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Since the first successful kidney transplantation in 1954,1 kidney 
transplantation has become the best treatment for adult patients with kidney 
failure. However, early pediatric kidney transplantation was complicated by 

technical, immunologic, and logistic problems, all leading to worse patient and 
graft survival among children than had been observed among adults. Over the past 
15 years, a number of advances have greatly improved patient and graft survival 
among children with kidney transplants.2,3

Some aspects of clinical kidney transplantation are similar in children and 
adults. The immunosuppressive medications and regimens used are similar, creati-
nine is the major serum biomarker, acute rejection is determined primarily by 
means of biopsy with the use of the Banff criteria for the classification of rejection 
(Table S1 in the Supplementary Appendix, available with the full text of this article at 
NEJM.org), and the rejection mechanisms of the kidney graft are generally similar.4-7 
However, many other aspects differ between children and adults — immunologic 
factors, the primary kidney diseases leading to kidney failure, often with associated 
urologic issues, and the immunizations that are required before transplantation. 
Allocation policies regarding kidneys from deceased donors, surgical techniques 
in small children, and drug metabolism have distinctive aspects in children. The 
frequency of primary viral infection after transplantation is higher for children 
than for adults. Furthermore, children are developing so their linear-height growth 
needs to be optimized and their neurocognitive development fostered. Ultimately, 
the child with a transplant must be readied for the transition to adult care. This 
review considers the differences between children and adults undergoing kidney 
transplantation that necessitate alternative approaches in children and have re-
sulted in innovations and important advances.

THE IMMUNE S YS TEM IN CHILDHO OD

The immune system undergoes profound modification from birth to adulthood, dur-
ing which period the absolute counts and percentages of circulating T-cell and B-cell 
subtypes and other immunologic features (Fig. 1)8,9 slowly yet continuously evolve, 
accompanied by an increase in alloreactivity. Thymic output is robust during childhood 
but diminishes during adulthood.10 In adults, thymic atrophy and continuous anti-
gen exposure shift the composition of the T-cell pool from naive to memory T cells.10

As compared with adults, children have an alloimmune response characterized 
by low expression of the costimulatory ligand CD40L on T cells,11 fewer antigen-
specific T-cell precursors,12 type 2 helper T-cell (Th2)–skewed immunity with higher 
peripheral levels of Th2 and lower levels of the type 1 helper T-cell (Th1) cytokines,13 
reduced T-cell effector function,14 an overall higher percentage of the tolerogenic 
dendritic-cell subset,15 and lower titers of anti-HLA antibodies before transplanta-
tion16 (Fig. 1). Younger recipients have better outcomes after transplantation, perhaps 
suggesting that the more naive immune system provides an advantage (Fig. 2A).
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CONSIDER ATIONS BEFOR E 
TR A NSPL A N TATION

CAUSES OF KIDNEY FAILURE

The most common primary causes of kidney fail-
ure are congenital or inherited disorders such as 
renal dysplasia, obstructive uropathies, or reflux 
nephropathy in young children19 and acquired 
glomerular diseases such as focal segmental glo-
merulosclerosis and lupus nephritis in older chil-
dren. In contrast, the most common primary re-
nal diseases that lead to end-stage kidney disease 
in adults are diabetic nephropathy, hypertension, 
and autosomal dominant polycystic kidney disease, 
which rarely cause end-stage kidney disease in 
children.

UROLOGIC ISSUES

Abnormal bladder function may accompany kid-
ney failure in children. In patients with a poste-
rior urethral valve, an open vesicostomy may need 
to be performed early in life to decompress a 
dysfunctional bladder. An open vesicostomy may 
be kept in place for many months after trans-
plantation.20 Children with small bladder capac-
ity may benefit from a bladder augmentation in 
which segments of ileum, stomach, or appendix 
are used to create a permanent cutaneous con-
duit that enables the child to be continent and 
to have clean, intermittent catheterization.20 Chil-
dren with obstructive uropathy have a higher rate 
of urinary tract infection after transplantation 
than children with other causes of end-stage kid-
ney disease,21 possibly necessitating lifelong anti-
microbial prophylaxis.

IMMUNIZATIONS

Children require multiple vaccinations during 
early childhood to protect them from preventable 
infectious diseases. However, vaccines may not 
be effective if administered to an immunocom-

promised patient. Therefore, a vigorous effort to 
immunize children completely before transplan-
tation is critical. Because children with end-stage 
kidney disease often have a suboptimal immune 
response and reduced duration of immunity, 
higher initial doses, extra doses, and antibody 
titer monitoring with booster doses of vaccines 
may be needed. In the period after transplanta-
tion, the administration of live vaccines is gener-
ally avoided,22 but other immunizations may be 
given after immunosuppressive medications have 
reached low maintenance levels, typically at 6 to 
12 months after transplantation. Injectable in-
fluenza vaccine should be given annually.

PRIORITIZED ALLOCATION OF KIDNEYS TO CHILDREN

The allocation of kidneys from deceased donors 
involves a complex algorithm that includes the 
degree of anti-HLA sensitization, the need for mul-
tiple donor organs, the blood-group match, the 
relative HLA match, and the waiting time accrued 
by the candidate recipient. Children make up a 
small fraction of persons awaiting kidney trans-
plantation, and they have been afforded excep-
tional societal benefits in many countries. Thus, 
allocation policies regarding organ transplants 
have preferentially allocated higher-quality kidneys 
from deceased donors to children in relatively 
prompt fashion,23 with resultant mean waiting 
times as short as 3 months in some regions.24 
However, such policies have led to a decline in the 
donation of kidneys from living donors and to a 
greater proportion of poorly HLA-matched kidney 
transplants from deceased donors in children.25

SURGIC A L ISSUES AT 
TR A NSPL A N TATION

Unlike heart and liver allografts, the kidney allo-
graft is placed in a different location from the 
failed native organ, and the native organ is often 

Figure 1 (facing page). Immunologic Mechanisms, Observed in Pediatric Kidney-Transplant Recipients, That May Be 
Beneficial for Children.

Important features of the naive pediatric immune system can be found in T cells (e.g., reduced CD40L expression, 
a type 2 helper T-cell–skewed profile, and reduced effector markers; Panel A), macrophages (e.g., reduced HLA-DR 
 expression and reduced costimulatory molecule expression; Panel B), B cells (e.g., fewer mature B cells and reduced 
anti-HLA antibody production; Panel C), and dendritic cells (e.g., fewer mature dendritic cells; Panel D). T cells in the 
recipient may be primed by donor-derived antigen-presenting cells, thus initiating rejection of the kidney allograft. 
Primed T cells release proinflammatory cytokines and facilitate B-cell activation in the recipient. Dendritic cells in 
the recipient may also activate T cells by means of indirect allorecognition, leading to chronic allograft rejection. 
 Activated macrophages in the recipient sustain inflammation through the release of proinflammatory cytokines. 
TCR denotes T-cell receptor, TLR4 toll-like receptor 4, and TNF-α tumor necrosis factor α.
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left in place. Thus, size and age matching is gen-
erally not required in kidney transplantation. In 
fact, matching very young donors to very young 

recipients was associated previously with a very 
high rate of graft loss, often due to thrombosis.26

On the basis of those adverse results, pediatric 
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programs now transplant adult kidneys into small 
children once the recipient has reached a suffi-
cient size, typically 6.5 to 10.0 kg of body weight. 
An infant’s peritoneal cavity has enough space to 
accommodate an adult kidney without compress-
ing the allograft.27,28 However, the youngest pe-
diatric recipients have an allograft-size mismatch 
that leads to a high glomerular filtration rate and 
makes interpretation of serum creatinine results 
more difficult, since acute rejection may initially 
occur without an elevation of the serum creatinine 
level. Kidneys from deceased donors who were very 
small children are no longer allocated to small 
children but are, in fact, now transplanted en bloc 
(both kidneys together, attached to a single seg-
ment of the aorta and vena cava) into adults with 
excellent results.29

The surgical procedure for a kidney trans-
plantation in a child with a body weight of more 
than 30 kg is identical to that in an adult. How-
ever, in a child with a body weight of less than 
10 kg, a midline longitudinal abdominal incision 
is needed. Space between the peritoneum and 
subcutaneous fascia is limited, so the kidney is 
placed intraperitoneally, with a small risk that it 
will migrate to another part of the abdominal 
cavity. Blood vessels from the donor are connected 
to the recipient’s aorta and inferior vena cava. In 
children with a body weight of 10 to 30 kg, sur-
geons individualize the incision and allograft sites 
and blood-vessel anastomoses on the basis of 
the child’s anatomy. In small children, strict 
attention must be paid to maintenance of the 
intravascular volume during the operation and 
in the early postoperative period.30,31 Some 
children may require native nephrectomies, ei-
ther to prevent blood-flow steal by the native 
kidneys or to eliminate excess urine volume or 

protein losses. Additional surgical details are 
described elsewhere.30

Temporary ureteral stenting is commonly used 
in adult kidney-transplant recipients,32 but whether 
stenting is truly helpful in children is not known. 
Recommendations to stent became common be-
fore the association of ureteral stenting with BK 
virus nephropathy was known.33,34 Some pediat-
ric kidney-transplant recipients require special-
ized ureteral reimplantation, bladder augmenta-
tion, or urinary diversion procedures.35

CONSIDER ATIONS A F TER 
TR A NSPL A N TATION

GRAFT SURVIVAL

Kidney-allograft survival has improved tremen-
dously over time in successive cohorts of pediat-
ric recipients,18 regardless of whether the trans-
plant was from a living or deceased donor (Fig. 2B). 
Such progress can be attributed to multiple factors 
— refinements in pretransplantation preparation, 
enhanced surgical techniques, better choice of 
donors, more potent immunosuppressive medica-
tions, greater understanding of pediatric-specific 
pharmacokinetics, and use of evidence-based medi-
cation protocols. In addition, overall rates of acute 
rejection among children have declined; the acute-
rejection rate at 1 year among recipients of allo-
grafts from living donors decreased from 55% in 
the late 1980s to 10 to 15% in the most recent 
cohorts (Fig. 2C).18 Although developing coun-
tries have lower rates of transplantation than de-
veloped countries, in addition to limited resources 
for acquiring the newer, more expensive immuno-
suppressive agents, they have had similar im-
provements.36

Kidneys transplanted into children 5 years of 

Figure 2 (facing page). Graft and Patient Survival and Rates of Rejection and Post-Transplantation Lymphoprolifera-
tive Disorder (PTLD).

The rates of graft survival at 10 years after receipt of a transplant from a living donor are lowest among recipients 
older than 65 years of age and adolescents and are highest among the youngest recipients (Panel A). The data are 
from the Scientific Registry of Transplant Recipients 2012 annual report.17 Graft survival has improved for trans-
plants from living donors and deceased donors, but a gap between the two sources remains (Panel B). The data, 
which are based on 11,603 renal transplantations in 10,632 children, are from the North American Pediatric Renal 
Trials and Collaborative Studies (NAPRTCS).18 Rates of acute rejection within the first 6 months have decreased in 
each more-recent cohort, but the slope of the rate of acute rejection at later time points has remained the same 
(Panel C). The graph for transplants from deceased donors (data not shown) is similar to the graph shown for trans-
plants from living donors. The data are from NAPRTCS.18 As compared with survival among adult recipients of kidney 
transplants, patient survival among children is very high, regardless of whether the transplant was from a living or 
deceased donor (Panel D). The data are from NAPRTCS.18 Rates of PTLD rose dramatically in the mid-1990s and early 
2000s, primarily driven by a rise in early PTLD that may have been related to the effects of more-potent immuno-
suppressive medications (Panel E) (Martz K, EMMES: personal communication).
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age or younger have shown the most dramatic 
improvement (Fig. 2A). Unfortunately, adolescents 
now have the worst long-term graft survival 

among all pediatric-recipient age groups and 
represent the highest-risk recipients. Many rea-
sons are postulated for this outcome, of which 
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poor adherence to medication therapy is believed 
to be a major factor.37,38 The early mortality 
among pediatric kidney-transplant recipients is 
very low (Fig. 2D), and death results mostly 
from infection or  cancer,18 whereas mortality 
after transplantation is much higher among 
adults, and deaths are largely due to cardiovas-
cular disease.

VIRAL INFECTIONS

Opportunistic viruses have emerged as great 
challenges to clinical management after kidney 
transplantation, probably related to the immuno-
suppressive regimens used currently, which are 
more potent than those used in the past. Since the 
mid-1990s, the incidence of the Epstein–Barr virus 
(EBV)–driven cancer known as post-transplantation 
lymphoproliferative disorder (PTLD) has dramati-
cally increased (Fig. 2E), and BK virus has emerged 
as a new cause of infection. These two viruses 
typically infect people early in life, when they are 
immunocompetent, and cause mild disease but 
leave behind a pool of latent virus in the reticulo-
thelium or urothelium. Since kidneys transplanted 
in children are usually from adult donors, there 
is an increased chance that a kidney from a sero-
positive donor (with latent virus) will be trans-
planted into a seronegative recipient. Thus, as 
compared with adults, children are at higher 
relative risk for severe disease from cytomegalo-
virus, EBV, or BK virus,39 with higher rates of com-
plications, graft loss, and death.40,41

Transplantation physicians typically reduce im-
munosuppression as a first response to each infec-
tion, with varied results. Ganciclovir is generally 
effective both as prophylaxis against and as 
treatment for cytomegalovirus infection, and anti-
viral prophylaxis has been associated with reduced 
rates of PTLD.42,43 For BK virus infection, no anti-
viral treatment strategies have been validated, al-
though cidofovir and leflunomide have been used 
in both adults and children.41,44 Many pediatric 
kidney-transplantation centers perform serial mon-
itoring for viruses with the use of a polymerase-
chain-reaction (PCR) assay in the first 12 months 
after transplantation, in order to detect infections 
early.45

GROWTH CONCERNS

Children are in a state of active growth. Chronic 
kidney failure can lead to severe growth failure, 
often with associated loss of self-esteem.46 Chil-
dren with kidney failure were once approximately 

2.5 SD below the expected height for their age at 
the time of transplantation. Improved nutrition 
before transplantation and aggressive use of re-
combinant human growth hormone have reduced, 
although not eliminated, this height deficit.46 
Renal transplantation generally improves linear 
growth but does not completely restore it.47 The 
greatest recovery in growth is seen in the young-
est children, and the least is seen in adolescents. 
The use of glucocorticoid withdrawal or avoid-
ance protocols and the administration of growth 
hormone after transplantation may further im-
prove growth recovery.48

TRANSITION OF CARE

Adolescents must eventually graduate to adult 
care — a transition that can be stressful for both 
the patient and the caregiver. A gradual transi-
tion rather than an abrupt transfer, early prepa-
ration of the patient and family, and the use of 
checklists to document maturing transition 
skills in the patient have been recommended to 
ensure a successful transition.49

PEDI ATR IC IMMUNOSUPPR ESSION — 
LESSONS FROM CLINIC A L TR I A L S

An important advance in pediatric kidney trans-
plantation over the past two decades has been 
the emergence of prospective trial groups in the 
United States, Europe, Australia, and Asia. With 
relatively low patient volumes (10 to 30 transplan-
tations per year) at most centers, meaningful re-
sults can be obtained through multicenter collab-
oration. Retrospective data registries such as the 
North American Pediatric Renal Trials and Col-
laborative Studies, combined adult and pediatric 
registries such as the United Network for Organ 
Sharing, the United States Renal Data System, 
the Collaborative Transplant Study, the Australia 
and New Zealand Dialysis and Transplant Regis-
try, and the newly formed Cooperative European 
Pediatric Renal Transplant Initiative Registry in 
Europe50 have provided important, but limited, 
information (Table S2 in the Supplementary Ap-
pendix). The results of prospective, randomized, 
multicenter clinical trials conducted in the United 
States or Europe are summarized in Table S3 in 
the Supplementary Appendix, and the results of 
nonrandomized, multicenter trials are summa-
rized in Table S4 in the Supplementary Appendix. 
These trials have shown that high doses of im-
munosuppressive drugs to compensate for gluco-
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corticoid withdrawal can lead to unacceptable 
rates of PTLD, that glucocorticoid avoidance is 
not immunologically detrimental,51 although it 
does not ameliorate chronic histologic damage,52 
and that tacrolimus is associated with a signifi-
cantly lower rate of acute rejection at 6 months 
than is cyclosporine.53

The children enrolled in these trials had a 
high rate of adherence to the trial requirements, 
including protocol-specified graft biopsies. How-
ever, pilot trials of immunosuppression in chil-
dren should be conducted only if there are at 
least preliminary safety and perhaps efficacy data 
from studies involving adults, unless the studies 
apply uniquely to children (e.g., studies of growth 
strategies). Because only 700 to 800 kidney 
transplantations are performed in children in the 
United States annually, cooperation among pedi-
atric research consortia is critical for full enroll-
ment and study completion.

Pharmacokinetic and mechanistic studies have 
been coupled to many of these prospective studies. 
Pharmacokinetic studies showed that cyclosporine 
has a shorter half-life in children than in adults 
and requires dosing three times daily.54 Similarly, 
sirolimus has a shorter half-life in children than in 
adults and often requires twice-daily dosing.55,56 
The area under the curve of dose-normalized 
mycophenolic acid is higher in children than has 
been commonly observed in adults.56 These dif-
ferences in metabolism are believed to be due to 
developmental changes in biliary transporters and 
metabolic enzymes such as cytochrome P-450 and 
glucuronosyltransferases.56 In glucocorticoid-free 
protocols as compared with protocols that in-
clude glucocorticoids, the use of mycophenolate 
mofetil is associated with more frequent and 
severe leukopenia, anemia, and gastrointestinal 
disturbances.57,58

Some of the most important results from 
these trials were obtained from mechanistic 
studies, particularly those that may account for 
the replenishment of the immune system after 
lymphocyte depletion — homeostatic prolifera-
tion of peripheral memory T cells in adult recipi-
ents and thymopoiesis in pediatric recipients.59 
In children, CD8+ naive cells were shown to be 
more resistant to alemtuzumab-mediated deple-
tion, and their recovery, albeit greater than that of 
CD4+ cells, remained low at 24 months,60 where-
as CD8+ cells in adults were fully recovered at 
6 months after transplantation.61,62 The prolonged 
depletion obtained with alemtuzumab (a potent 

monoclonal anti-CD52 antibody) in children is in 
conflict with the general theory that depletion 
would be more transient in children, owing to more 
active lymphopoiesis, than in adults.63 Induction 
therapy with rabbit antithymocyte globulin (ATG), 
a polyclonal depleting agent, promotes long-term 
graft survival in pediatric kidney-transplant recipi-
ents,64 with depletion of naive T cells and central 
memory T cells and little effect on effector mem-
ory T cells.65 In addition, regulatory T cells (Tregs) 
were spared with alemtuzumab and expanded 
with ATG,65 conferring an additional immuno-
logic benefit by helping to accommodate the graft.

B-cell depletion with the lytic chimeric mouse–
human anti-CD20 antibody rituximab is used in-
creasingly in pediatric kidney-transplant recipi-
ents.66 Data have shown full recovery of the B-cell 
pool 15 months after rituximab treatment in 
children, whereas recovery began only at 24 months 
in adults and was never complete.67 Reemerging 
B cells appeared to be naive, immature, and more 
regulatory in children than in adults.66 By 3 to 
5 years after transplantation, new antibodies di-
rected against HLA antigens developed in 25% of 
children,68 as compared with only 10% of adults.69

Identification of relatively noninvasive biomark-
ers of acute rejection that might replace transplant 
biopsy is important. PCR-based panels of candidate 
markers such as interferon-inducible protein 10 and 
forkhead box P3 from urine have been tested.70,71 
Recently, several of these markers have been 
validated for acute rejection in adult kidney-
transplant recipients, although BK virus infec-
tion also elevates these markers.70 A PCR-based 
five-gene panel was tested in pediatric kidney-
transplant recipients and validated as highly sen-
sitive for the prediction of acute rejection.72 The 
panels in these two studies70,72 have no markers 
in common with each other or with the AlloMap 
panel73 used to predict acute rejection in cardiac-
transplant recipients, raising the question of 
whether the mechanisms of acute rejection are 
fundamentally different in different organ sys-
tems or patient populations or are influenced by 
differences in immunosuppression protocols.

FU T UR E THER A PEU TIC 
DE V EL OPMEN T S

Inducing tolerance to a kidney allograft (tolero-
genic strategies) holds the promise of immuno-
suppressive-free management. Different tolerogenic 
strategies have been explored primarily in the 
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preclinical setting but could have important ben-
efits for children. For example, a phase 3 study of 
belatacept-based immunosuppression regimens 
versus cyclosporine in renal-transplant recipi-
ents (Belatacept Evaluation of Nephroprotection 
and Efficacy as First-line Immunosuppression 
Trial [BENEFIT]) showed a better average glo-
merular filtration rate at month 60 in the be-
latacept group than in the cyclosporine group.74 
Belatacept, a selective T-cell (lymphocyte) co-
stimulation blocker, is being studied cautiously 
in children owing to concern about the risk of 
PTLD. Abatacept, another selective costimula-
tory agent, may have positive effects beyond the 
potential for tolerogenicity, because it has de-
creased proteinuria in kidney-transplant recipi-
ents with recurrent focal segmental glomerulo-
sclerosis.75

Treatment with stem cells and Tregs, which is 
being studied in adult kidney-transplant recipi-
ents, may become feasible for pediatric recipients 
as well.76 Mesenchymal stem cells are poorly im-
munogenic bone marrow–derived stem cells that 
inhibit T-cell proliferation and induce Tregs.77 
A recent study evaluated mesenchymal stem cells 
as an alternative to antibody induction therapy 

in adult kidney-transplant recipients.78 However, 
mesenchymal stem cells have triggered concerns, 
given their oncogenic potential.79

SUMM A R Y

Transplantation in children with kidney failure 
once presented many technical, immunologic, 
and logistic problems that led to worse patient 
and allograft survival, as compared with adults. 
Advances in all these areas and the development 
of pediatric-trial groups have resulted in dramat-
ic improvements, such that young children now 
have the best long-term graft survival among all 
age groups, including adults.
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