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Abstract

Cone-rod homeobox (CRX) protein is a ‘‘paired-like’’ homeodomain transcription factor that is essential for regulating rod
and cone photoreceptor transcription. Mutations in human CRX are associated with the dominant retinopathies Retinitis
Pigmentosa (RP), Cone-Rod Dystrophy (CoRD) and Leber Congenital Amaurosis (LCA), with variable severity. Heterozygous
Crx Knock-Out (KO) mice (‘‘+/2’’) have normal vision as adults and fail to model the dominant human disease. To investigate
how different mutant CRX proteins produce distinct disease pathologies, we generated two Crx Knock-IN (K-IN) mouse
models: CrxE168d2 (‘‘E168d2’’) and CrxR90W (‘‘R90W’’). E168d2 mice carry a frameshift mutation in the CRX activation domain,
Glu168del2, which is associated with severe dominant CoRD or LCA in humans. R90W mice carry a substitution mutation in
the CRX homeodomain, Arg90Trp, which is associated with dominant mild late-onset CoRD and recessive LCA. As seen in
human patients, heterozygous E168d2 (‘‘E168d2/+’’) but not R90W (‘‘R90W/+’’) mice show severely impaired retinal function,
while mice homozygous for either mutation are blind and undergo rapid photoreceptor degeneration. E168d2/+ mice also
display abnormal rod/cone morphology, greater impairment of CRX target gene expression than R90W/+ or +/2 mice, and
undergo progressive photoreceptor degeneration. Surprisingly, E168d2/+ mice express more mutant CRX protein than wild-
type CRX. E168d2neo/+, a subline of E168d2 with reduced mutant allele expression, displays a much milder retinal
phenotype, demonstrating the impact of Crx expression level on disease severity. Both CRX[E168d2] and CRX[R90W] proteins
fail to activate transcription in vitro, but CRX[E168d2] interferes more strongly with the function of wild type (WT) CRX,
supporting an antimorphic mechanism. E168d2 and R90W are mechanistically distinct mouse models for CRX-associated
disease that will allow the elucidation of molecular mechanisms and testing of novel therapeutic approaches for different
forms of CRX-associated disease.
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Introduction

CRX (Accession: AAH53672.1) is an Otd/OTX-like ‘paired’

homeodomain transcription factor that is preferentially expressed

in vertebrate rod and cone photoreceptor cells in the retina and

pinealocytes in the brain [1,2]. CRX plays an essential role in the

development and maintenance of functional mammalian rod and

cone photoreceptors [3]. Previous studies show that CRX acts as a

transcriptional activator [1][4–6] by interacting with co-activators,

promoting histone acetylation at target gene promoters [7][8] and

mediating enhancer/promoter intrachromosomal looping interac-

tions [9] of target photoreceptor genes. Crx encodes a 299 amino

acid protein that contains a homeodomain (HD) near its N-

terminus that is responsible for DNA binding (Figure 1A) [1][10].

The HD is followed by glutamine rich (Gln), basic, WSP and

OTX-tail motifs. The C terminal region of CRX (from the basic to

the OTX-tail domains) is required for transactivation activity [4].

CRX interacts with transcription co-regulators including the rod-

specific transcription factors NRL (Accession: NP_006168.1)

[11][12], NR2E3 (Accession: AAH41421.1) [13][14], and general

co-activator proteins GCN5, CBP and p300 (Accessions:

AAC50641.1, AAC17736.1, NP_001420.2, respectively) [7] to

coordinately control photoreceptor gene expression. In the

homozygous Crx Knock-Out mouse (‘‘2/2’’), photoreceptors fail

to form outer segments (OS), a highly specialized photoreceptor

organelle which contains visual pigment opsins and other proteins

required for phototransduction [15][16]. As a result, 2/2

photoreceptors do not function [3], form abnormal synapses

[17], and undergo progressive degeneration [3]. Gene expression

profile studies showed that 2/2 mice have severely reduced
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expression of many photoreceptor specific genes [18–20]. Most of

these genes are direct CRX targets as detected by ChIP-seq

analyses of the genomic CRX binding profile in the mouse retina

[21].

Mutations in human CRX (NCBI Reference Sequence:

NG_008605.1) have been associated with autosomal dominant

forms of the retinal degenerative diseases Retinitis Pigmentosa

(adRP), Cone-Rod Dystrophy (adCoRD) and Leber Congenital

Amaurosis (adLCA), with different ages of onset and severity

[12][22–45]. CRX is the only gene associated with all three

diseases [22][23][26][43], demonstrating its central role in rod and

cone integrity. However, null mutations in CRX may not be

responsible for severe dominant disease. A null mutation in CRX,

P9ins1, was associated with LCA in a heterozygous patient but the

patient’s father, a carrier of P9ins1, had a normal ocular phenotype

suggesting either recessive or multigenic inheritance [44]. The

heterozygous Knock-Out mouse (‘‘+/2’’), also shows only a slight

delay in photoreceptor development and fails to model severe

forms of dominant human disease [3]. The phenotypes of the

human heterozygous null mutation and the +/2 mouse pheno-

type suggest that haploinsufficiency is unlikely to underlie the

severe forms of dominant CRX-associated disease.

Dominant disease-causing human CRX mutations primarily

fall into two classes (Figure 1A): frameshift mutations (blue text)

mostly in the transactivation domains and amino acid substi-

tution mutations (black text) mostly within the DNA binding

Figure 1. Generation of mechanistically distinct Knock-IN (K-IN) mouse lines for CRX-associated disease: E168d2, E168d2neo, R90W and
R90Wneo. A. Diagram of CRX protein showing regions associated with DNA binding (green box) and transactivation (orange box) and mutations
associated with human retinopathies. These mutations mainly fall into two classes: frameshift deletions and insertions in the transactivation region
(blue text) and amino acid substitutions within the DNA binding region (black text). Two mutations (marked by red box) were selected for generating
knock-in mouse models: E168d2 was predicted to generate a truncated protein that interferes with wild-type CRX function; R90W was predicted to
generate a protein with reduced ability to bind DNA. B. Diagram of mouse Crx locus showing gene structure and strategy for generating Crx E168d2
and R90W K-IN lines. E168d2neo and R90Wneo each carry the indicated targeting construct containing loxP-flanked Neo cassette in Intron 3–4 as a
selection marker. The final E168d2 and R90W lines were generated from the respective ‘Neo+’ sublines by Sox2-Cre-mediated excision in germline. C.
Germline transmission of K-IN constructs was confirmed by Sanger sequencing of genomic DNA from homozygous E168d2/d2, R90W/W and WT mice
and aligned to genomic mCrx. Shaded ‘N’ in the grey boxes indicate fully conserved sequences, unshaded ‘N’ denote deletions, and letters indicate
base pair substitutions. Gene position (above alignment), consensus sequence (below alignment) and translated amino acid sequence are shown.
Amino acid changes in E168d2 and R90W are shown in red text with ‘*’ indicating the novel stop codon in E168d2. Further generations of E168d2 and
R90W mice were genotyped by allele specific PCR amplification of genomic DNA (Figure S1).
doi:10.1371/journal.pgen.1004111.g001

Author Summary

The transcription factor Cone-Rod Homeobox (CRX) plays a
central role in regulating gene expression of rod and cone
photoreceptors, the primary light sensing cells of the
retina. Mutations in the human CRX gene have been
associated with the retinal degeneration diseases Retinitis
Pigmentosa (RP), Cone-Rod Dystrophy (CoRD) and Leber
Congential Amaurosis (LCA). These diseases cause pro-
gressive and permanent loss of vision, vary widely in age of
onset and severity, and are currently untreatable. To
understand how mutations in CRX cause distinct forms of
retinal disease, we have genetically engineered mice to
carry human disease-causing mutations in their Crx gene.
These mouse lines accurately recapitulate distinct forms of
CRX-associated disease, demonstrating that different
classes of CRX mutations are responsible for phenotype
variability in humans. We have characterized the pathol-
ogy of these mice and identified critical mechanisms of
disease. In addition, we have discovered that modifying
the level of mutant protein had a dramatic effect on
disease pathology in one mutant model, suggesting that
targeted therapy against the mutant CRX could be an
effective treatment strategy. These mouse models will
allow for the testing of novel therapeutic strategies for
retinal diseases caused by CRX mutations.

Mouse Models for CRX-Disease
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homeodomain. Both classes are expected to produce mutant forms

of CRX protein that are pathogenic. Truncated CRX proteins

resulting from the frameshift mutations E168d1, E168d2, A196d4

and G217d1 lost the ability to transactivate the promoter of

Rhodopsin (Rho) in HEK293 cell transient transfection assays, but

are expected to bind DNA normally since CRX 1–107, a complete

activation domain truncation mutant, retained CRX target

binding activity [4]. It was predicted that these truncated mutant

proteins could interfere with the function of WT CRX by an

antimorphic mechanism and cause a severe dominant retinal

phenotype. Supporting this hypothesis, E168d1, E168d2, G217d1

and several other truncation mutations were linked to early onset

(0–20 years) severe adCoRD/adLCA [22–33][36–40] and A196d4

was associated with adult onset adCoRD [42] . Furthermore,

rescue experiments of the otduvi phenotype in Drosophila demon-

strate the CRX truncation mutation I138fs48 possessed dominant-

negative activity on target gene expression [46], providing

experimental evidence for an antimorphic mechanism for this

class of CRX mutations.

Four substitution mutations in the homeodomain: R41W, R41Q,

R90W [11][45][47], and K88N [12], also reduced the ability of

CRX to bind to and transactivate the Rhodopsin promoter. R41Q

and R90W both reduced CRX:NRL protein interaction [11],

while K88N additionally interfered with basal NRL-mediated

transcription [12]. R41W, R41Q, and R90W were predicted to

represent hypomorphic alleles associated with either recessive or

less severe dominant forms of disease, while K88N was predicted to

possess antimorphic activity on NRL function causing a stronger

phenotype. Supporting this hypothesis, R41W, R41Q, R90W and

several other substitution mutations were associated with late onset

(,40–60 years old) adCoRD [22][23][33][36][42][45], while

K88N was associated with adLCA [12]. A patient homozygous for

R90W was also diagnosed with autosomal recessive LCA [45]. In

contrast, four other substitution mutations E80A [22][23][33][39],

A56T [31], A158T and V242M [42] did not lose DNA binding or

transactivating activity [47] and were associated with early onset

adCoRD/LCA. In vivo rescue experiments in Drosophila also

demonstrate that E80A but not R90W or K88N possesses some

dominant-negative activity on Rh5 expression [46]. Collectively

these experiments support our hypothesis that substitution

mutations may cause disease through several distinct mechanisms.

Currently, there is no treatment strategy for CRX-associated

diseases. Establishing animal models that accurately recapitulate

different disease mechanisms is critical for developing and testing

novel therapeutic approaches. Here we report the generation of

two mechanistically distinct Knock-IN (K-IN) mouse models, each

carrying a different class of CRX mutation, and present a detailed

morphological, functional and biochemical characterization of

these mouse models. The frameshift mutation E168d2 produces a

severe dominant phenotype through an antimorphic mechanism,

while the substitution mutation R90W produces a very mild late-

onset ‘CoRD-like’ phenotype in heterozygotes and ‘LCA’-like

disease in homozygotes. Furthermore, the expression level of a

mutant allele can dramatically affect the disease phenotype,

providing insight into potential treatment strategies.

Results

Generation of Crx E168d2 and R90W K-IN mutant mouse
models

In this study, we have generated two Crx K-IN mouse lines, each

carrying a human disease-causing mutation in the mouse allele

(Accession: NM_007770.4). CrxE168d2 (‘‘E168d2’’) mice carry a

2-bp deletion mutation, Glu168del2, which resulted in a codon

frameshift and early truncation of the transactivation domains of

CRX protein (Figure 1A–C). CrxR90W (‘‘R90W’’) mice carry

Arg90Trp, an amino acid substitution mutation in the homeodo-

main of CRX (Figure 1A–C). An intermediate subline of each

(‘‘E168d2neo’’ and ‘‘R90Wneo’’) carrying a neomycin (neo) cassette in

intron 3–4 was also maintained (Figure 1B), since the neo cassette

specifically reduced the expression of the mutant allele (Figure 2).

The neo was removed from the germline by crossing E168d2neo and

R90Wneo mice to the Sox2-Cre mouse [48] to generate the final

E168d2 and R90W mouse lines (Figure 1B). Successful K-IN was

confirmed by PCR amplification of neo (Primer set: Neo F/R) and

the respective Crx allele (Table S1, Figure S1) and Sanger

sequencing of homozygous mice (Figure 1C).

Mutant CRX is overexpressed in E168d2 but not R90W
mice

To determine if E168d2 and R90W K-IN mice properly express

their respective CRX proteins, immunofluorescence (IF) staining

for CRX was performed on paraffin-embedded retinal sagittal

sections of P10 mice (Figure 2). The mouse monoclonal CRX

antibody M02 (Abnova) used recognizes WT (Accession:

NP_031796.1) and both mutant forms of CRX. Slides were

immunostained in the same batch and imaged using a common

exposure. As reported previously [13][19][49], CRX staining in

WT retina (Figure 2A) was predominantly localized to the outer

nuclear layer (ONL), comprised of the rod and cone photoreceptor

cell bodies. Less intense CRX staining was also seen in the outer

portion of the inner nuclear layer (INL), which is comprised of

bipolar and horizontal cell bodies. E168d2 homozygous (‘‘E168d2/

d2’’) and heterozygous (‘‘E168d2/+’’) mouse retinas showed higher

intensity CRX staining than WT, especially in the ONL

(Figure 2B&C). The heterozygous E168d2neo (‘‘E168d2neo/+’’)

retina on the other hand showed similar intensity CRX staining as

WT retina (Figure 2D vs 2A). In contrast, CRX staining in the

ONL of R90W homozygous (‘‘R90W/W’’) and heterozygous

(‘‘R90W/+’’) mouse retinas was reduced compared to WT retinas,

although a few cells expressing high levels of CRX are scattered

across the ONL (Figure 2E&F). This mosaic pattern of variable

CRX expression was not seen in WT retinas. Crx Knock-Out (‘‘2/2

’’) retinas didn’t show CRX reactivity in the ONL and served as

negative controls (Figure 2G). The positive CRX staining in

E168d2/d2 and R90W/W retinas suggests that the CRX[E168d2]

and CRX[R90W] mutant proteins were expressed in the appropri-

ate cell layers.

The expression levels of WT CRX and mutant CRX[E168d2],

CRX[R90W] proteins were compared and quantified in P10

E168d2 and R90W K-IN retinas using quantitative Western blots

assayed with the polyclonal CRX 119b-1 antibody [7], which also

recognized all forms of CRX proteins assayed. WT retina extracts

showed a ,37 kD band (Figure 2H, Lane 1). In contrast, a

,27 kD dublet CRX band was detected in E168d2/d2 (Lane 2)

and homozygous E168d2neo (‘‘E168d2neo/d2neo’’) (Lane 3) retinas,

suggesting that the CRX[E168d2] protein was a truncated CRX

protein as predicted by Sanger sequencing and genomic alignment

(Figure 1C). Furthermore, the band intensities suggest that the

amount of CRX[E168d2] protein in mutant retinas is higher than

that of the full-length CRX in WT retinas (Figure 2H, Lanes 2&3

vs. Lane 1). Quantification of CRX protein levels (Figure 2I)

revealed a significant genotype difference (p = 0.0002) overall.

E168d2/d2 retinas made twice as much total CRX protein as WT

retinas, while E168d2neo/d2neo retinas produce similar amounts of

CRX protein as WT retinas.

Heterozygous E168d2/+ (Figure 2H, Lane 4) and E168d2neo/+
(Lane 5) mice expressed both full-length WT CRX and truncated

Mouse Models for CRX-Disease
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CRX[E168d2] protein but in different ratios. Quantification of

CRX protein in E168d2/+ retinal extracts (Figure 2I) revealed that

the full-length WT CRX protein was present at approximately

half of the level in WT retinas, but the level of CRX[E168d2] protein

was more than twice that of the WT CRX. As a result, the total

CRX protein level in these retinas was significantly increased by 2-

fold compared to normal retinas. E168d2neo/+ retinal extracts also

expressed WT CRX at approximately half WT levels but

expressed less CRX[E168d2] protein than E168d2/+ retinas

(Figure 2H, Lane 5 vs. 1&4, Figure 2I). As a result, the total

CRX level in E168d2neo/+ was comparable to the WT control

levels. These results are consistent with immunostaining results

shown in Figure 2B–D and suggest that the E168d2 allele

overproduces mutant protein, which was prevented by the

presence of the neo cassette in E168d2neo.

CRX expression patterns in R90W mice differed from E168d2.

In P10 R90W/W retinal extracts (Figure 2H, Lane 6; Figure 2I),

CRX[R90W] was not significantly different from CRX in WT

retinal extracts (Figure 2H, Lane 1; Figure 2I), while levels were

reduced in R90Wneo/Wneo retinas (Figure 2H, Lane 7; Figure 2I).

R90W/+ retinas (Figure 2H, Lane 8; Figure 2I) had normal total

CRX protein levels compared to WT mice, although it was not

possible to distinguish the quantity of WT CRX vs. CRX[R90W].

As seen with the E168d2 allele, the presence of the neo cassette

reduced total CRX protein levels in R90Wneo/Wneo and

R90Wneo/+ retinas, compared to corresponding R90W retinas

(Figure 2H, Lane 7 vs. 6, Lane 9 vs. 8; Figure 2I). Thus, the

presence of the neo cassette similarly affected the expression of both

K-IN alleles.

To investigate whether the changes observed in CRX protein

levels correlate with altered Crx mRNA transcription, Crx mRNA

levels were determined by quantitative real-time reverse transcrip-

tase PCR (qRT-PCR) (Figure 2J). Specific PCR primer pairs were

used that selectively amplified sequences from either WT or total

(WT+mutant) Crx cDNA (Primer sets: Crx E168WT F/R and Crx

R90WT F/R; Table S1). Primer specificity was validated by

amplification of WT, E168d2/d2 and R90W/W retinal cDNA

preparations. The results show that E168d2/d2 retinas made twice

as much total Crx mRNA as WT retinas, consistent with the

elevated CRX protein levels in E168d2/d2. Total Crx mRNA

levels in E168d2neo/d2neo retinas were lower than E168d2/d2

levels (FDR p = 0.07) but remained elevated relative to the WT

(p,0.05) retinas, in contrast to the normal total CRX protein

levels observed in these retinas.

E168d2/+ mice also showed moderately elevated total Crx

mRNA levels (Figure 2J). Similar to protein levels, E168d2 mRNA

levels (deduced from Total - WT) were much higher than WT

levels (,2:1 ratio). By comparison, E168d2neo/+ mice expressed

slightly elevated levels of total Crx mRNA that were lower than

E168d2/+. WT and E168d2 alleles were evenly expressed in these

retinas. These results are consistent with the differences in CRX

protein levels, supporting an RNA-based mechanism for

CRX[E168d2] overexpression, which was partially reversed in

E168d2neo/+ mice.

R90W mice showed a distinct pattern of mRNA expression

compared to E168d2. R90W/W retinas had normal Crx mRNA

levels (Figure 2I), in contrast to their reduced CRX protein levels.

This suggests a post-transcriptional mechanism either in the

Figure 2. Differential expression of mutant CRX protein/RNA in K-IN mouse retinas. A–G. Paraffin embedded sagittal sections of P10
mouse retinas were stained with the mouse monoclonal CRX M02 antibody (Abnova) and imaged by fluorescent microscopy. ONL-outer nuclear
layer, INL-inner nuclear layer, GCL-ganglion cell layer. H. SDS-PAGE and Western blot analyses of CRX proteins made by the indicated mouse strains at
P10, using the rabbit polyclonal CRX 119b-1 (a-CRX) antibody [7] and mouse monoclonal anti-b-ACTIN (a-BACT, Sigma-Aldrich). Positive bands
correlating with the ,37 kD full-length CRX and ,27 kD truncated CRX[E168d2] are visible. Lanes are numbered for reference (below). I. CRX protein
levels were quantified by measuring the intensities of the CRX[E168d2] and full-length bands normalized to the b-ACTIN control using LI-COR Odyssey
Image Studio software. The results are presented as fold changes (FC) relative to full-length CRX level in WT retina. (*p#0.05) J. Crx mRNA levels were
determined by quantitative real-time PCR using allele specific PCR primer pairs. Separate primer pairs were used to amplify WT Crx alone and total Crx
(WT+mutant) in E168d2 and R90W mice (see Materials and Methods). The results are presented as FC relative to WT retina. (*p#0.05).
doi:10.1371/journal.pgen.1004111.g002

Mouse Models for CRX-Disease
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production or degradation of CRX[R90W] protein is likely

responsible. Crx mRNA levels in R90Wneo/R90Wneo mice were

substantially reduced in comparison to WT (p,0.05) and R90W/

R90W mice (FDR p = 0.07). The R90W/+ and R90Wneo/+ mice

showed essentially normal levels of total Crx mRNA, contributed

either by both alleles equally (in R90W/+) or the WT allele

predominantly (in R90Wneo/+). Together, our results suggest that

E168d2 and R90W mRNA and corresponding proteins are

produced in K-IN mouse retinas, but expression levels are

differentially regulated. The mechanism of differential expression

appears to be determined by features intrinsic to each mutant

allele.

Homozygous E168d2 and R90W mice undergo rapid
photoreceptor degeneration and are blind

To determine the effect of E168d2 and R90W mutations on

retinal morphology, paraffin embedded retinal sections from

E168d2/d2 and R90W/W mice at P14, 1 month (mo) and 3 mo

were stained with hematoxylin and eosin (H&E), imaged by light

microscopy and compared to sections from WT and 2/2 mice

[3][17]. Cell specification in WT retina is complete by P14 and

three distinct neuronal layers are present: the ONL, INL and the

ganglion cell layer (GCL) (Figure 3A). At P14 E168d2/d2, R90W/

W and 2/2 retinas all had established normal cellular lamination

(Figure 3B–D). Quantitative morphometric measures across the

sagittal plane of the retina presented by ‘spider graphs’ (Figure 3M)

did not show a genotype*distance interaction (the statistical

threshold required to make individual comparisons when analyz-

ing data with two-way ANOVA) (p = 0.15) at P14. These results

support previous finding that CRX is not required for retinal cell

fate specification [3], including rod photoreceptors, which

constitute the majority of cells in the ONL. However, unlike

WT retinas none of the mutant ONL cells had begun to form OS’s

at this age (Figure 3B, C, D vs. A). This OS defect persisted

through 1–3 mo when OS’s were fully formed in WT retina

(Figure 3F, G, H vs. E; J, K, L vs. I). By 1 mo, loss of ONL nuclei

was evident in all mutant retinas (Figure 3F–H). In comparison to

the ,12 rows of ONL nuclei seen in WT retinas, E168d2/d2 had

only ,3–4 rows, and R90W/W and 2/2 had ,7–9 rows

(Figure 3F, G, H vs. E). Quantification of ONL thickness shows

photoreceptor degeneration occurred evenly across the sagittal

plane of all mutant retinas (Figure 3N, red, green & blue lines vs.

black). While R90W/W and 2/2 mice had similarly reduced

ONL thickness (green and blue line, respectively), E168d2/d2

retinas showed greater ONL thinning at 1 mo (red line vs. green &

blue), suggesting that degeneration was accelerated in these

retinas. At 3 mo, all models exhibited greatly reduced ONL

thickness (Figure 3O) with only ,2–3 rows of ONL cells

remaining (Figure 3J, K, L vs. I), suggesting ONL degeneration

is progressive and extensive in all homozygous mutant mice.

To determine if ONL thinning is mediated by programmed cell

death, ‘‘terminal deoxynucleotidyl transferase dUTP nick end

labeling’’ (TUNEL) analysis was performed on P21 and P35

sagittal retinal sections (Figure S2). At P21 (Figure S2A–E),

E168d2/d2, R90W/W and 2/2 mice all had significantly

increased TUNEL+ cells present, almost exclusively in the ONL,

E168d2/d2 exhibited the highest number of TUNEL+ cells (,34

fold over WT). At P35 (Figure S2F–J), TUNEL+ cells remained

elevated in the ONL of all mutant models but E168d2/d2 mice

showed fewer TUNEL+ cells compared to R90W/W and 2/2

mice. There was no increase in TUNEL+ cells in other retinal

layers of any of the mutant mice. These timecourse analyses

suggest that the peak of ONL degeneration is earlier in E168d2/d2

mice compared to R90W/W and 2/2 mice, corresponding with

the earlier ONL thinning observed in morphometric analyses.

To assess the consequence of these morphological changes on

retinal function, electroretinograms (ERG) were performed under

various light intensities on WT, E168d2/d2 and R90W/W mice at

1 month of age [50]. E168d2/d2 and R90W/W mice did not show

any detectable dark-adapted or light-adapted responses (Figure

S3). These results suggest E168d2/d2 and R90W/W mice are

blind at young ages, similar to the phenotype reported for 2/2

mice [3]. The functional deficits of rod and cone photoreceptors in

E168d2/d2 and R90W/W mice are consistent with the necessity of

photoreceptor OS’s for phototransduction [15][16] and suggest

defective development of photoreceptor function in the homozy-

gous mutant mice, similar to deficits in retinal function in LCA

patients.

In spite of reduced Crx expression levels, homozygous mice from

the sublines of each strain that carry a neo cassette (E168d2neo/

d2neo, R90Wneo/Wneo) displayed retinal morphology and function

(data not shown) that was indistinguishable from the respective neo-

deleted line. Thus, in homozygous mice lacking WT alleles, the

onset and rate of photoreceptor degeneration was not greatly

affected by mutant protein expression level.

Heterozygous E168d2/+ mice, but not R90W/+, develop
progressive rod dystrophy

To determine the inheritance of E168d2 and R90W-associated

phenotypes, retinal morphology of heterozygous E168d2/+,

E168d2neo/+ and R90W/+ mice was assessed by histology and

morphometry. Paraffin embedded sagittal retina sections of

heterozygous mutant mice at P14, 1 mo, 3 mo and 6 mo were

stained with H&E, imaged by light microscopy and compared to

WT sections (Figure 4A–P). At P14, all retinas of heterozygous

mutant mice displayed normal cellular lamination (Figure 4B–D

vs. A). However, morphometric measurements of the ONL

thickness showed that E168d2/+ had increased thickness at the

two points most proximal to the optic nerve head (ON) (Figure 4Q,

colored lines vs. black). E168d2/+ retinas also showed shortened

rod OS’s compared to WT (Figure 4B vs. A). The OS defect in

E168d2/+ retinas remained at 1 mo (Figure 4F vs. E), 3 mo

(Figure 4J vs. I) and 6 mo (Figure 4N vs. M). At 1 mo and 3 mo

(Figure 4E–L, R–S), morphometric measurements of ONL

thickness did not identify a significant genotype*distance interac-

tion overall, therefore differences at each distance were not tested.

However, at 3 mo, E168d2/+ had fewer rows of ONL cells ,6–8

and had reduced mean ONL thickness at each distance. By 6 mo,

most of E168d2/+ ONL cells had degenerated with only ,2–3

rows of nuclei remaining (Figure 4N vs. M; Figure 4T, red vs.

black line). By morphometric analyses, E168d2/+ exhibited

reduced ONL thickness at all distances. These results suggest that

E168d2/+ retinas undergo progressive rod photoreceptor degen-

eration through 6 mo of age. Consistent with this observation,

TUNEL analysis showed at P35 E168d2/+ mice had 15-fold more

TUNEL+ cells than WT all of which were located in the ONL

(Figure S2L vs. K; Figure S2O), consistent with the observed

photoreceptor degeneration phenotype. These results suggest that

the E168d2 mutation causes dominant rod photoreceptor mor-

phological defects and degeneration.

To determine if mice expressing lower levels of CRX[E168d2]

protein have a less severe retinal phenotype, the morphology of

E168d2neo/+ retinas was compared with that of E168d2/+ retinas.

At P14, similar to E168d2/+ (Figure 4B), the OS’s of E168d2neo/+
mice appeared shorter than in WT mice (Figure 4C vs. A).

However, unlike E168d2/+, E168d2neo/+ formed fully elongated

outer segments by 1 mo (Figure 4G vs. F), which were well

Mouse Models for CRX-Disease
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maintained at 3 mo (Figure 4K vs. J) and 6 mo (Figure 4O vs. M).

These results suggest that, despite a delay in maturation,

E168d2neo/+ mice had less disrupted rod photoreceptor structure

than E168d2/+. Furthermore, E168d2neo/+ did not show signif-

icant thinning of the ONL through 6 mo (Figure 4S&T, blue vs.

black line) or elevated TUNEL+ cells compared to WT (Figure

S2M vs. K; Figure S2O). Overall, the rod photoreceptor

phenotype of E168d2neo/+ mice is mild compared to E168d2/+
mice, suggesting that E168d2 disease severity was influenced by

the expression level of the mutant allele in heterozygous mice,

consistent with E168d2 being an antimorphic mutation.

To further reveal morphological defects in E168d2 photore-

ceptors at the ultra-structural level, transmission electron

microscopy (TEM) imaging analyses were performed on the

retinas of P21 E168d2/+, E168d2neo/+ and WT mice

(Figure 4U–W; Figure S4). Images were randomly coded for

blinded data analysis. Compared to the morphology of WT

OS’s (Figure 4U), E168d2/+ mice (Figure 4V) exhibited

severely shortened and disordered OS’s including the presence

of ‘wave-like’ disc patterns (white ‘*’s), ectopic vesicle formation

(white ‘+’s), and improper stacking of OS discs including

vertically oriented discs (white triangles). OS morphology was

largely normal in E168d2neo/+ mice (Figure 4W); although

minor ‘wave-like’ disc patterns and ectopic vesicle formation

were occasionally seen.

Rod nuclei in P21 WT retina adopt a characteristic nuclear

architecture with large areas of highly electron dense heterochro-

matin in the center and smaller regions of translucent euchromatin

in the nuclear periphery [51] (Figure S4A&D). The chromatin

pattern of E168d2/+ rods, however, appeared less condensed than

WT (Figure S4B&E vs. A&D). This did not occur in E168d2neo/+
mice (Figure S4C&F vs. A&D). To quantify these changes, the

percentage of the nuclear area comprised of condensed hetero-

chromatin was measured in randomly selected WT, E168d2/+ and

E168d2neo/+ rod nuclei. Figure S4G shows that the mean area of

heterochromatin in E168d2/+ rods was significantly reduced by

8% compared to WT. This reduction in rod heterochromatin

territory was not seen in E168d2neo/+ mice, suggesting more

normal rod nuclear architecture. In addition, photoreceptor

degeneration in E168d2/+ and E168d2neo/+ mice was evidenced

by the presence of highly electron dense nuclei corresponding to

pyknotic photoreceptor cells undergoing cell death, which were

not observed in WT retinas (Figure S4E&F vs. G, white pentagon).

Unlike E168d2/+, R90W/+ mice had normal retinal morphol-

ogy at all ages (Figure 4D, H, L&P), comparable to +/2 mice [3].

They formed and maintained full-length OS’s and normal ONL

thickness (Figure 4H, L&P) through 6 mo of age. No increase in

TUNEL+ cells over WT was detected (Figure S2N&O). These

results suggest rod photoreceptor development and maintenance

are normal in R90W/+ mice. This is consistent with clinical

Figure 3. Homozygous E168d2/d2 and R90W/W mice develop ‘LCA’-like retinopathy. A–L. H&E staining of paraffin embedded sagittal
retinal sections for E168d2/d2, R90W/W and 2/2 mice at P14, 1 mo and 3 mo and imaged by light microscopy, showing the lack of photoreceptor
outer segments (OS) and loss of ONL cells with age. M–O. Reduction of ONL thickness in mutant retina at each age was quantified using ‘spider
graph’ morphometry. Significant differences in overall ONL thickness were determined by testing genotype*distance interactions (by two-way
ANOVA) at 1 mo (p = 0.002) and 3 mo (p = 0.0001), followed by individual comparisons to WT: *p,0.05. INF-inferior retina, SUP-superior retina.
doi:10.1371/journal.pgen.1004111.g003
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Figure 4. Heterozygous E168d2//+ mice, but not R90W//+, develop dominant retinopathy. A–P. Retinal morphology of the indicated
heterozygous mutant mice was assessed by H&E staining of paraffin embedded sagittal sections at P14, 1 mo, 3 mo, and 6 mo. Shortened
photoreceptor outer segments and ONL cell loss are apparent in E168d2/+ retina only. Q–T. ONL thickness was assessed by spider graph
morphometry at the indicated ages. E168d2/+ (red line) shows progressive thinning of the ONL through 6 mo, while it’s low expression subline,
E168d2neo/+ (blue line), and R90W/+ (green line) do not. Significant differences in overall ONL thickness were determined by testing
genotype*distance interactions (by two-way ANOVA). Significant interactions were observed at P14 (p = 0.03) and 6 mo (p = 0.03), followed by testing
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evaluations for heterozygous R90W carriers in human cases

[22][23][33][42][45].

Heterozygous E168d2/+ mice develop early-onset cone
dystrophy

Mislocalization of cone nuclei. Cone photoreceptors com-

prise only ,3% of ONL cells in mouse retina and their integrity

could not be accurately assessed by light microscopy-based

histology alone. However, cone nuclei were identified in TEM

micrographs by their distinct decondensed chromatin patterns

[51] and their nuclear position near the outer edge of the ONL

(Figure S4A, white arrows). In the retinas of P21 E168d2/+ mice,

few cone nuclei were identifiable in the ONL (Figure S4B&E). The

majority of nuclei with ‘cone-like’ decondensed chromatin were

misplaced to the inner regions of the ONL adjacent to the OPL

(Figure S4E, white arrows).

The number of identifiable cone nuclei in E168d2neo/+ mice

was greatly increased compared to E168d2/+, but nuclei were

frequently mislocalized to the middle and inner ONL (Figure S4F,

white arrows). Thus, cone formation/survival is improved in

E168d2neo/+ mice but cone nuclear localization remains abnor-

mal. Taken together, the ultra-structural analyses suggest that rod

and cone photoreceptor morphology is highly disrupted in

E168d2/+ mice, and less so in E168d2neo/+ mice.

To determine whether the scattered nuclei with decondensed

‘cone-like’ chromatin in E168d2/+ and E168d2neo/+ were

indicative of mislocalized cone nuclei, cone specific markers were

used to further assess the cell population. Paraffin-embedded

retinal sections were immunostained for cone arrestin (CARR,

Accession: Q9EQP6.1) (antibody: rabbit polyclonal a-mCARR,

Millipore), which stained the cone cell body from the inner

segment to the synaptic terminal (Figure 5A–D). Normal cones

undergo nuclear migration during development, reaching their

final position at the apical ONL by P12 [52][53]. Retinal sagittal

sections immunostained with CARR were analyzed to determine

cone nuclear position in WT and mutant retinas (Figure 5A–D).

Nuclei were assigned to three zones: Inner (IONL), Mid (MONL)

or Outer ONL (OONL) (Figure 5A). At P14, while most WT cone

nuclei were positioned in the OONL, cone nuclei in E168d2/+
were mostly (.70%) positioned in the IONL and the majority of

E168d2neo/+ cone nuclei (,70%) were mislocalized in the

MONL (Figure 5E, Figure S5A). At 1 mo, E168d2/+ cone nuclei

remained highly scattered (Figure 5B, white arrow) with less than

20% localized to OONL (Figure 5F), while most E168d2neo/+
cone nuclei (,80%) had migrated to the OONL although a

significant number (11%) remained in the MONL (Figure 5C

white arrows; Figure 5F; Figure S5B). Thus, cone nuclear

migration was largely ablated in E168d2/+ mice, while this

phenotype was less severe in E168d2neo/+ mice. In contrast, cone

nuclei localization in R90W/+ retina was mildly affected at P14

(,17% in MONL) (Figure 5E) but was normal at 1 mo of age

(Figure 5D&F).

Progressive cone degeneration. The numbers of CARR+
cones in P14 and 1 mo E168d2/+ retina sections were noticeably

reduced compared to WT retina (Figure 5B). This could have been

caused by either missing cone photoreceptors or aberrant CARR

expression. Indeed, the expression of CARR was previously shown

to be CRX-dependent [3] and was reduced in E168d2/+ and

E168d2neo/+ retinas (see below). To accurately determine the

integrity of the cone population in heterozygous mutant retinas,

another pan cone marker, peanut agglutinin conjugated to

Rhodamine (PNA, Vector labs) was used in immunofluorescence

staining of whole-mount retinas (Figure 6). Unlike CARR, PNA

reactivity was independent of CRX’s regulatory function and

marked the membrane sheath of all cones [54], thus allowing for

the accurate assessment of cone density in mutant retinas. Whole-

mount retina preparations of 1 mo and 1 year (yr) old

heterozygous K-IN mice were stained with PNA (Figure 6E–L,

blue stain). 406 fluorescent images were taken of the dorsal (D),

ventral (V), nasal/temporal (N/T) and central (C) retina

(diagrammed in Figure 6A), and cone density from each region

was determined by counting PNA+ cells. At 1 mo, total cone

density from E168d2/+ retinas over all regions was reduced by

67.761.3% (Figure 6B&C, green vs. blue bars), suggesting a cone

deficit prior to rod degeneration. Cone density in 1 yr old

E168d2/+ retinas was not determined because ONL degeneration

was already extensive by 6 mo (Figure 4N). Cone density was

preserved in E168d2neo/+ mice at 1 mo but was reduced by

39.665.3% at 1 yr (Figure 6B, red vs. blue bar in each age group).

Further comparing the cone density in different regions of

E168d2neo/+ retina showed that cone density was normal in all

regions at 1 mo (Figure 6C, red vs. blue bars) and in the ventral

retina at 1 yr of age, but was reduced in all other regions

(Figure 6D, red vs. blue bars). These results suggest that E168d2/+
mice had early cone deficits, while cones were maintained longer

in E168d2neo/+ retinas. In contrast, R90W/+ mice had normal

overall cone density through 1 yr (Figure 6B&C, purple vs. blue

bars), despite modestly reduced cone density in the central region

with age.

Malformation of M/S cone opsin gradient. Mouse cones

consist of three subtypes defined by which cone opsins they

express: OPN1MW (MOP, Accession: NP_032132.1), OPN1SW

(SOP, Accession: NP_031564.1) or both opsins. In normal mouse

retina, MOP and SOP are expressed in opposing gradients along

the dorsal-ventral axis [55]. In the dorsal retina, a high percentage

of cones express MOP, a few cones express SOP and no cones

express both. Moving towards the central and ventral retina, there

is an increase in SOP and MOP/SOP co-expressing cones [56].

The formation of the cone opsin gradient in Crx mutant retinas

was assessed by IF staining of whole-mount retinas with polyclonal

rabbit anti-red/green opsin (Millipore), polyclonal goat anti-

OPN1SW (Santa Cruz) antibodies and PNA. Fluorescence images

acquired in the regions diagrammed in Figure 6A of control WT

retinas showed the clear formation of the cone opsin gradient as

expected (Figure 6E&I).

At 1 mo, E168d2/+ mice had low levels of the cone opsins in

their outer segments and did not establish the M/S opsin gradient

properly (Figure 6F&J). This conclusion was confirmed by

quantification of the fraction of cones (PNA+) expressing MOP,

SOP, both opsins or no opsin in tested regions (Figure 6M–P).

E168d2/+ dorsal retina showed a reduction in the proportion of

cones expressing MOP only, but an increase in cones expressing

SOP or both opsins (Figure 6F&M, E168d2/+ vs. WT). In

contrast, E168d2/+ ventral retina showed a large decrease in the

percentage of MOP/SOP co-expressing cones and an increase in

cones expressing SOP only (Figure 6J&P, E168d2/+ vs. WT ).

individual comparisons to WT: *p,0.05. INF-inferior retina, SUP-superior retina. U–W. The ultra structure of rod outer segment (OS) and nuclear
morphology was assessed by transmission electron microscopy. Micrographs of rod outer segments proximal to RPE from WT control (U), E168d2/+
(V) and E168d2neo/+ mice (W). E168d2/+ OS’s are highly disorganized showing ‘wave-like’ OS membrane stacks (asterisks), vesiculated membranes ‘+’
and vertically oriented OS membranes (triangles). E168d2neo/+ OS’s only show minor ‘wave-like’ patterns and vesiculated membranes.
doi:10.1371/journal.pgen.1004111.g004
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Changes in M/S opsin patterns in central and nasal/temporal

regions were also seen in E168d2/+ mice (Figure 6N&O, E168d2/

+ vs. WT). Overall, E168d2/+ mice had a lower percentage of co-

expressing cones and failed to properly regulate opsin expression

across the dorsal-ventral axis. In addition, the levels of opsin on

individual cone outer segments were highly variable in E168d2/+
retinas, and some PNA+ cells did not have any detectable opsin

(Figure 6F&J, white arrows). These results suggest that cone opsin

expression, trafficking, or both were affected in E168d2/+ retina.

In contrast, the levels of MOP and SOP were closer to normal

in E168d2neo/+ cones but the opsin gradient remained highly

disrupted (Figure 6G&K vs. E&I). As shown in the bar graphs, the

percentage of cones co-expressing MOP/SOP was increased

dramatically in E168d2neo/+ dorsal retina (Figure 6M, E168d2neo/

+ vs. WT), while the percentage of co-expressing cones was

decreased in the central, nasal/temporal and ventral retina

(Figure 6N–P, E168d2neo/+ vs. WT). These results suggested that

in E168d2neo/+ retinas, despite having normal cone numbers at

1 mo, the cone opsin gradient was not properly established, which

may have contributed to the deficits in cone function (see below)

and long-term survival.

By comparison, R90W/+ mice showed largely normal M/S

opsin expression and gradient formation across the dorsal to

ventral retina (Figure 6H&L vs. E&I). Quantification did not

reveal any significant differences in the fraction of cones expressing

each opsin in any of the regions surveyed (Figure 6M–P, R90W/+
vs. WT ).

Taken together, assessment of the cone photoreceptor popula-

tion in mutant mice reveals that cones do not develop properly in

E168d2/+ retinas and cone defects arise earlier and are more

severe than rod defects. E168d2neo/+ retinas showed more normal

cone photoreceptor development and morphology and slower

cone degeneration than E168d2/+ retinas. However, cone subtype

specification remained disrupted in E168d2neo/+ retinas. Reduc-

tion in the number of cones in E168d2/+ and E168d2neo/+ before

rod degeneration was consistent with a ‘cone-centric’ phenotype.

In contrast, R90W/+ mice had largely normal cone morphology,

did not exhibit any significant cone subtype differences and no

changes in overall cone density through 1 yr.

Functional defects in heterozygous E168d2/+ and R90W/
+ mice

Heterozygous E168d2 mice show severe rod/cone

functional deficits. To determine if rod and cone photorecep-

tor morphological abnormalities and degeneration correspond

with impaired retinal function, ERG’s were performed on

E168d2/+, E168d2neo/+, R90W/+, and +/2 mice at 1 mo,

3 mo and 6 mo (Figure 7). First, ERG analyses were carried out

on dark-adapted animals to assess rod-driven function. The

responses to light flashes of increasing intensities were recorded,

and the amplitudes of the A-waves (arising from the hyperpolar-

ization of photoreceptors) and B-waves (arising from the activity of

the photoreceptor-driven inner retina) [50] were measured. The

results were plotted as average peak amplitudes of A and B-waves,

against serial log scale light intensities (Figure 7A, B, D, E, G&H,

black line). Next, ERGs were performed after 10 minutes of light

adaptation to measure cone-driven responses. The average peak

amplitudes of light-adapted B-waves were plotted against log scale

Figure 5. Heterozygous E168d2/+, E168d2neo/+ and R90W/+ mice display abnormal cone nuclear localization in developing and adult
retina. A–D. Sagittal retinal sections from the indicated mice at 1 mo, stained for cone arrestin (CARR) (green) and nuclear marker DAPI (blue). To
assess cone nuclear location, the ONL was arbitrarily divided into three zones, outer ONL (OONL), mid ONL (MONL) and inner ONL (IONL). A. WT cone
nuclei were found only in the OONL, while E168d2/+, E168d2neo/+ and R90W/+ had varying numbers of cones localized to IONL or MONL (B&C white
arrows). E, F. Cone nuclear position was quantified by counting the fraction of CARR+ nuclei in each ONL zone of sagittal retinal sections from P14 or
1 mo mice of the indicated genotype (*p,0.05).
doi:10.1371/journal.pgen.1004111.g005
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light intensity (Figure 7C, F&I, black line). A significant

genotype*light flash intensity interaction (by two-way ANOVA,

p,0.05) was detected at every time point for both dark and light-

adapted tests. At 1 mo, both dark-adapted A and B-waves were

detectable in E168d2/+ mice particularly in high light intensities,

but the peak amplitudes were significantly reduced compared to

WT controls (Figure 7A&B, green vs. black line), indicating

impaired ‘‘rod-driven’’ function. E168d2/+ rod function declined

further with age, as the peak amplitudes became progressively

smaller at 3 mo and 6 mo (Figure 7D, G vs. A; E, H vs. B, green

line), corresponding with rod degeneration. For illustrative

purposes, the progressive nature of rod functional deficits was

demonstrated by the mean percent reductions of dark-adapted A

and B-wave amplitudes (Table 1, E168d2/+ columns). Percent

Figure 6. Heterozygous E168d2/+, E168d2neo/+ and R90W/+ mice display distinct changes in cone density and M/S opsin gradient
formation. A. Diagram showing regions of flat-mounted retina selected for cone density image analyses. B–D. Cone density of 1 mo and 1 yr old
mice was determined by counting PNA+ cells on flat-mounted retinas in the dorsal (D), central (C), nasal/temporal (N/T) and ventral (V) regions. B.
Total cone density over all regions (*p,0.05). C–D. Cone density in each region in1 mo (C, *p,0.05) and 1 yr old (D) mice. ND-not determined. Error
bars: SEM. Note that genotype*retinal region interaction (by two-way ANOVA) was significant at 1 mo (p = 0.04) but not 1 yr (p = 0.11). E–L. Flat-
mounted retinas from 1 mo mice of the indicated genotype were stained for OPN1SW (SOP, green), red/green opsin (MOP, red) and the pan cone
marker peanut agglutinin (PNA, blue), showing sample images from the dorsal (E–H) and ventral (I–L) regions. Image scale bars: 25 mM. Unlike WT
samples (E&I), E168d2/+, (F&J) and E168d2neo/+ (G&K) samples show a small number of PNA+ cones that did not express either cone opsin (white
arrows). M–P. Fraction of cones in each region expressing SOP, MOP, both SOP/MOP or no opsin (*p,0.05).
doi:10.1371/journal.pgen.1004111.g006
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reduction for both A and B-waves increased from 1 mo to 6 mo

suggesting further deviation from WT function.

Cone-driven light-adapted B-wave peak amplitudes were barely

detectable in E168d2/+ at 1 mo (Figure 7C, green line) and all

later ages tested (Figure 7F&I, green line), corresponding with the

early reduction of cone number. The mean percent reductions in

light-adapted B-wave amplitudes were more severe than those

seen in dark-adapted A or B-wave amplitudes (Table 1, E168d2/+

columns), suggesting that cone function was more severely affected

than rod function in E168d2/+ mice.

Compared to E168d2/+, E168d2neo/+ mice show significantly

less impaired dark-adapted A and B-wave peak amplitudes for

most light intensities at all the ages tested (Figure 7A, B, D, E,

G&H, red line vs. green line). E168d2neo/+ mice only had minor

‘rod-driven’ functional deficits compared to WT mice (red line vs.

black line). These findings are summarized in Table 1. The

Figure 7. Heterozygous E168d2/+, E168d2neo/+ and R90W/+ mice have graded deficits in retinal function. A–I. Retinal function of E168d2/
+, E168d2neo/+ and R90W/+ and +/2 mice was assessed by electroretinography at 1 mo (A–C), 3 mo (D–F) and 6 mo (G–I). Average peak amplitude
responses for dark-adapted A-waves and B-waves and light-adapted B-waves are plotted against the log of the flash intensity (Log [cd*s/m2]).
Genotype*flash intensity interactions for peak amplitude (by two-way ANOVA) were significant (p,0.05) at all ages for each wave form tested.
E168d2/+ mice show severe deficits in all wave responses at each age compared to responses from either WT or E168d2neo/+ mice (green vs. black
and red line, respectively). Peak responses in E168d2neo/+ mice are higher than E168d2/+ (red vs. green line), but remain significantly decreased
compared to WT (red vs. black line) with exceptions for 6 mo dark-adapted B-waves (H). R90W/+ and +/2 mice have mostly normal retinal function
(blue or orange vs. black line) but R90W/+ have subtle significant deficits in light-adapted B-waves at 6 mo (I, blue vs. black line). (Relative to WT:
*p,0.05; relative to E168d2neo/+: *‘p,0.05, brackets indicate all enclosed data points are significant). Error bars: SEM.
doi:10.1371/journal.pgen.1004111.g007

Table 1. Percent reduction* of ERG peak amplitudes in E168d2/+ and E168d2neo/+ mice.

Dark-adapted A -waves Average:
20.02, 0.387, 0.875 Cds/m2 flashes

Dark-adapted B-waves Average:
20.02, 0.387, 0.875 Cds/m2 flashes

Light-adapted B-waves Average: 0.40,
0.88, 1.38, 1.88, 2.39, 2.82 Cds/m2 flashes

Age E168d2/+ E168d2neo/+ E168d2/+ E168d2neo/+ E168d2/+ E168d2neo/+

1 mo 73.365.3 25.961.1 68.261.6 25.665.3 72.8610.2 41.367.3

3 mo 76.465.1 25.261.2 73.162.8 26.361.8 82.464.3 46.766.3

6 mo 82.668.7 21.864.5 76.360.3 17.361.9 78.9612.9 41.465.3

*Average percent reductions were calculated based on Figure 7 data. 6STDEV.
doi:10.1371/journal.pgen.1004111.t001
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average percent reductions of the dark-adapted A and B-waves in

E168d2neo/+ mice were much less than E168d2/+ for all three

ages tested. More importantly, the minor deficits in E168d2neo/+
‘rod-driven’ function did not progress with age, consistent with

improved rod survival. Light-adapted B-waves were also signifi-

cantly more robust in E168d2neo/+ mice, compared to E168d2/+
mice (Figure 7C, F&I, red vs. green line), but remained

significantly reduced, compared to WT mice (red vs. black line).

E168d2neo/+ cone deficits were more severe than rod deficits as

shown by higher percent reductions in light-adapted B-waves than

dark-adapted B-waves (Table 1, E168d2neo/+ columns). These

defects were first detected at 1 mo and persist through 6 mo.

Thus, while E168d2/+ mice had severely impaired rod and cone

function resembling an ‘LCA’ phenotype, E168d2neo/+ mice had

‘cone-centric’ deficits in retinal function, modeling a ‘CoRD’

phenotype. The ‘cone-centric’ morphological and functional

deficits of E168d2neo/+ mice, together with the early cone deficits

in E168d2/+ mice, suggest that cones may be more sensitive than

rods to the antimorphic effect of CRX[E168d2] protein.

Heterozygous R90W mice show minor late-onset cone

functional deficits. Previous studies report subtle ERG deficits

in +/2 mice [3], but in our studies R90W/+ and +/2 mice did

not show significant ERG deficits at 1 mo or 3 mo (Figure 7A–F,

blue and orange line, respectively). At 6 mo, R90W/+ mice exhibit

minor light-adapted B-wave deficits at the 1.88, 2.39 and 2.82

cdS/m2 flash intensities (Figure 7I, blue vs. black line), while +/2

were functionally normal, suggesting late-stage cone defects in

R90W/+ mice. The difference between our studies and previous

studies on +/2 could have been due to mouse strain background,

since the original Crx KO characterization was performed on a

mixed background of 129Sv6C57BL/6 [3]. All experiments in this

paper were performed on a congenic C57BL/6J background.

Nevertheless, the R90W mutation produced only a mild late-stage

cone functional phenotype in heterozygous mice, while the E168d2

mutation in heterozygous mice caused an early-onset severe

impairment of rod and cone function that depended on the

expression level of the E168d2 allele relative to WT.

E168d2 mutation impairs target gene expression more
severely than null, while R90W mutation produces a
hypomorphic effect

Gene expression changes in homozygous mutants. To

understand the molecular mechanisms underlying the observed

morphological and functional deficits in K-IN mutant retinas, we

compared retinal transcription profiles of homozygous E168d2neo

and R90Wneo mice with WT and 2/2 controls to determine the

effects of mutant CRX protein on target gene expression. We

chose to use homozygous mice from the neo+ sublines, which

express the mutant protein at lower levels than the final lines, for

the gene profiling analyses to avoid alterations in gene expression

that could arise strictly from mutant CRX overexpression. Unlike

subline differences observed in heterozygous mutant mice,

morphological and functional characterization demonstrated that

the phenotypes of homozygous mice from neo+ and final neo-

sublines were indistinguishable. Expression profiling results were

validated by qRT-PCR for several genes in all sublines. RNA from

sex-matched pairs of P10 retinas for each genotype was reverse

transcribed into cDNA, which was hybridized onto Illumina

mouse Ref6 expression microarrays. Microarray analyses showed

a high degree of overlap of differentially expressed genes in

homozygous E168d2neo, R90Wneo and 2/2 mice (Figure 8A&B).

The complete list of differentially expressed genes is available in

Tables S2 and Table S3, and the raw datasets are available at

NCBI GEO website (http://www.ncbi.nlm.nih.gov/gds, access

number: GSE51184). For downregulated genes: 70.6% of

E168d2neo and 93.5% of R90Wneo genes were shared with 2/2

(Figure 8A). For upregulated genes: 59.8% of E168d2neo and 75%

of R90Wneo genes were shared with 2/2 (Figure 8B).

To determine which differentially expressed genes were directly

bound by CRX, datasets from chromatin immunoprecipitation

sequencing (ChIP-Seq) of WT CRX protein in WT and Nrl Knock-

Out mice [21] were compared with target genes identified by

microarray. Downregulated genes in E168d2neo, R90Wneo and 2/

2 mice showed a high correlation of direct CRX targets (76.8%

E168d2neo, 83.0% R90Wneo, 84.37% of shared genes), compared

to upregulated genes (46.7% E168d2neo, 41.7% R90Wneo, 66.7%

of shared genes) suggesting that mutation or loss of CRX is mainly

associated with reduced expression of direct CRX target genes

(Figure 8C). However, upregulated genes were more frequently

bound by CRX than binding genome-wide (22.6%), suggesting

that mutation or loss of CRX also affects expression of genes

directly repressed by CRX.

While E168d2neo, R90Wneo and 2/2 mutations affected similar

sets of genes, distinct degrees of gene expression changes were

observed. Heat map analysis showed the majority of shared

downregulated genes were more strongly reduced in E168d2neo

and 2/2 compared to R90Wneo (Figure 8D). The less reduced

expression of downregulated CRX target genes in R90Wneo mice

suggests that R90Wneo retains some weak ability to promote

transcription. E168d2neo and 2/2 had similar heat map profiles

but several key photoreceptor genes were lower in E168d2neo

including: Rho, Arr3, Ramp3, Drd4, Cpm, and Pde6c (Accessions:

NM_145383.1, NM_133205.3, NM_019511.3, NM_007878.2,

NM_027468.1, AF411063.1, respectively). The more severe

reduction in gene expression in E168d2 is consistent with its

accelerated photoreceptor degeneration compared to R90W and

2/2. It is notable that many shared downregulated genes encode

proteins in the phototransduction and visual cycle pathways

essential for establishing vision (Figure 8E), including: Opn1sw,

Opn1mw, Gnat1, Gnat2, Rcvrn, Pde6a, Pde6g, (Accessions:

NM_007538.3, NM_008106.2, NM_008140.2, NM_008141.2,

NM_009038.2, NM_146086.2, NM_012065.2, respectively) Rho,

Arr3, and Pde6c. Other downregulated genes encode proteins with

function in key cellular processes, including metabolism and

mitochondrial function, membrane stability/function, synaptic

function, intercellular transport, and transcription/translation

(Figure 8E), which likely contribute to the morphological and

functional defects. Furthermore, many downregulated genes were

associated with the human diseases RP, LCA and CoRD (Table

S4, https://sph.uth.edu/retnet/), overlapping with those reported

for CRX mutations.

To confirm graded changes in target gene expression, levels of

several key CRX target genes were validated in homozygous mice

of all mutant lines using IF staining (Figure 8F–I) and/or qRT-

PCR analyses (Figure 8J–M, Table S5, Table S6). IF staining

showed that homozygous E168d2neo retinas failed to produce

rhodopsin (RHO) in contrast to 2/2 which still made a low

amount of RHO (Figure 8G vs. I). This suggests that CRX[E168d2]

protein has an inhibitory effect on Rho expression beyond complete

loss of CRX protein. Homozygous R90Wneo retinas, on the other

hand, produced RHO at a level higher than 2/2 but much lower

than WT retinas (Figure 8H vs. F&I). Expression changes of a

number of genes in the retinas of homozygous mutants from the

neo+ and final neo- lines were validated using qRT-PCR, including

the rod gene Rho and the cone genes Arr3, Opn1sw and Opn1mw

(Figure 8J–M, Table S5). The results, presented as fold change

(FC) relative to WT, from P10 homozygous mice of the ‘low

expression’ subline and final line of each mutation were compared
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(Figure 8J–M). Rho expression was essentially abolished in both

E168d2 and E168d2neo mice. In contrast, R90W and R90Wneo

mice expressed Rho at levels slightly higher than 2/2 (Figure 8J).

These results are consistent with the microarray and IF results

described above. Expression of the cone gene Arr3 was not

detectable in E168d2 or E168d2neo mice, while residual amounts

were detected in R90W, R90Wneo and 2/2 mice (Figure 8K).

Opn1sw and Opn1mw were strongly downregulated in homozygous

mice of all models. The loss of expression of genes involved in rod/

cone phototransduction explains the loss of visual function in these

mice. Together, our results suggest that the E168d2 mutation

produced a direct antimorphic effect on photoreceptor gene

expression beyond CRX deficiency, while R90W is a hypomorph

mutation, resulting in a CRX protein with impaired residual

transcriptional regulatory function.

Gene expression changes in heterozygous mutants. To

determine if gene expression changes in heterozygous mice followed

the same trend as homozygous mutants, expression of the selected

CRX target genes, Rho, Arr3, Opn1sw and Opn1mw, was evaluated in

heterozygous mutants using IF staining of retinal sections at 1 mo of

age (Figure 9A–D) and/or qRT-PCR at P10 and P21 (Figure 9E–H,

Table S5, Table S6). IF staining for RHO at 1 mo showed that

E168d2/+ mice displayed low intensity of RHO staining, some of

which was mislocalized to the ONL (Figure 9B vs. A), suggesting

impaired RHO trafficking. This phenotype was not seen in

E168d2neo/+ and R90W/+ retinas (Figure 9C, D vs. B). qRT-PCR

analyses showed that E168d2/+ mice exhibited persistent downreg-

ulation of all genes tested in both P10 and P21, despite some degree of

recovery at P21 (Figure 9E–H, Table S5, Table S6). Expression of

these genes was also decreased in E168d2neo/+ mice, but significant

improvements were seen for Rho and Opn1mw, compared to

E168d2/+ mice. The more severe impairment of gene expression

in E168d2/+ compared to E168d2neo/+ demonstrates the dosage

effect of CRX[E168d2] mutant protein. In contrast, R90W/+ and +/2

mice exhibited reduction in the expression of some genes at P10 but

normal expression was observed at P21. The degree of expression

changes in individual mutants varied from gene to gene. These results

suggest that CRX[E168d2] mutant protein actively impaired CRX

target gene transcription in the presence of WT protein, consistent

with an antimorphic mechanism. This antimorphic effect depends on

CRX[E168d2] protein dosage and can be reduced by decreasing

CRX[E168d2] expression. In contrast, R90W/+ essentially phenocop-

ied the phenotype of +/2, suggesting that CRX[R90W] protein did

not severely interfere with the function of WT CRX in vivo, which

allowed for normal photoreceptor gene expression by P21.

CRX[E168d2] protein binds target DNA and interferes with
WT CRX function, while CRX[R90W] protein retains
marginal DNA binding and transactivating activity

To determine how mutant forms of CRX protein affect target

gene transcription, we assessed their ability to bind to DNA and

transactivate transcription. First, electrophoretic mobility shift

assays (EMSA) were used to measure DNA binding activity of

CRX WT, CRX[E168d2] and CRX[R90W] protein expressed in

HEK293 cells on the rhodopsin promoter target site BAT-1 [1]

(Figure 10A). To compare relative binding affinity, the amount of

CRX in each nuclear extract was quantified using Western blots

and equalized between transfections (Figure 10B). EMSA was then

performed on a 2-fold dilution series of nuclear extracts of each

CRX protein. Following incubation with BAT-1 probe, WT CRX

extract produced a single species of specific band shift (marked as

‘WT’) with a concentration-dependent intensity. This shifted band

represented specific binding of the indicated CRX protein to BAT-

1 CRX sites, as it is absent in the lane receiving the GFP control

extract and when the probe contains mutated CRX binding sites

(BAT-1 Mut AB). CRX[E168d2] nuclear extract also produced a

specific band shift (marked ‘E168d2’), which migrated much faster

than the full-length CRX band as expected for a truncated

protein. The intensity of the E168d2 band was comparable to the

WT full-length band at each corresponding concentration,

suggesting that CRX[E168d2] binds target sites with similar

efficiency as WT CRX, providing a basis for competition binding

to common targets. In contrast, CRX[R90W] nuclear extract

produced a faint band with the same mobility as WT (Figure 10A),

but significantly reduced intensity (,69% lower than WT).

Reduced but not abolished DNA binding activity was also

reported for bacterially expressed CRX homeodomain peptides

carrying the R90W mutation [47]. These results support the

hypothesis that CRX[E168d2] protein maintains normal DNA

binding ability, while CRX[R90W] protein has reduced DNA

binding ability.

To determine if in vitro DNA binding activity of each mutant

reflected ability to associate with target chromatin in vivo, the

association of WT CRX, CRX[E168d2] and CRX[R90W] protein

with target gene promoter regions was examined using chromatin

immunoprecipitation (ChIP) assays. ChIP was performed on P10

mouse retinas of WT, E168d2/d2, R90W/W and 2/2 mice using

the CRX 119b-1 antibody [7]. As expected, enrichment of

CRX[E168d2] protein was detected on the promoter of genes

expressed in rods (Rho, Gnat1), cones (Arr3, Opn1mw, Opn1sw) and

both rods/cones (Crx, Rbp3 (Accession: AJ294749.1)) (Figure 10C,

red bars). Despite reduced DNA binding activity in vitro,

CRX[R90W] protein was found on the promoter of all candidate

genes tested (Figure 10C, green bars). The mechanism by which

CRX[R90W], which has reduced DNA-binding ability, is recruited

to target gene chromatin in vivo remains to be determined.

However, these results are consistent with R90W’s hypomorphic

effect on target gene expression in the retina (Figure 8, Figure 9).

The ability of CRX[E168d2] and CRX[R90W] proteins to

transactivate target promoters, either alone or in combination

with WT CRX, was assessed by dual-luciferase reporter assays in

transiently transfected HEK293 cells. Consistent with a previous

Figure 8. Homozygous E168d2, R90W and 2/2 mice show graded changes in retinal gene expression. A–B. Venn diagram showing
overlap of genes that are differentially expressed at P10, as identified by Illumina gene expression mouseRef6 microarray. The number of genes in
each group is indicated. E168d2neo/d2neo, R90Wneo/Wneo and 2/2 mice show a high degree of overlap in differentially expressed genes. C.
Percentage of differentially expressed genes for each genotype that are directly bound by WT CRX protein in WT and Nrl KO retinas (based on the
published ChIP-Seq datasets [21]). For all mutant genotypes, differentially expressed genes are enriched for direct CRX targets. D. Heat map of
commonly downregulated genes in E168d2neo/d2neo, R90Wneo/Wneo and 2/2 mice show graded changes in gene expression of commonly
downregulated genes. E. Cellular processes associated with commonly downregulated genes, based on gene ontology provided by Mouse Genome
Informatics, showing a widespread effect of Crx mutations on visual and cellular pathways. F–I. P14 paraffin embedded sagittal retinal sections of WT,
E168d2neo/d2neo, R90Wneo/Wneo and 2/2 mice were stained with Rhodopsin (RHO, green) and DAPI (blue), and imaged by wide field fluorescence
at 406. Note that RHO is absent in E168d2neo/d2neo, while mislocalized to ONL in R90Wneo/Wneo and 2/2. J–M. Validation of microarray results by
qRT-PCR analyses on selected CRX target genes, Rho, Arr3, Opn1mw and Opn1sw in retinas of P10 homozygous mice from the indicated strains,
shown as FC relative to WT. (*p,0.05; Error bars: STDEV).
doi:10.1371/journal.pgen.1004111.g008
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report [47], WT CRX was able to cooperate with NRL to activate

a Rhodopsin promoter-driven luciferase reporter, BR130

(Figure 10D). However, CRX[E168d2] failed to increase transacti-

vation above NRL alone, suggesting that CRX[E168d2] was unable

to form functional interactions with transcription co-activators

despite its normal DNA binding ability. In contrast, CRX[R90W]

weakly promoted NRL-mediated transactivation, consistent with

CRX[R90W]’s weak ability to bind target DNA (Figure 10A) and

interact with NRL [11] in vitro to promote low levels of gene

expression in the retinas of homozygous R90W mice (Figure 8). To

test the effect of mutant protein on WT CRX function, E168d2

and R90W expression vectors were each co-transfected at

increasing concentrations with WT CRX. CRX[E168d2] protein

significantly impaired WT CRX function when the ratio of

E168d2:WT vector reached 2:1 or higher, suggesting CRX[E168d2]

actively interfered with WT CRX via an antimorphic mechanism,

consistent with the dose-dependent toxicity observed in E168d2/+
and E168d2neo/+ mice. In contrast, at the same mutant:WT vector

ratios, CRX[R90W] protein did not disrupt WT protein function,

consistent with the hypomorphic effect of R90W in mice.

The Crx promoter is another known CRX direct target. It

contains two CRX consensus binding sites within a 500-bp

upstream region that is required for CRX auto-activation [57].

However, unlike Rhodopsin, which is downregulated, Crx was

overexpressed in E168d2 mice (Figure 2). To determine if Crx

overexpression resulted from the direct action of CRX[E168d2]

protein on the Crx promoter, dual-luciferase reporter assays using

the 0.5K Crx promoter were performed (Figure 10E). As expected,

WT CRX protein transactivated this in a concentration-depen-

dent manner (Figure 10E), while CRX[E168d2] and CRX[R90W] at

the highest concentration did not transactivate. When both WT

and mutant proteins were present, CRX[E168d2] interfered with the

transactivation activity of WT CRX, even at a 1:2 mutant:WT

vector ratio. CRX[R90W] protein also reduced WT CRX

transactivation activity, though less strongly, at the 1:1 and 2:1

mutant:WT vector ratios. These results suggest that both

CRX[E168d2] and CRX[R90W] proteins 1) are less effective than

WT CRX at activating target promoters, and 2) interfere with WT

CRX autoactivation.

Taken together, functional analyses of CRX[E168d2] and

CRX[R90W] proteins revealed that they affected target gene

transcription via distinct mechanisms. While CRX[E168d2] bind

DNA equally well as WT CRX, it fails to activate transcription

and interferes with WT CRX function, resulting in a dose-

dependent antimorphic effect. In contrast, CRX[R90W] has

reduced ability to bind target DNA and regulate transcription,

qualifying CRX[R90W] as a hypomorphic protein.

Discussion

E168d2 and R90W mouse lines accurately model the
corresponding human diseases

E168d2 mice model dominant ‘LCA’ or severe early-onset

‘CoRD’. While all homozygous K-IN mice assessed in this paper

demonstrated ‘LCA’-like phenotypes, only E168d2/+ mice pre-

sented with dominantly inherited retinopathy characteristic of

‘LCA’ or severe early-onset ‘CoRD’. Rods and cones of E168d2/+
mice were strongly functionally impaired from 1 mo, exhibited

abnormal nuclear and OS morphology and degenerated rapidly

within the first 6 mo of life (Summarized in Table 2). Importantly,

the cone deficits were more severe and occurred earlier than rod

deficits. Cone nuclei were mislocalized to the inner ONL at P14

and 1 mo (Figure 5E&F) and the number of cones was decreased

(32.3% of WT) in E168d2/+ mice at 1 mo (Figure 6B). In

addition, the cone opsin gradient [56] was highly disrupted in

E168d2/+ and E168d2neo/+ mice (Figure 6M–P). Misregulation of

Figure 9. Graded changes in CRX target gene expression in heterozygous E168d2/+, E168d2neo/+ and R90W/+ mice. A–D. Paraffin
embedded sagittal retinal sections of 1 mo WT and the indicated heterozygous mutant mice were stained with mouse monoclonal anti-Rhodopsin
RetP-1 antibody (Chemicon) (RHO, red) and DAPI nuclear conterstaining (blue), and imaged by widefield fluorescence at 406. E168d2/+ shows
reduced rod OS length and mislocalized RHO in ONL. E–H. qRT-PCR analysis of four CRX target genes, Rho, Arr3, Opn1mw, Opn1sw in the indicated
heterozygous mice at P10 and P21 (*p,0.05; bracketed *FDR p,0.09; Error bars: SEM). Note at P10, the expression of Opn1mw and Opn1sw CRX
target genes are reduced in all mutant models. However, at P21, expression recovers in R90W/+ and +/2 mice, while remaining reduced in E168d2/+
and E168d2neo/+ mice.
doi:10.1371/journal.pgen.1004111.g009
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this gradient could arise either from inability of mutant CRX

proteins to properly interact with co-factors to cooperatively

regulate opsin expression, or as a result of impaired cone subtype

specification. The cone opsin gradient is regulated by multiple

transcription factors including RXRc (Accession: AAH13709.1)

[58] and TRb2 (Accession: NP_033406.1) [59]. Expression of Rxrc
and Trb2 in E168d2/+ or E168d2neo/+ retinas at P21 was normal

as measured by qRT-PCR (Table S6), although Rxrc expression

was elevated at P10 (Table S5). While these data suggest terminal

differentiation of cones in E168d2/+ retina may have been

compromised, it is unclear if cone deficits were due to impaired

cell fate specification, survival, or both. The accurate quantifica-

tion of cone number was not possible in E168d2/+ retina at P14 or

earlier due to reduced expression of cone markers including cone

opsins. Future experiments tracing the cone lineage in developing

E168d2/+ retinas are needed to distinguish these possibilities.

In summary, the E168d2/+ mouse phenotype closely matched

the clinical features of patients diagnosed with LCA who carry the

E168d2 mutation. These patients showed severe vision loss

detectable within the first few months of life, including markedly

reduced ERG responses [24][31][41]. Several pieces of evidence

suggest that the E168d2/+ mouse also models human disease

associated with other mutations within the class of frameshift

truncation mutations. First, several other frameshift and deletion

mutations in human CRX caused similar clinical phenotypes [22–

33][36–40]. Second, in vitro functional analyses showed that these

mutations resulted in defects in target gene transactivation similar

to those we see with E168d2 [12][47]. Third, the recently-

identified feline model Rdy, which also carries a frameshift

truncation mutation in Crx [60], has severely reduced visual

function and progressive photoreceptor degeneration that closely

matches the E168d2/+ phenotype [61]. Rdy cats carry a

spontaneous single base-pair deletion n.546delC producing a

truncated CRX protein just 14 amino acids longer than the

CRX[E168d2] protein [60]. Thus, a common pathogenic mecha-

nism is likely responsible for these similar phenotypes in different

mammalian species, for which the E168d2 mouse serves as an

appropriate small-animal model.

E168d2neo reveals that expression levels of mutant CRX

correlate with disease severity. CRX-associated dominant

diseases vary in age of onset and severity, even with similar

mutations [22][23]. The factors responsible for these phenotype

variations have not yet been identified, but comparing findings

from E168d2 and E168d2neo mice revealed one possible mecha-

nism. The E168d2neo mouse, which had reduced expression of

CRX[E168d2], showed a less severe phenotype than E168d2,

resembling later-onset dominant ‘CoRD’. Characterization of

the low expression subline E168d2neo/+ (which expressed 30% less

mutant protein) in parallel with E168d2/+ revealed that mutant

allele expression level significantly impacted phenotype severity. In

young E168d2neo/+ mice, the rod phenotype was almost fully

rescued and the cone phenotype was significantly improved by all

measures performed, including rod and cone morphology

(Figures 4–6), function (Figure 7, Table 1), survival (Figure S2)

Figure 10. CRX[E168d2] and CRX[R90W] affect target gene transcription through distinct molecular mechanisms. A. Electrophoresis
mobility shift assays (EMSA) to measure the DNA binding activity of HEK293-expressed CRX[E168d2] and CRX[R90W] protein to the Rho BAT-1 DNA
fragment. CRX mammalian expression vectors pCAGIG-CRX WT, E168d2 or R90W and their negative control vector pCAG-Gfp (2) were individually
transfected into HEK293 cells. A 2-fold dilution series of nuclear protein extract made from each transfection was incubated with 700IRdye-labeled
DNA probes, either BAT-1 or mutated BAT-1 lacking CRX-binding sites (BAT-1 Mut AB) (sequence below EMSA) [7]. The resulting protein/DNA
complexes were resolved on 5% non-denaturing PAGE gels and imaged on the LI-COR Odyssey system. Novel bands corresponding to protein/DNA
complexes containing full-length CRXs (FULL, either WT or R90W), truncated CRX (E168d2) and non-specific (N.S.) protein(s), as well as free probe
(F.P.) are indicated. B. Western blot for the amount of CRX protein (antibody 119b-1) present in each nuclear extract. To compare binding activity,
CRX protein levels from different nuclear extracts were normalized to the WT level and equal ratios were used for EMSA reactions. C. Quantitative
chromatin immunoprecipitation assays for promoter occupancy of CRX in P14 WT and E168d2/d2, R90W/W and 2/2 mutant retinas. The indicated
target gene promoters were used in qPCR assays on CRX-immunoprecipitated chromatin and the results are presented as enrichment of CRX over
IgG control. Like WT protein, both CRX[E168d2] and CRX[R90W] are enriched on the promoters analyzed. D–E. Dual-luciferase assays showing combined
transactivation activity of NRL, CRX, CRX[E168d2] and CRX[R90W] in transfected HEK293 cells on two promoter-luciferase reporters, Rhodopsin (Rho, BR-
130 [47]) (D) or Crx (0.5K mouse Crx) (E). Comparing to pcDNA3.1/HisC control, for Rho: all test plasmid combinations were significantly different; for
0.5K Crx: only pCAG-E168d2 and pCAG-R90W were not significantly different. Significant differences of post hoc comparisons are indicated by
bracketed ‘*’ (FDR p,0.09; comparisons were made to the left most bracket; Error bars: STDEV).
doi:10.1371/journal.pgen.1004111.g010

Table 2. Summary of retinal phenotypes of Crx E168d2, R90W and KO mice.

Function (ERG)
OS
Length

Nuclear
position

Opsin
Gradient

Photoreceptor degeneration
timecourse Gene expression Disease model

Genotype Rod Cone Rod Cone Cone Rod Cone P10 P21

WT ++++ ++++ ++ OONL +++ - - +++ +++

E168d2/+ + + + MONL - 1–6 mo 1 mo + + LCA

E168d2neo/+ +++ ++ ++ IONL + - 1 mo-1 yr + ++ CoRD

R90W/+ ++++ ++++ ++ OONL ++ - - ++ +++ Mild CoRD

+/2 ++++ ++++ ++ OONL ND* - - ++ +++

E168d2/d2 - - - - - 1–3 mo 1–3 mo - - LCA

R90W/W - - - - - 1–3 mo 1–3 mo - - LCA

2/2 - - - - - 1–3 mo 1–3 mo - - LCA

‘+’ qualitative graded levels; ‘2’ null;
*ND: Not determined.
doi:10.1371/journal.pgen.1004111.t002
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and gene expression (Figure 9, Table S5, Table S6). While older

E168d2neo/+ mice did show impaired cone function and

degeneration, disease progression was much slower compared to

E168d2/+. Thus, while the E168d2 mouse represented the most

accurate disease model for the human CRXE168d2 phenotype, the

E168d2neo/+ mouse modeled less severe forms of ‘CoRD’. The

expression level-dependent phenotypes of the E168d2 mouse lines

have several implications: 1) These findings support an anti-

morphic activity for CRX[E168d2] protein; 2) In human patients

carrying similar CRX mutations, features intrinsic to the mutation

allele and/or genetic background may affect CRX expression,

which could impact disease severity; 3) Consequently, therapy

directed at shifting the ratio of WT to mutant CRX protein might

be effective at improving vision in patients.

Overexpression of CRX[E168d2] protein in E168d2 mice is

caused by unknown mechanism. E168d2 mice overexpressed

both Crx mRNA and protein in an allele specific manner

(Figure 2H–J), indicating Crx misregulation occurred at the RNA

level, either in the synthesis or degradation of the mRNA

transcript. Transient transfection assays (Figure 10E) showed that

while WT CRX was able to transactivate its own promoter,

CRX[E168d2] had lost transactivation activity and interfered with

WT CRX autoregulation. Thus, overexpression of the E168d2

allele in vivo was unlikely due to the direct action of CRX[E168d2]

protein on the Crx promoter. Other possible mechanisms for

E168d2 allele-specific overexpression in vivo include suppression of

a negative feedback regulation, changes in transcription efficiency

of the E168d2 allele, or stability of the E168d2 transcript.

Expression of a known regulator of Crx expression, Otx2

(Accession: NM_144841.3), was altered in E168d2 mice. Otx2 is

required for induction of Crx expression during development

[49][62] but is normally turned off in differentiated photoreceptors

when CRX expression reaches high levels. Otx2 was upregulated

at P21 in E168d2/+ retinas (Table S5, Table S6), suggesting that

the feedback network was affected in the mutants. A more

comprehensive investigation of the network regulating Crx’s

transcription is required. Alternatively, since the level of RNA

made by the mutant allele was much higher than that of the WT

allele in E168d2/+ retinas, it is plausible that changes in Crx

E168d2 mRNA stability may be involved. More importantly, since

this mutant allele-specific overexpression was shared by anther

frameshift mutation, I138fs48 in Drosophila [12][46], the underlying

molecular mechanism could be conserved for this type of CRX

mutation.

R90W mice model mild late-onset dominant

‘CoRD’. While homozygous R90W mice displayed a ‘LCA-like’

phenotype, heterozygous R90W/+ mice didn’t exhibit changes in

photoreceptor morphology, gene expression or degeneration at the

early ages tested (Table 2). However, minor changes in cone

function were detectable at 6 mo (Figure 7I), suggesting R90W/+
has a mild dominant phenotype. The R90W/+ phenotype closely

resembled the clinical features of a pedigree where the equivalent

human R90W mutation was identified [45]: A proband homozy-

gous for R90W had almost complete loss of vision and was

diagnosed with autosomal recessive LCA. Her parents, each of

whom carried one R90W allele, had mild cone functional defects

and reduced color discrimination ability by middle age (40’s). It is

unknown if the cone functional defects reported for the human

carriers are related to misregulation of cone gene expression or

cone degeneration. Several other substitution mutations were

similarly associated with mild late-onset dominant disease in

humans [12][22][23][33][36][42][45]. Overall, reduced numbers

of rods or cones were not observed in R90W/+ mice up to one

year of age, but disease may appear at later ages. The mild

dominant phenotype of R90W/+, not observed in +/2 mice, as

well as the CRX promoter-driven luciferase assay results

(Figure 10E) suggest CRX[R90W] possesses some minor disruptive

effects on WT CRX function. Overall, however, unlike E168d2

and E168d2neo, there were no major phenotypic differences

observed between R90W and R90Wneo, consistent with

CRX[R90W] being predominantly a hypomorphic protein. It is

unknown how genetic background or environmental interactions

contribute to the substitution mutation disease phenotype. The

R90W mouse line provides a valid small animal model for

investigating this subset of milder CRX-related diseases.

CRX[E168d2] and CRX[R90W] protein cause disease through
distinct mechanisms

Several pieces of evidence support that CRX[E168d2] and

CRX[R90W] protein cause disease via different mechanisms, as

illustrated in Figure 11. CRX[E168d2] protein bound to DNA,

interfered with the function of CRX WT and impaired the

expression of CRX target genes, classifying it as an antimorphic

protein with dominant-negative activity (Figure 11B). All of our

results suggest that CRX[E168d2]’s activity was largely restricted to

CRX target genes. Of the 82 uniquely downregulated genes

identified in homozygous E168d2neo mice, most (76.8%) also

exhibited direct CRX binding. The average fold change of these

distinct genes was less dramatic than genes shared between

E168d2 and 2/2, suggesting they were likely to be similarly

affected in 2/2 but failed to pass the significance threshold.

Many shared genes including: Rho, Arr3, Ramp3, Drd4, Cpm, and

Pde6c were more strongly downregulated in homozygous

E168d2neo than 2/2 mice (Figure 8D). This suggests CRX[E168d2]

protein had an antimorphic effect on the expression of these genes

even in the complete absence of WT CRX, possibly by interfering

with other co-factors like the homeodomain transcription factor

OTX2. Supporting this hypothesis, removal of one allele of Otx2

from the 2/2 mouse produced a severe phenotype similar to

homozygous E168d2 mice [63]. Since OTX2 and CRX have

overlapping spatial and temporal roles in retinal development and

share DNA binding domain homology, it is possible that

CRX[E168d2] interfered with OTX2 activity, resulting in a stronger

phenotype than 2/2. This antimorphic effect is unlikely to

involve interference with NRL function, since NRL expression was

comparable in all homozygous models (Table S5), CRX[E168d2]

did not interfere with NRL transactivation (Figure 10D) and a

similar truncation mutation in bovine CRX C160 (1–160)

maintained interaction with NRL [11]. qRT-PCR analysis of

CRX target gene expression showed downregulation that corre-

lated with mutant CRX expression level (Figure 9), supporting the

conclusion that CRX[E168d2] is an antimorphic mutant protein

with dominant negative activity. The E168d2 mouse model thus

demonstrates the effects of an antimorphic truncated CRX protein

associated with human disease.

The CRX[R90W] protein had reduced DNA binding and weakly

promoted transcription in vitro, classifying CRX[R90W] as a

hypomorphic protein (Figure 11C&F). Although binding of

CRX[R90W] to the BAT-1 oligo in vitro was reduced (Figure 10A),

CRX[R90W] associated with CRX target DNA in vivo (Figure 10C),

suggesting co-factors may anchor CRX[R90W] to target DNA.

CRX[R90W] weakly promoted NRL-mediated transactivation of

the Rho promoter in vitro (Figure 10D), consistent with early

findings that CRX[R90W] protein reduced the physical interaction

with NRL [11]. Thus, even though CRX[R90W] was associated

with target promoters in vivo, it may have lost specific interactions

with co-factors, therefore reducing its function. Indeed, despite

being present on target promoters, CRX[R90W] only weakly
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promoted target gene expression in vivo, as shown by reduced

expression of many CRX target genes in homozygous R90W

retinas as detected by microarray (Figure 8A–E) and qRT-PCR

(Figure 8J–M). However, target gene expression in R90W retinas

was less reduced compared to 2/2 retinas (Figure 8D, J–M),

suggesting CRX[R90W] possessed some residual transcriptional

activation activity. In Drosophila, human R90W was able to

partially rescue the otduvi phenotype, consistent with a hypomor-

phic mechanism [46]. Taken together, our results show that

CRX[R90W] is a predominantly hypomorphic mutant CRX

protein, representative of substitution mutations associated with

mild forms of CRX disease.

Mechanistically distinct mutations underlie CRX-
associated disease

The molecular functions of several CRX mutations associated

with human retinopathy have been investigated in vitro

[12][45][47] and in vivo in Drosophila [46]. Such studies indicate

that mutant CRX proteins have distinct molecular functions,

which could in part explain the variation in CRX-disease

phenotypes. The distinct phenotypes of mice carrying E168d2,

an antimorphic frameshift mutation, and R90W, a hypomorphic

substitution mutation, further expand our understanding of the

impact of mutation type on disease pathology and closely match

the functions and associated phenotypes of other similar type

mutations. This suggests that E168d2 and R90W K-IN mice are

representative animal models for two larger groups of disease

causing mutations, increasing their utility as research tools for

studying pathology and developing therapies. There are likely

additional mechanisms of CRX-associated disease yet to be

modeled in vivo, such as substitution mutations that do not affect

DNA-binding but are nonetheless associated with dominant

disease [12][45][47]. Collectively, these studies demonstrate the

diversity of molecular defects mediating CRX-associated disease

and highlight the value of having multiple small-animal models to

understand them.

Crx E168d2, E168d2neo and R90W provide distinct models
for therapy development

Currently, there are no treatment strategies for CRX-associated

diseases. Since CRX influences many cellular processes, designing

targeted therapy is exceptionally difficult. The availability of

phenotypically and mechanistically distinct models for CRX-

associated disease will greatly improve our ability to develop

novel therapies. E168d2, E168d2neo and R90W present unique

mechanistic challenges for therapy to address. Stem cell based

therapies have previously been shown to restore function in the

2/2 mouse [64]. Like 2/2 mice, E168d2/+, E168d2/d2 and

R90W/W mice all have highly abnormal photoreceptor morphol-

ogy and undergo rapid degeneration, which may restrict the time

course and effectiveness of treatment. The improved phenotype of

E168d2neo/+ mice, compared to E168d2/+, provides evidence that

gene replacement strategies that shift the ratio of WT to mutant

CRX could be effective at improving vision and promoting rod

and cone survival in cases were a mutant protein is toxic and/or

overexpressed. Previous studies have shown this strategy to be

effective in treating a dominant-negative adRP RHO animal

model [65][66]. Lastly, the similarity of the E168d2/+ mouse and

Figure 11. Models for CRX[E168d2] and CRX[R90W] mechanisms of pathogenesis in K-IN mice. A. In WT mice, CRX binds to DNA, recruits and
synergizes with co-factors including NRL and chromatin modulators [7] to promote target gene transcription. B. In E168d2/+ mice, the antimorphic
CRX[E168d2] protein directly competes with CRX WT to act on target gene promoters. Since CRX[E168d2] protein is overexpressed compared to WT, its
antimorphic effect is amplified and results in severe reductions in target gene transcription and retinopathy resembling LCA. C. In R90W/+ mice,
CRX[R90W] protein does not impair the function of CRX WT and transcription in adult mice is largely normal. R90W/+ mice have only a mild retinal
phenotype similar to a late-onset CoRD. D. In 2/2 mice, the loss of CRX leads to the failure to recruit co-factors to target gene promoters and
expression is silenced [7][19]. E. In E168d2/d2 mice, CRX[E168d2] protein binds to the promoters of target genes, which interferes with the activity of
other transcription factors, resulting in early-onset LCA with a faster course of retinal degeneration than in 2/2 mice. F. In R90W/W mice, CRX[R90W]

protein still associates with target gene promoters despite having reduced DNA binding in vitro. However, this confers only modest gains in target
gene transcription over 2/2, insufficient to establish normal retinal function. Thus, CRX[R90W] protein is a functionally impaired protein but retains
some residual transactivation activity. R90W/W mice most closely model LCA.
doi:10.1371/journal.pgen.1004111.g011
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the Rdy/+ cat provide excellently matched small and large animal

models. Therapies that are proven to be effective in the E168d2/+
mouse can immediately be tested in the Rdy/+ cat, which improves

our ability to develop translational therapies.

In summary, Crx E168d2 and R90W are mechanistically distinct

mouse models for CRX-associated disease, demonstrating how

different classes of CRX mutations yield drastically different retinal

phenotypes. E168d2 and R90W accurately recapitulate human

diseases caused by distinct classes of human mutations and have

greatly improved our understanding of disease pathobiology. The

availability of these stratified mouse models for CRX-associated

disease is an invaluable resource for developing effective mecha-

nism based therapies.

Materials and Methods

Ethics statement
All procedures involving mice were approved by the Animal

Studies Committee of Washington University in St. Louis, and

performed under Protocols # 20090359 and 20120246 (to SC).

Experiments were carried out in strict accordance with recom-

mendations in the Guide for the Care and Use of Laboratory

Animals of the National Institutes of Health (Bethesda, MD), the

Washington University Policy on the Use of Animals in Research;

and the Guidelines for the Use of Animals in Visual Research of

the Association for Research in Ophthalmology and Visual

Science (http://www.arvo.org/animals/). Every effort was made

to minimize the animals’ suffering, anxiety, and discomfort.

Mice
Mice were housed in a barrier facility operated and maintained

by the Division of Comparative Medicine of Washington

University School of Medicine. All mice used for experiments

were backcrossed to C57BL6/J mice obtained from Jackson

Laboratories (Bar Harbor, ME, Stock number 000664) for at least

5 generations. Knock-IN of E168d2neo and R90Wneo were

generated by the Mouse Genetics Core, Department of Ophthal-

mology and Visual Sciences, Washington University (Saint Louis,

MO). E168d2neo and R90Wneo constructs were transfected into

129Sv/J SCC#10 (ATCC SCRC-1020) embryonic stem cells and

Knock-IN was achieved by homologous recombination into the

endogenous mCrx locus and selected by neomycin. The targeted ES

cells were injected into C57BL6/J blastocysts to form chimeric

Knock-IN E168d2neo and R90Wneo mice. Germline transmission of

E168d2neo and R90Wneo was identified by PCR genotyping and

Sanger sequencing of genomic DNA from F1 mice (Figure 1,

Figure S1, Table S1). Crx2/2 mice were provided by Dr.

Constance Cepko, Harvard University (Boston, MA).

PCR genotyping
Genomic DNA was prepared from mouse tail tissue using the

Gentra Puregene Tissue Kit (Qiagen). PCR amplification was

performed using Jumpstart RedTaq (Sigma-Aldrich). Primer sets

(Table S1) are as follows: For all mice: neo (Neo-F/R) and Crx

(Total Crx-F/R); for E168d2 colony: WT Crx allele (E168d2 WT-

F, E168d2-R), E168d2 allele (E168d2 Mut-F, E168d2-R); for

R90W colony: WT Crx allele (R90W WT-R, R90W-R), R90W

allele (R90W Mut-F, R90W-R).

Sanger sequencing of genomic DNA
Genomic DNA was prepared from mouse tail tissue using the

Gentra Puregene Tissue Kit (Qiagen). mCrx DNA was amplified

by PCR using the Genomic mCrx Int/Ex4-F/R primer pair (Table

S1). Sanger sequencing was performed by the Protein and Nucleic

Acid Chemistry Laboratory (Washington University, Saint Louis,

MO) using the Sequencing primers E168 and R90W (Table S1)

and Big Dye V3.1 (Advanced Biotechnologies).

Electroretinogram
At least 5 mice of each genotype were tested for ERG at 1 mo,

3 mo, or 6 mo of age. Bilateral flash ERG measurements were

performed using a UTAS-E3000 Visual Electrodiagnostic System

running EM for Windows (LKC Technologies, Inc., Gaithersburg,

MD) and recordings from the higher amplitude eye were used for

analysis. Mice were dark-adapted overnight, then anesthetized

with 80 mg/kg ketamine and 15 mg/kg xylazine under dim red

illumination for electrode placement and testing. Body tempera-

ture was maintained at 3760.5uC with a heating pad controlled by

a rectal temperature probe (FHC Inc., Bowdoin, ME). The

mouse’s head was positioned just inside the opening of the

Ganzfeld dome and pupils were dilated with 1.0% atropine sulfate

(Bausch & Lomb, Tampa, FL). The recording electrode was a

platinum loop 2.0 mm in diameter, positioned in a drop of 1.25%

hydroxypropyl methylcellulose (GONAK; Akorn Inc., Buffalo

Grove, IL) on the corneal surface of each eye. The reference

needle electrode was inserted under the skin at the vertex of the

skull. The ground electrode was inserted under the skin of the

mouse’s back or tail. The stimulus (trial) consisted of a brief, full-

field flash (10 ms) either in darkness, or in the presence of dim (29.2

cd/mm) background illumination after 10 minutes adaptation

time to the background light. The initiation of the flash was taken

as time zero. The response was recorded over 250 ms plus 25 ms

of pre-trial baseline. Responses from several trials were averaged.

For complete test parameters see Table S7. The log light intensity

(log [cd*s/m
2]) was calculated based on the manufacturer’s

calibrations. The mean amplitudes (in microvolts) of the averaged

dark-adapted A and B-waves and light-adapted B-waves were

measured and quantified for comparison. The between-group

differences in peak amplitude were determined by testing

genotype*flash intensity interactions (p,0.05, n$5) at each age

were compared using two-way ANOVA for repeated measure-

ment data to account for potential correlations among readings

from the same mice. If the overall genotype*flash intensity

interaction was significant, post-hoc multiple comparisons for

differences between each genotype and the control group at each

light intensity level were performed. All the tests were two-tailed,

significance: p,0.05. The statistical analysis was performed using

SAS 9.3 (SAS Institutes, Cary, NC). p-values were adjusted for

multiple comparisons by a permutation test using the default

parameters provided in the LSMestimate statement in Proc

Mixed. Average percent reductions for each wave form were

calculated by normalizing the peak amplitude of the mutant to

WT and results were averaged for the flashes listed in Table 1;

6STDEV.

Immunohistochemistry and microscopy
For retinal sections: eyes were enucleated by removing the

cornea and lens and fixed in 4% paraformaldehyde for 24 hrs at

4uC. A small corneal tag on the superior portion of the eye was

used for orientation. Eyes were embedded in paraffin and 5 mM

sagittal retinal sections were cut using a Leica RM 2255

microtome as previously described [67]. Hemotoxylin and eosin

immunohistochemistry was performed on sections for histology.

Fluorescent antibody immunostaining was performed using as

previously described using 1% BSA/0.1% Triton X in 16PBS for

blocking and antigen retrieval for all samples [13][67].

For whole flat-mounted retinas: eyes were enucleated by

removing the cornea and lens and fixed in 4% paraformaldehyde
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for 1 hr at 4uC. Retinas were then dissected from the eye cup and

4 evenly spaced relief lines were cut (Figure 6A). A scleral tag was

left on the superior retina for orientation. Retinas were mounted

on poly-D lysine coated slides (Thermo Scientific), blocked with

1% BSA/0.1% Triton X in 16 PBS and immunostained as

previous.

Primary antibodies and dilutions used as follows: Mouse

monoclonal anti-CRX M02 (1:200, Abova), rabbit anti-CRX

261 (1:200), rabbit anti-cone arrestin (CARR) (1:1000, Millipore),

Rabbit anti-Opsin Red/Green (MOP) (1:1000, Millipore), Goat

anti-OPN1SW (N-20) (SOP) (1:500, Santa Cruz), Mouse anti-

Rhodopsin RET-P1 (RHO)(1:400, Chemicon), Peanut Agglutanin

conjugated to Rhodamine (PNA)(1:500, Vector Labs). Secondary

Antibodies (1:400): Goat anti-rabbit or mouse IgG antibodies

coupled to Alexa Fluor A488, Rhodamine 568 or Cy2 647

(Molecular Probes) and Chicken anti-goat IgG (Molecular Probes).

All slides were counterstained with hard set DAPI (Vectashield),

except when using Cy2 secondary, which were counterstained

with Slow Fade Gold DAPI (Invitrogen). All brightfield and

fluorescent imaging was performed using an Olympus BX51

microscope and Spot RT3 Cooled Color Digital camera

(Diagnostic instruments inc.).

TUNEL analysis was performed using the Apoptag Fluorescein

in situ Apoptosis Detection Kit (Millipore) per kit instructions.

TUNEL+ cells were counted in retinal sagittal sections of P21 and

P35 mice. Significant differences from WT control (p,0.05) were

determined by the Kruskal-Wallis rank order test, which was used

to protect against departures from the normal distribution

assumption.

Morphometric ONL and cone analyses
For ONL morphometry, 206retinal composites of hematoxylin

and eosin (H&E) stained sagittal sections were analyzed using

Image J software (http://rsb.info.nih.gov/ij/). The distance from

the Optic Nerve (ON) was determined by drawing a curved line

along the outer limiting membrane. The ONL thickness was

measured at 100 mM, 500 mM, 1000 mM, and 1500 mM from the

ON and 200 mM from the peripheral edge on both the superior

and inferior retina. Results are presented by ‘spider graph’. The

between-group differences in ONL thickness were determined by

testing overall genotype*distance interactions (p,0.05, n$3) at

each age were tested using two-way ANOVA for repeated

measurement data, followed by a post-hoc test to adjust p-value

for multiple comparisons between each genotype and the WT

control group at each distance using SAS 9.3 (SAS Institutes,

Cary, NC), as above.

Cone nuclear localization was determined by immunostaining

retinal sections with CARR. The ONL was divided into 3 equally

sized zones (OONL, MONL, IONL; Figure 5A) on 206 retinal

composite images using Image J software (http://rsb.info.nih.gov/

ij/) and the cone nuclei within in each zone from three sections for

each mouse were counted. Significant differences from WT for

each zone were determined by Kruskal-Wallis rank order test

(p,0.05, n$3)

For cone density and opsin expression assessment, 10 images at

406magnification of whole flat-mounted retinas were taken in the

zones specified in Figure 6A. All peripheral images were taken

,400 mM from the edge of the retina and the central image was

taken ,250 mM from the ON along the lateral axis. Cones were

counted within a 2006200 mM square grid for each image using

Image J software and the density of cones/(mm2*1000) was

calculated. The between-group differences in cone density were

determined by testing overall genotype*retinal region interactions

(p,0.05, n$3) at each age were tested using two-way ANOVA for

repeated measurement data, followed by a post-hoc test to adjust

p-value for multiple comparisons between each genotype and the

WT control group in each retinal region using SAS 9.3 (SAS

Institutes, Cary, NC), as above. For regional cone opsin expression

analysis (Figure 6E–P), differences in the fraction of cones

expressing SOP, MOP, SOP/MOP or no opsin was tested in

each region using a Kruskal-Wallis rank order test (p,0.05).

Transmission electron microscopy (TEM)
For TEM studies, eyes were enucleated by removing the cornea

and lens and fixed in 2% paraformaldehyde/3% gluteraldehyde in

0.1 M phosphate buffer (pH 7.35) for 24 hrs, post-fixed in 1%

osmium tetroxide for 1 hr and stained en bloc with 1% uranyl

acetate in 0.1 M acetate buffer for 1 hr. Blocks were then

dehydrated in a graded series of acetones and embedded in

Araldite 6005/EMbed 812 resin (Electron Microscopy Sciences).

Semi-thin sections (0.5–1 mm) were cut through the entire retina at

the level of the optic nerve and stained with toluidine blue, post-

stained with uranyl acetate and lead citrate, viewed on a Hitachi

H7500 electron microscope and documented in digital images.

Three retinas for each genotype were sampled at P21 at 800–

1200 mM from the optic nerve. $10 images of four key features

were collected by random sampling: OS-RPE (100006), OS-IS

(120006), ONL (50006), OPL (100006). Images were analyzed in

a blinded manner using Image J software.

The nuclear percent area of heterochromatin was measured

using Image J software in a randomized blinded analysis. For each

genotype, 10 50006 images of the ONL were taken for three

mouse retinas. For each image, 10 rod nuclei were randomly

selected for analysis. The rod nucleus was outlined using the

segmented polygon tool, electron dense regions of the nuclei

associated with heterochromatin were thresholded and the

percentage of the area above the threshold was measured.

Thresholding was variably adjusted to accommodate for differ-

ences in brightness and contrast. The between-group differences

were compared using one-way ANOVA for repeated measure-

ment data, to account for potential correlations among photos

from the same mouse. All the tests were two-tailed, significance:

p,0.05 (n = 3). The statistical analysis was performed using SAS

9.3 (SAS Institutes, Cary, NC). The overall test for genotype

difference was statistically significant (p = 0.02), therefore

E168d2/+ and E168d2neo/+ were compared to WT (Figure S2).

Transient transfection assays
HEK293 cells (ATCC CRL-11268) were cultured on 60 mm

plates in Dulbucco’s minimum essential media (DMEM) with 10%

fetal bovine serum and Penicillin/Streptomycin. Cells in 60%

confluence were transfected with pCAGIG-NRL and pCAGIG-hCRX

WT, E168d2 and R90W either alone or in combination using

CaCl (0.25 M) and Boric Acid Buffered Saline (16) pH 6.75 as

previously described [13]. Cells were harvested 48 hours post

transfection for either RNA (PerfectPure RNA tissue kit, 5Prime),

protein (NePER nuclear and cytoplasmic extractions reagents,

Thermo Scientific), or Dual-luciferase assays. Dual-luciferase

assays were performed as previously described [13]. Significant

differences from pcDNA3.1hisc control were determined by

Kruskall-Wallis rank order test (p,0.05; n = 3). Post-hoc compar-

isons (Figure 10 D&E; indicated by brackets) were tested using a

less conservative FDR p-value method for multiple comparisons

using PROC Multtest of SAS (V9.3). FDR p,0.09 was considered

marginally significant.
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Western blot assays
Whole retina protein lysates were prepared by homogenization

of four genotype-matched isolated whole retinas from P10 mice

and lysis in 16 RIPA buffer (Sigma) for 10 min with protease

inhibitors (Aprotinin, Leupeptin, peptistatin, 0.1 mM Phenyl-

methaneslfonyl fluoride). Nuclear lysates were prepared using NE-

PER Nuclear and Cytoplasmic Extraction Reagants (Thermo

Scientific) with protease inhibitors. Either 30 mg of whole protein

lysate or 5 mg of nuclear protein lysate was boiled for 10 min.

Samples were run on a 4–11% SDS-PAGE gel and transferred

onto Transblot Turbo nitrocellulose membranes (Bio-Rad) using

the Transblot Turbo system (Bio-Rad). Membranes were probed

with Rabbit anti-CRX 119b1 (1:750) and Mouse anti-b-Actin

(Sigma)(1:1000). Goat anti-Mouse IRDye 680LT and Goat anti-

Rabbit IRDye 800CW (LI-COR) were used as secondary

antibodies. Signal was detected and quantified using the Odyssey

Infrared Imager (LI-COR) and associated manufactory software.

Kruskal-Wallis rank order test (Proc Npar1way of SAS, V9.3) was

used to test for an overall difference among genotypes (p = 0.0002),

then each genotype was compared to WT control (p,0.05). Post-

hoc analyses were performeded using FDR p methods for multiple

comparisons using PROC Multtest of SAS (V9.3) (FDR p,0.09)

(n$3).

qRT-PCR
RNA was extracted from whole retinas of one male and one

female mouse at either P10 or P21 for each biological replicate

using the PerfectPure RNA tissue kit (5Prime). RNA was

quantified using a NanoDrop ND-1000 spectrophotometer

(NanoDrop Technologies, Wilmington, DE). cDNA was synthe-

sized from 1 mg of RNA using the Transcriptor First Strand cDNA

Synthesis kit (Roche Applied Science). A 10 ml QRT-PCR

reaction mixture containing 16EvaGreen with Low Rox reaction

mix (BioRad), 1 mM primer mix, and diluted cDNA was prepared

and run on a two-step 40 cycle amplification protocol with melt

curve determination on a BioRad CFX thermocycler in triplicate.

The Cq’s of technical replicates were averaged and the results

were analyzed using the Delta Cq method in QBase software

(Biogazelle). Primer sets (Table S1) were designed using MacVec-

tor software and synthesized by IDT DNA technologies. For mCrx

allele specific amplification the following primers were used: for

E168d2 and E168d2neo mice: WT allele specific- Crx E168d2 WT

RTF/R, total- Crx R90W WT-RTF/R; for R90W and R90Wneo

mice: WT allele specific- Crx R90W WT-RTF/R, total Crx

E168d2 WT RTF/R (Figure 2J), Relative gene expression was

normalized to Ubb and Tuba1b. Kruskal-Wallis rank order test

(Proc Npar1way of SAS, V9.3) was used to test for an overall

difference among genotypes (p,0.05; n$3). Post hoc analyses

were adjusted for multiple comparisons using FDR p methods, as

above (FDR p#0.09).

Microarray
Triplicate RNA samples were prepared from 4 pooled retinas

from 1 male and 1 female mouse at P10 for WT and homozygous

E168d2neo, R90Wneo and 2/2 mice. The RNA was fluorescent

labeled and hybridized to MouseWG-6 v2.0 Expression Beadchips

(Illumina) by Washington University Genome Technology Access

Center (GTAC). The raw microarray datasets are available at the

NCBI GRO website (http://www.ncbi.nlm.nih.gov/gds, access

number: GSE51184). Microarray data were analyzed using

significance analysis of microarrays (SAM) following background

subtraction and quantile normalization in Illumina Genome

Studio platform. Control probes and probes with detection p-

value ,0.05 across all samples were removed prior to any analysis.

Candidate probes with 2.0-fold disregulation at false discovery rate

#0.05 from each comparison were chosen for further analysis.

Cellular processes associated with differentially expressed genes

were assigned based on gene ontology provided by Mouse

Genome Informatics (http://www.informatics.jax.org/).

Electrophoretic mobility shift assays (EMSA)
BAT-1 and BAT-1 mutated AB probes 59 end-labeled with 700

IRDye were synthesized by Integrated DNA Technologies (IDT).

Nuclear protein extracts from HEK293 cells (,16108 cells)

transfected with pCAGIG-hCRX, pCAGIG-hCRX E168d2, or

pCAGIG-hCRX R90W were prepared following NE-PER kit

instructions (Thermo Scientific). Nuclear extracts were tested for

CRX expression by running on a Western Blot as above

(Figure 10B). CRX levels were quantified by normalizing to b-

Actin (Sigma) and a 2-fold dilution series of equivalent amounts of

CRX WT, CRX[E168d2] and CRX[R90W] protein were used for

binding reactions. Binding reactions were performed using the

Odyssey Infrared EMSA kit (LI-COR), per kit instructions using

1 mg of nuclear protein extract and 50 nM IRDye labeled oligo.

Samples were run on a native 5% polyacrylamide; 0.56 Tris/

Borate/Ethylenediaminetetraacetic acid (EDTA) buffered gel and

imaged on the Odyssey Infrared Imager (LI-COR).

Chromatin immunoprecipitation (ChIP) assays
ChIP was performed as previously described [7][13][68].

Basically, 6 retinas per sample were dissected and chromatin

was cross-linked with 1% formaldehyde in PBS for one minute at

room temperature. After cell lysis and chromatin fragmentation by

sonication, chromatin fragments were immunoprecipitated with

the CRX 119b-1 antibody [7] or normal rabbit IgG (Santa Cruz)

bound to Protein A beads (GE Healthcare Life Sciences,

Piscataway, NJ). After extensive washing, the immunoprecipitated

chromatin was eluted with 50 mM NaHCO3 1% SDS, heated to

67uC to reverse the cross-links, the DNA purified by ethanol

precipitation and analyzed by PCR with gene-specific primers

(Table S1) (n$3). Fold enrichment was determined by quantitative

ChIP PCR. Critical threshold (Ct) values for CRX and IgG

immunoprecipitation (IP) were normalized to input and mock

subtracted. The fold enrichment of CRX:IgG was calculated

based on the formula shown below. Significant enrichment was

determined by testing overall promoter*genotype interactions by

two-way ANOVA for repeated measures using SAS 9.3 (SAS

Institutes, Cary, NC) (p,0.05, n = 3), as above.

DCt = (Ct[CRX or IgG]-Ct[Input])

DDCt =DCt[CRX or IgG]- DCt[mock]

Fold enrichment = ((22DDCt CRX)/(22DDCt IgG)

Supporting Information

Figure S1 Genotyping of E168d2 and R90W mice by PCR.

Mice were genotyped for the presence of Crx WT, E168d2 or

R90W alleles by PCR amplification of genomic mouse Crx using

allele specific primers (Table S1, Panel C). A. Specific amplifica-

tion of Crx WT and E168d2 alleles is shown here in WT, E168d2/

+, E168d2/d2 and 2/2 mice. For the E168d2 colony: the primers

E168 Mut-F and E168 WT-F, which are specific to the E168d2

and WT alleles, respectively, were paired with a common reverse

primer E168-R for PCR amplification. B. Specific amplification of

R90W and Crx WT alleles is shown here in WT, R90W/+, R90W/

W and 2/2 mice. For the R90W colony: the primers R90 mut-F

and R90 WT-F, which are specific to the R90W and WT alleles,

respectively, were paired with a common reverse primer R90-R
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for PCR amplification. In addition, non-allele specific total Crx was

amplified using the primers Total Crx F/R and the presence or

absence of neo was detected using the primers neo F/R (Data not

shown). No amplification of Crx is detectable in 2/2 mice, but Neo

is present. DNA ladder: 100 bp (New England Biolabs). C.

Schematic diagram of Exon 4 of Crx shows the location of the

primer sets for Crx WT, E168d2 and R90W genotyping. Numbers

refer to nucleotide positions relative to the transcription start site.

(TIF)

Figure S2 Detection of programmed cell death in E168d2,

R90W and 2/2 mice. A–O. Cells undergoing programmed cell

death were detected by fluorescent TUNEL staining of paraffin

embedded sagittal sections. WT, E168d2/d2, R90W/W and 2/2

retinas were assessed at P21 (A–D) and P35 (F–I). TUNEL+ cells

(white arrows) in the ONL of WT, E168d2/d2, R90W/W and

2/2 retinas were quantified at P21 (E) and P35 (J). K–N. WT,

E168d2/+, E168d2neo/+, and R90W/+ retinas were assessed at

P35. O. Quantification of TUNEL+ cells in P35 WT, E168d2/+,

E168d2neo/+, and R90W/+ retinas confirms increased pro-

grammed cell death in E168d2/+ retinas (*p,0.05; Error bars:

STDEV).

(TIF)

Figure S3 Retinal function is ablated in homozygous E168d2/d2

and R90W/W mice. A–C. Retinal function in 1 mo WT, E168d2/d2

and R90W/W mice was measured by electroretinogram. Average peak

amplitudes of dark-adapted A-waves and B-waves and light-adapted B-

waves are shown. (*p,0.05; brackets indicate all enclosed data points

are significantly different from WT; Error bars: SEM).

(TIF)

Figure S4 E168d2/+ mice have disorganized nuclear architec-

ture. A–F. Transmission electron micrographs of P21 WT,

E168d2/+ and E168d2neo/+ retinas showing the ONL nuclei in

the regions proximal to inner segments (IS) (A–C) or OPL (D–F).

White arrows indicate cone nuclei in WT (A) and cone-like nuclei

in mutant retinas (B, C, E). E168d2/+ have many ONL nuclei

with decondensed chromatin (B, E white arrows) which are either

displaced cones or rods with disorganized nuclear architecture.

E168d2neo/+ also have several photoreceptors with ‘cone-like’

patterns that are mislocalized to the middle and inner ONL (C,
white arrows). Highly electron dense nuclei (white pentagon),

corresponding with pyknotic nuclei, were identified in the ONL of

E168d2/+ (E) and E168d2neo/+ (F) samples but not in WT (D). G.

Quantification of condensed heterochromatin as a percentage of

the total nuclear area shows a significant reduction of rod

heterochromatin in E168d2/+ but not E168d2neo/+ retinas

(*p,0.05; Error bars: SEM). Image scale bars: 2 mM.

(TIF)

Figure S5 Abnormal localization of cone nuclei in E168d2/+
and E168d2neo/+ retinas. The distribution of cone nuclei in the

ONL of P14 and 1 mo WT, E168d2/+ and E168d2neo/+ retinas

was assessed by staining paraffin embedded sagittal sections with

CARR and DAPI (Figure 5 A–D). The number of nuclei counted

in each ONL zone (OONL, MONL and IONL) at P14 (A) and

1 mo (B) are graphed here. (*p,0.05; Error bars: STDEV).

(TIF)

Table S1 PCR Primer Pairs for Genotyping, qRT-PCR and

qChIP. List of oligonucleotides used for all PCR-based analyses.

(XLSX)

Table S2 Expression of genes downregulated in P10 homozy-

gous Crx E168d2neo, R90Wneo and/or 2/2. Differential expres-

sion analyses of downregulated genes from P10 expression

microarrays.

(XLSX)

Table S3 Expression of genes upregulated in P10 homozygous

Crx E168d2neo, R90Wneo and/or 2/2. Differential expression

analyses of upregulated genes from P10 expression microarrays.

(XLSX)

Table S4 Downregulated RP, CoRD, LCA disease genes in P10

homozygous Crx E168d2neo and R90Wneo mice. List of human

genes associated with RP, CoRD or LCA whose mouse homologs

were identified as being significantly downregulated in P10

microarray of P10 E168d2neo/neo or R90Wneo/Wneo mice.

(XLSX)

Table S5 qRT-PCR Expression in P10 mouse retinas. ‘Overall

p-value for each primer set was tested in heterozygous and

homozygous mice; p,0.09 was considered marginally significant.

For all comparisons to WT: *p,0.05; reference genes Tuba1b and

Ubb.

(XLSX)

Table S6 qRT-PCR Expression in P21 mouse retinas. ‘Overall

p-value for each primer set was tested in heterozygous; p,0.09

was considered marginally significant. For all comparisons to WT:

*p,0.05; reference genes Tuba1b and Ubb.

(XLSX)

Table S7 ERG test parameters. Specific testing parameters used

for ERG assays.

(XLSX)
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