variance
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can explained solely by mean protein levels, suggesting that this

kinetic regime is a general feature of transcription in S. cerevisiae.

The 3% of genes with excess variance (up to twenty-fold over the

expected variance) is consistent with the occurrence of slow

promoter kinetics, which our data suggests is caused for the most

part by positioned nucleosomes on their promoters. The

association of nucleosomes and chromatin related factors to

increased promoter variance is not novel and it has been

previously observed in several studies [2,15,16,27]. However, we

find that nucleosome positioning is by far the dominant factor,

explaining most of the excess variance. This result is even stronger

when nucleosome occupancy is analyzed in the context of TATA-

containing genes, a notorious class of genes characterized by

higher protein variance than the rest of the proteome [2,13,21].

Interestingly, a recent analysis of the effect of TATA-box using

synthetic promoter libraries has revealed the TATA-box not to be

sufficient to increase protein variance [14]. This suggests that

perhaps an interplay between TATA and chromatin architecture

is required to produce the observed increase in noise, a conclusion

supported by our observation in genomic data as well as in

promoter mutagenesis libraries [36]. In disagreement with

previous observations [2,13,20,21], factors involved in molecular

processes occurring after promoter initiation do not produce an

excess of variance beyond what is expected. The analysis of the

model explains this observation: factors modulating the kinetics of

promoter initiation will produce an increase in the exponent of the

power-law for that particular gene, which will result in an

apparent excess of protein variance. In contrast, factors operating

downstream will produce an increase in variance solely through an

increase in mean following the power-law exponent specified by

the kinetics of the controlling promoter. Our work therefore

suggests that the power-law is a universal feature of protein

expression whose particular shape is determined by the rates at

which promoters transition between their active and inactive states

[37,38].

The performance of our model and the conclusions of our

analysis pertain only to the intrinsic, or gene specific [10] portion

of protein variance, as the dataset that we analyzed minimized the

effect of global or extrinsic factors through gating [13]. The

reduced extrinsic component of this dataset may also explain the

absence of association of translation specific factors to excess

protein variance, as previous genetic dissection revealed their

enrichment among factors modulating global variance changes

[18].

Finally, we did not observe any genes with variances signifi-

cantly below that expected from the power-law. Reducing protein

variance may be difficult for the cell due to physical constraints

that render this process energetically dis-advantageous. A theo-

retical analysis on the limits of suppression of molecular

fluctuations [39] supports this observation. Alternatively, it is

possible that cells have evolved regulatory networks with intrinsic

robustness to molecular fluctuations [40], suggesting that even if

achievable, noise reduction may not be necessary.

Identifying the sources of noise and their underlying mecha-

nisms is an important step in determining their role in increasing

fitness. The work presented here provides a way to isolate mean-

independent effects from protein variance and to connect them to

their biophysical origins. A long-standing question regarding

Figure 5. Modulating promoter kinetics changes protein mean-variance scaling. a) Increment in residual variance from glucose to ethanol
in genes that show increased occupancy in ethanol (orange set: test) and genes with unaltered occupancy (orange set: control) compared to the
same genes ranked by high (purple set: test) or low (purple set: test) increase in translation rate (purple set) (* indicates p,0.05, t-test). b) Diagram
connecting the power-law exponent to promoter kinetics: most genes in S. cerevisiae exhibit promoter kinetics characterized by fast inactivation rate
(purple dots) and display protein mean-variance scaling dictated by a power-law with 1.69 exponent (purple line). A small set of genes (orange dots)
exhibit slow promoter kinetics and consequently present protein mean-variance scaling dictated by a quadratic scaling (orange line).
doi:10.1371/journal.pone.0102202.g005

Modeling of the Relationship between Protein Mean and Variance
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stochastic gene expression is its role in fitness [4]. Through this

framework, it will be possible to completely decouple the role of

protein variance from the mean, allowing a better understanding

of the functional and evolutionary constraints that shape gene

expression variance.

Methods

Data Sources
We used single-cell protein mean and variance values from

flow-cytometry measurements on S. cerevisae GFP-fusion strains

grown in YPD for ,2000 genes from Newman et al. [13]. mRNA

level measurements in YPD and YPEtOH were obtained from

Gasch et al. [41]. We acquired mRNA synthesis and degradation

rates from Miller et al. [28]. mRNA single-cell measurement data

were obtained from Gandhi et al. [32]. Nucleosome occupancy

was assessed from mnase-seq datasets in YPD and YPEtOH from

Kaplan et al. [33]. We used protein mean and variance from

synthetic promoter libraries from the work of Mogno et al. [14].

Definition of TATA-containing and TATA-less were obtained

from Basehoar et al. [42]. We obtained in vivo ribosome

occupancy profiles for each mRNA species measured in YPD

from Ingolia et al. [30]. Data and source code generated and used

in this work can be found at http://cgs.wustl.edu/,fvallania/

5_noise_2011/5_noise_website/

NOISE_Project_supporting_materials.html.

Analysis of the relationship between protein mean and
variance

Using single-cell protein mean and variance values in S.
cerevisiae [13], we assumed that the underlying relationship

between mean and variance could be non-linear and exponential

in nature. This formulation can be generally expressed as

s2~kmJ

where k is a scaling factor and J is the exponential index. In log-

space, this equation transforms into

log s2
� �

~J � log mð Þzlog kð Þ

where J can now be directly calculated as the slope of a linear

regression. We estimated the fraction of variance explained by the

mean as the r2 of the regression. Variance residuals originated

from this fit were defined as mean-independent variance.

Regression analysis was performed using the R programming

language.

Stochastic modeling of protein and mRNA variance
To model mRNA and protein variance in S. cerevisae, we used

analytical stochastic models derived from the solution of a system

of stochastic differential equations as previously described [25].

This model describes the steady-state value of mRNA and protein

variance as a function of the kinetic rates for protein activation and

inactivation (Kon and Koff), mRNA synthesis and degradation

(Km and Dm), and protein translation and degradation (Kp and

Dp). The model for mRNA variance is expressed as

smRNA
2

~mmRNA 1z Koff � Kmð Þ= KonzKoffð Þ DmzKonzKoffð Þ½ �

whereas for protein variance, the equation is:

Lsp
2~mp 1z Kp= DmzDpð Þð Þf � 1z Koff � Kmð Þ½

DmzDpzKonzKoffð Þ= KonzKoffð Þ DmzKonzKoffð Þ

DpzKonzKoffð Þ�g

In order to predict genome-wide protein variance in S.
cerevisiae, we assumed Kon and Koff to be uniform across the

genome and fit their values. Fitting, prediction and cross-

validation were computed in Perl. Analysis of the fit was

performed in R. (for complete explanation see Supporting

Information S1).

Correlation analysis between mean-independent
variance and molecular properties

We compared mean-independent variance to mRNA synthesis

rate, mRNA degradation rate, ribosomal occupancy and CAI

(Codon Adaptation Index). CAI was computed as previously

described [31]. To determine the amount of variation of noise

explained explained by each property, we correlated mean-

independent variance with the log of the measure of each property

and calculated the Pearson’s correlation coefficient. We used a

linear regression in log scale to avoid any non-linear effects.

Regression analysis was performed in R.

Regression model between mean-independent variance
and nucleosome occupancy

We computed the Pearson’s correlation coefficient between

mean-independent variance and nucleosome occupancy at a single

base resolution for each base ranging from 21000 to +600 relative

to the transcription start site of each gene in S. cerevisae for which

we had both nucleosome data and residual mean-independent

variance. For each base, we obtained a correlation value, which

was plotted as a function of its position relative to the TSS. We

repeated this analysis focusing on TATA-containing and TATA-

less genes only. In order to estimate the amount of variation

explained by nucleosome occupancy on TATA-containing genes,

we applied a linear model to predict residual mean-independent

variance as a function of nucleosome occupancy. We performed a

forward-regression strategy to determine the positions in the

promoter sequence to be used as predictive features for our model

followed by leave-one-out cross-validation to assess over-fitting

(Supporting Information S1 for details). Regression analysis was

performed in R.

Experimental measurement of mean-independent
variance as a function of nucleosome occupancy

We selected 15 yeast genes that acquired a nucleosome when

grown in YPEtOH compared to YPD using genome-wide

nucleosome occupancy data [33] (YAL054C, YBL015W,

YBL075C, YBR139W, YBR145W, YDL097C, YER081W,

YFL021W, YGL040C, YGL197W, YLR042C, YMR315W,

YNL241C, YOL143C, YOR084W, YPR127W). We constructed

a second set (control set) of 15 genes either stable nucleosome-

bound or nucleosome-free promoters (YBR066C, YBR092C,

YER056C-A, YJL200C, YKL071W, YLR177W, YNL112W,

YOR355W, YAL060W, YDR055W, YDR495C, YDR533C,

YDL222C, YER054C). For each gene in each set, we grew a

corresponding GFP-fusion S. cerevisiae strain [29] in YPD and

YPEtOH to log phase and measured single-cell protein levels using

a Beckmann-Coulter Cytomics FC500 MPL flow-cytometer

(Beckmann Coulter, Fullerton, CA) as previously described
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previously [13]. We calculated residual variance from mean and

variance as described above and, for each gene we computed

differential residual mean independent variance between YPEtOH

and YPD. We then tested for increase in residual variance between

the test and control set using one-sided t-test. Additionally, we

computed the translation rate for each gene in both conditions

(described in Supporting Information S1, section 1.2) and

computed the differential translation rate (DKp) between condi-

tions (defined as KpYEtOH - KpYPD). We then ranked the genes by

decreasing DKp and tested for increase in residual variance

between the top and bottom half of this set using one-sided t-test.

Statistics were performed in R.

Supporting Information

Figure S1 Changes in gene expressions are driven by
changes in Koff or Km whereas Kon remains largely
constant. (a) Expected relationship of the VMR (upper half, blue

line) and the CV (lower half, red line) with protein mean levels (mp)

assuming constant Koff and Km and variable Kon. (b) Same as in (a)

but assuming instead constant Kon and variable Koff or Km.

Equations indicate the slope of the line for the VMR-mean

relationship (upper half) and the equation of the asymptotic line

for the CV-mean relationship. (c) Experimentally observed

relationship of the VMR and CV with protein mean levels in a

promoter library dataset (Mogno et al. 2010).

(TIFF)

Figure S2 Distinguishing between fast kinetics and
short initiation events promoter regimens. (a) Protein

mean-variance relationships in promoter bashing/induction

experiments: the regimes of fast promoter kinetics and short

initiation events produce a linear and super linear relationship

between protein mean and variance respectively. (b) Illustration of

promoter activation regimens dictated by fast promoter kinetics,

short initiation events, and slow bursty kinetics. In each plot, the x-

axis indicates time and the y-axis indicates promoter activity.

Purple points and bars represent short or extended period of

promoter activation. In the case of fast promoter kinetics, the

transition between active and inactive is so rapid that the

activation is approximated as constant. (c) Protein mean-variance

relationship in a synthetic promoter library dataset (Mogno et al

2010) in log-log plot.

(TIFF)

Figure S3 Description and results of the experimental
validation. (a) Experimental de- sign: We selected 15 genes that

acquired a nucleosome when grown in YPEtOH compared to

YPD using genome-wide nucleosome occupancy data. A control

set of equal size was also built with genes with stable nucleosomes

across the two conditions. For each gene in each set, we grew a

corresponding GFP-fusion S. cerevisiae strain in YPD and

YPEtOH to log phase and measured single-cell protein levels by

flow-cytometry. (b) Representative results of 3 yeast strains from

the test group. For each strain, the distribution of fluorescence

intensity is shown in YPD (cyan) and YPEtOH (purple)

respectively. The amount of residual variance (labeled as MIV

or mean-independent variance) is displayed under each histogram.

(c) Same as in (b) but for representative strains from the control

group.

(TIFF)

Table S1 List of parameters used in the stochastic
model and their source.
(TIFF)

Supporting Information S1 Supplementary methods,
calculations, and derivations for the equations used in
the main manuscript.
(PDF)
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