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Abstract
The chimaerins are Rac GTPase-activating proteins that bind diacylglycerol. Emerging 

evidence implicates β2-chimaerin in tumor progression. Here, we discuss our recent 
work in Drosophila melanogaster in the context of previous studies performed in human 
cancer cell lines that together lend new mechanistic insight into the role of chimaerins in 
cancer.

The chimaerins are a family of GTPase‑activating proteins (GAPs) that are regulated 
by the lipid diacylglycerol (DAG). Conserved homologs from worms to humans (Fig. 1) 
exhibit a characteristic tripartite structure: an N‑terminal SH2 domain, a C1 domain that 
binds DAG and phorbol esters,1,2 and a C‑terminal GAP domain that selectively inacti‑
vates Rac.3,4 Mammalian genomes contain two chimaerin loci, each of which produces at 
least two splice variants: a full‑length transcript (a2‑ and b2‑chimaerin, respectively) and 
a truncated transcript (a1‑ and b1‑) that lacks the SH2 domain.3,4 For a recent review on 
the structure and function of chimaerins, please see ref. 5.

Rho‑family GTPases such as Rac function as molecular switches, failing to bind and 
activate effectors when bound to GDP, but interacting with various downstream targets 
to promote signaling in the GTP‑bound state. GAPs such as the chimaerins catalyze an 
increase in the slow endogenous rate of GTP hydrolysis to GDP, causing a conformational 
shift to the inactive state, while guanine nucleotide exchange factors (GEFs) catalyze the 
release of GDP (subsequently replaced by the binding of GTP) thereby shifting the equi‑
librium toward activation.

Spatial and temporal regulation of Rac activity is of critical importance to cells, as Rac 
signaling has been shown to regulate virtually every aspect of cell biology including cell 
motility, adhesion, proliferation, apoptosis, and cytoskeletal organization.5,6 Activators 
and inhibitors of Rac signaling, then, are important not simply for ‘flipping the switch’, 
but also for imposing specificity of action by localizing Rac activity to the appropriate 
place at the appropriate time. Mechanistically, it is thought that the cell accomplishes 
this by expressing a relatively large number of distinct GAPs and GEFs, each with a 
unique set of binding partners, regulatory domains, and functional domains. The fruit 
fly genome, for example, encodes six Rho family genes but at least 21 Rho family GAPs 
and an approximately equal number of Rho GEFs. Systematic knockdown of each fruit 
fly RhoGAP by siRNA revealed that while the knockdown of most GAPs failed to show 
an obvious phenotype, several GAPs were required for normal development and survival.7 
Similarly, although there are only about 22 Rho family genes in the human genome, 
three or four of which are Racs, there are approximately 70 Rho family GEFs and 80 Rho 
family GAPs that individually modulate the activity of Rac or other Rho family GTPases 
in the context of specific cellular events.8 The physiologic function of most of these regu‑
lators is unknown, although interestingly, many GEFs have been identified as oncogenes 
(see Table 1). As proteins that act in opposition to GEFs, GAPs might be expected to func‑
tion as tumor suppressors in some contexts. While fewer studies linking GAPs to cancer 
have been published, some examples have recently been reported in ref. 9 (Table 1).

b2‑Chimaerin as a Tumor Suppressor

Emerging evidence implicates b2‑chimaerin as a tumor suppressor. Levels of 
b2‑chimaerin are reduced in multiple types of cancer including breast cancer, duodenal 
adenocarcinomas10 and malignant gliomas.11 This phenomenon has been investigated by 
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the overexpression (or restoration of expression) of b2‑chimaerin in 
cell lines that are models for these cancers. For example, overexpression 
of b2‑chimaerin in a breast cancer cell line inhibits proliferation,10 
while overexpression of the b2‑chimaerin GAP domain in a mouse 
mammary cancer cell line reduced the growth rate and metastatic 
potential of tumors in vivo.12 These data suggest that the down 
regulation of b2‑chimaerin in cancers is not merely incidental; rather, 
b2‑chimaerin constitutes one of the multiple targets of metastatic 
transformation, and restoration of its activity in tumor cells could 
potentially induce more ‘normal’ cellular behavior.

Conversely, a prediction of this hypothesis is that in healthy 
epithelial tissue, reducing b2‑chimaerin levels could bias toward 
tumorigenesis. Unfortunately, there is currently no chimaerin 
knockout mouse model, while knockdown of the a2‑chimaerin 
homolog in zebrafish results in the death of most embryos by day 
five due to major morphologic defects;13 thus, work in these model 
organisms has not yet evaluated the above prediction. Recently, we 
utilized the fruit fly Drosophila melanogaster to investigate the role 
of endogenous chimaerin in a native epithelium.14 The eye of the 
fruit fly is a simple neuroepithelium with defined cell types present 
in stereotypic number and morphology, making it amenable to 
analysis of cell number and cell‑cell contacts. It has been described 
as a model system for the study of cancers,15‑17 including medullary 
thyroid18 and ovarian carcinomas.19 The fly genome contains a single 
chimaerin gene, RhoGAP5A, whose gene product is expressed from 
early embryo to adulthood in multiple tissues, including the pupal 
eye.20,21 Strikingly, reduction of RhoGAP5A levels in the fly eye 
results in an increase in cell number and aberrant cell‑cell adhesion, 
consistent with a progression to a more ‘tumor‑like’ phenotype.

Molecular Mechanisms of b2‑Chimaerin Signaling 
in Cancer

Although our understanding of b2‑chimaerin’s role in tumor 
progression is incomplete, the data accumulated from fruit fly and 
cancer cell models provide several clues as to the mechanism. General 

principles, discussed in more detail below, are: (1) the effects of 
chimaerin are mediated, at least in part, by interactions with Rac; 
(2) this interaction occurs downstream of growth factor receptors 
(possibly in response to the generation of DAG) and affects the acti‑
vation state of ERK MAP kinase; and (3) chimaerin modulates the 
effects of Rac on cell‑cell adhesion.

Chimaerin functions by modulating Rac activity. The interplay 
between Rac and chimaerin in cancer signaling is somewhat intuitive, 
based on the biochemical characterization of chimaerins as inhibitors 
of Rac coupled with the observation that Rac itself shows increased 
activity in a variety of human carcinomas including breast, colorectal, 
and pancreatic cancers.22‑26 The data bear this out: in addition to 
inhibiting proliferation, b2‑chimaerin expression in breast cancer 
cell lines reduces the amount of active Rac in the cell. Furthermore, 
coexpression of a constitutively active Rac mutant (unable to be 
inactivated by chimaerin) abolishes this effect,10 as expected if 
b2‑chimaerin is regulating proliferation through Rac. Similarly, in 
the fly eye, the phenotype of loss of RhoGAP5A is both mimicked 
and enhanced by overexpression of wild‑type Rac1. Expression of 
dominant negative Rac alleles or the use of Rac null mutants also 
modifies the cell number and cell‑cell contacts of the same cells 
affected by RhoGAP5A loss.

Activation of chimaerin and Rac downstream of EGFR. Growth 
factors signal through receptor tyrosine kinases such as the EGF 
receptor (EGFR) to activate Rac. Activation of EGFR also recruits 
b2‑chimaerin to the membrane via generation of DAG, thereby 
providing feedback inhibition of Rac.27,28 Accordingly, overexpres‑
sion of b2‑chimaerin in breast cancer cells suppresses the growth 
factor‑dependent activation of Rac, leading to a reduction in 
proliferation;10 interestingly, inactivation of Rac by b2‑chimaerin 
also suppresses the activation of ERK in these cells.29 Similarly, loss 
of chimaerin in the fly eye rescues the effects of impaired EGFR 
signaling, suppressing the mutant phenotypes associated with muta‑
tions in EGFR, ERK MAP kinase, or upstream inhibition of the 
pathway by Argos. Thus, data from cancer cell models and the fly 
eye indicate that chimaerin acts downstream of growth factor recep‑
tors to inactivate Rac and modulate growth factor signaling through 
ERK.

ERK is activated and retained at the plasma membrane in the 
absence of chimaerin. Experiments in the fly eye reveal an additional 
layer of complexity at the intersection between chimaerin and ERK 
signaling: decreasing the levels of RhoGAP5A results in increased 
levels of activated (dual‑phosphorylated) ERK, and this ERK local‑
izes specifically to the plasma membrane at cell‑cell contacts between 
interommatidial pigment cells, those cells that endogenously express 
highest levels of RhoGAP5A. Thus, at least in the fly eye, chimaerin 
plays a constitutive role in shutting down ERK signaling such that 
a loss of chimaerin causes an apparent build up of activated ERK at 
the plasma membrane.

ERK localization is tightly linked to its function: activated ERK 
phosphorylates different targets in the nucleus and the cytoplasm,30,31 
leading to distinct physiologic consequences.32,33 Although in the 
steady state ERK typically shows nuclear or cytoplasmic localization, 
its activation is thought to occur at membranes, mediated by binding 
to scaffolding proteins that bring ERK into proximity with upstream 
activating kinases such as Raf.34,35 Disruption of ERK activity at 
specific membranes by the loss of scaffold activity can result in altered 
amplitude36 or duration37 of signaling.

Figure 1. Chimaerin structure and homology. The structure of human 
b2‑chimaerin is shown and compared to the other known human isoforms 
and the fly (RhoGAP5A) and worm (CE39208) chimaerin homologs. All 
numbers represent percent amino acid identity with human b2‑chimaerin 
within the indicated domain. The splice site, which is identical at both the 
a‑ and b‑chimaerin loci, is indicated on the human chimaerin isoforms.
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What is the significance of the location of activated ERK at the 
plasma membrane in chimaerin‑deficient cells? Restriction of ERK 
to the plasma membrane could be seen as inhibitory, sequestering 
ERK at a ‘dead end’ location, away from nuclear or cytosolic targets. 
For instance, in breast cancer and glioblastoma cell lines, expression 
of the scaffold PEA‑15 sequesters ERK in the cytoplasm, preventing 
nuclear signaling and reducing tumor cell invasion.38 This does not 
appear to be the case in the fly eye: in addition to resulting in a large 
increase in activated ERK at the plasma membrane, chimaerin‑de‑
ficiency suppresses the phenotype of impaired EGFR signaling and 
also increases the levels of Argos, a transcriptional target of nuclear 
ERK signaling in the fly. Alternatively, retention of ERK at the 
plasma membrane could lead to the phosphorylation of distinct 
(currently unknown) membrane targets, resulting in an increase in 
signaling through their corresponding pathways.

Disruption of adherens junctions in response to aberrant 
chimaerin and Rac signaling. Adherens junctions are formed by 
clusters of cadherins on the plasma membrane of neighboring cells 
binding to one another in trans. These junctions play a critical dual 
role in epithelial maintenance, both structurally attaching cells to 
the epithelium and acting as ‘signaling centers’ for multiple intra‑
cellular signaling pathways, thereby coupling cell‑cell adhesion to 
proliferative signals.39,40 The vast majority of human cancers arise 
from epithelia, and the down regulation of adherens junctions 
appears to be critical for metastatic transformation of epithelial 
tumors.25,41 Temporally, ERK build up at the plasma membrane 
in chimaerin‑deficient cells occurs in a short burst, approximately 
28 hours after puparium formation‑a time at which adherens junc‑
tions between the eye epithelial cells are in flux. In wild‑type eyes, 
this timing corresponds to a period of cell movement as the pigment 
cells establish their final position, weakening contacts between 
neighboring cells, and subsequently establishing cell‑cell contacts 
at their final location. In chimaerin‑deficient fly eyes, this final step 
in pigment cell positioning and the reestablishment of adherens 

junctions is impaired, resulting in aberrant contacts. 
This phenotype is mimicked by the overexpression 
of Rac. When overexpression of Rac is combined 
with down regulation of fly chimaerin, presumably 
hyperactivating Rac, a synergistic effect is observed, 
and most adherens junctions between interommidial 
pigment cells are eliminated.

The level of Rac activity is tightly regulated to 
properly maintain adherens junctions: too much42,43 
or too little44,45 Rac activity can disrupt adhe‑
rens junctions in mammalian epithelial cells. The 
modulation of Rac‑mediated disruption of adherens 
junctions by RhoGAP5A suggests that chimaerins 
fine‑tune Rac activity in the context of cell‑cell 
adhesion.

Tying Together Pathways Involved 
in Tumor Progression

Taken together, experiments in human cancer 
cell lines and the model organism Drosophila 
melanogaster now link b2‑chimaerin to two distinct 
tumorigenic pathways (Fig. 2): (1) activation of 
ERK, which can confer growth factor indepen‑

dence, leading to increased cell proliferation and aberrant survival, 
and (2) adherens junction stability, a critical regulator of epithelial 
homeostasis. Tumors develop from healthy tissue in a complicated, 
multi‑step process resulting from multiple changes in cell biology.46,47 
Molecules such as b2‑chimaerin, then, that coregulate two or more 
processes important in tumor progression make likely targets for 
down regulation in human cancers and potentially promising drug 
targets for anti‑cancer therapies.

How are ERK activation and adherens junction stability coregu‑
lated by chimaerin? It is likely that the effects are mediated 
downstream of Rac. In some cell types, Rac is required for the acti‑
vation of ERK through activation of p21‑activated kinase (PAK), 
which phosphorylates both MEK and Raf 

48,49 and can bind directly 
to ERK.50,51 Rac is also known to regulate adherens junctions by 
mechanisms that are not fully understood but appear to involve 
antagonism of Rho via p120‑catenin and p190RhoGAP.52 Given 
the membrane localization of ERK in chimaerin‑deficient cells, it is 
tempting to speculate that ERK phosphorylates targets responsible 
for adherens junction stability. Activation of ERK signaling disrupts 
adherens junctions in some cell lines,53,54 while impairment of ERK 
signaling by loss of its activator, prohibitin, leads to an increase in the 
strength of adherens junctions.55

Many important questions remain: if b2‑chimaerin is a target for 
down regulation in cancer, how many other GAPs are also involved 
in cancer signaling? Is the down regulation of b2‑chimaerin a general 
principle in tumor progression from epithelia, or is this phenomenon 
limited to a small subset of tumors? Can small molecules be found 
that specifically modulate the activity of b2‑chimaerin, and would 
they be useful as cancer therapeutics? Given recent progress in the 
field, we anticipate that answers to these and other questions will be 
elucidated in the near future as the role of the chimaerins in cancer 
signaling is explored in more detail.

Table 1	 Rho family GAPs and GEFs that are mutated 
	 or differentially expressed in human cancers
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