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Research performed in the last few 
years has revealed important roles 

for the spatial and temporal organiza-
tion of the genome on genome function 
and integrity. A challenge in the field is 
to determine the molecular mechanisms 
involved in the organization of genome 
function. A-type lamins, key structural 
components of the nucleus, have been 
implicated in the maintenance of nuclear 
architecture and chromatin structure. 
Interestingly, alterations of A-type lamins 
lead to defects in DNA replication and 
repair as well as gene transcription and 
silencing. Elucidating the functions of 
these proteins is a topical subject since 
alterations of A-type lamins are associ-
ated with a variety of human diseases, 
ranging from muscular dystrophies and 
premature aging syndromes to cancer. 
Here, we discuss novels roles for A-type 
lamins in the maintenance of telomere 
structure, length and function as well as 
in the stabilization of a key DNA damage 
response factor. These studies support 
the notion that increased genomic insta-
bility due to defects in telomere biology 
and DNA repair contribute to the patho-
genesis of lamin-related diseases.

Introduction

The human genome is organized into dif-
ferent levels of complexity. Packaging of 
DNA into different chromatin states and 
3D nuclear organization of the genome are 
emerging as additional levels of regulation 
of genome function.1-3 Changes in nuclear 
architecture and chromatin structure are 
associated with disease. For example, alter-
ations of nuclear morphology in tumor 
cells have remained the gold standard for 

cancer diagnosis.4 However, for the most 
part, the functional interplay between 
genome organization and function is 
poorly understood both in normal tissue 
homeostasis and during tumorigenesis.

A recent study has shown that large 
domains of the human genome interact 
with the nuclear lamina. These lamina-
associated domains (LADs), which vary 
in size between 0.1 and 10 megabases, 
are gene-poor regions enriched in repres-
sive chromatin marks. The boundaries of 
LADs are sharply demarcated by putative 
insulators such as the CTCF protein, CpG 
islands, and gene promoters oriented away 
from the lamina.5 A-type lamins—lamins 
A and C—are intermediate filament pro-
teins that form part of the nuclear lamina 
and a nucleoplasmic network. They are 
thought to play a scaffolding role for teth-
ering chromatin to specific subcompart-
ments, which in turn serves to organize 
nuclear processes.6-8 In fact, depletion of 
A-type lamins or expression of mutant 
forms of the proteins leads to defects in 
chromatin remodeling and in the 3D orga-
nization of the genome, as exemplified by 
loss of heterochromatin from the nuclear 
periphery.9,10 Interestingly, changes in the 
expression of A-type lamins are observed 
in leukemias, lymphomas, small cell 
lung and ovarian cancer, as well as colon 
carcinoma, often associated with poor 
prognosis.11-13 The cellular mechanisms 
affected by these malignancy-associated 
alterations of A-type lamins are only 
beginning to be unraveled.14

Alterations of telomere biology and 
defects in repair of DNA damage are 
among the leading causes for genomic 
instability, and clear contributors to aging 
and cancer phenotypes. Loss of telomere 
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of telomere structure and function.26 
Similarly, the acquisition of a heterochro-
matic structure at mammalian telom-
eres is critical for the control of telomere 
homeostasis.27 The importance of telom-
ere compartmentalization for telomere 
function has been clearly demonstrated 
in yeast.28 In Saccharomyces cerevisiae or 
budding yeast, telomeres are clustered in 
3–8 foci at the nuclear periphery.29,30 At 
least two redundant mechanisms have 
been identified that mediate tethering of 
telomeres to the periphery. One mecha-
nism involves yKu70/Ku80 heterodimer, 
which associates with the telomerase 
complex Est1/Est2/Tlc1, and an inte-
gral inner nuclear membrane protein of 
the SUN domain family, Mps3.31,32 A 
second mechanism involves the histone 
deacetylase Sir4, which binds to the inner 
nuclear membrane-associated protein 
Esc1 (Enhancer of silent chromatin 1)33-

35 (Fig. 1). Importantly, disruption of 
the tethering of telomeres to the nuclear 
periphery leads to deprotection and hyper-
recombination of telomeres,32 and dere-
pression of subtelomeric genes.28 In the 
case of Sir4, inactivating mutations also 
involve telomere shortening,36 suggesting 
a link between telomere localization at 
the nuclear periphery and maintenance of 
length homeostasis.

Mammalian telomeres do not accu-
mulate at the nuclear periphery, except 
during meiosis.37 They are distributed 
throughout the entire nucleoplasm in G

1
 

and S phases of the cell cycle, while assem-
bling in the center of the nucleus during 
G

2
 in preparation for mitosis38 (Fig. 1). 

Interactions between telomeres and the 
nuclear matrix have been proposed to 
determine their localization in the nuclear 
space.39,40 Tracking 3D trajectories of fluo-
rescently labeled telomeres in a broad time 
range has provided new information about 
telomere dynamics within the nucleus. At 
short time scales, the diffusion of telom-
eres is anomalous, while at longer time 
scales a normal diffusion is observed with 
a wide distribution of diffusion constants. 
This transient anomalous diffusion was 
explained by the existence of a local bind-
ing or obstruction mechanism to telomere 
mobility.41 To date, the molecular mecha-
nisms that orchestrate nuclear tethering 
and localization of mammalian telomeres, 

impact on the stability of the genome. 
DNA double-strand breaks are especially 
dangerous because their inefficient repair 
can result in genetic translocations, dele-
tions, chromosome fusions and loss of 
genomic information, leading in certain 
cases to cellular transformation.19-21

In recent years, various lines of evidence 
have linked laminopathies with increased 
genomic instability. In particular, the 
expression of A-type lamins mutant iso-
forms has been associated with defec-
tive DNA repair.22,23 Our recent findings 
reveal that loss of A-type lamins impacts 
on the maintenance of telomeres and a 
proper DNA damage response.

Nuclear Organization of  
Telomeres

Telomeres are nucleoprotein structures 
that protect the ends of eukaryotic chro-
mosomes.15,24,25 A minimal length of telo-
meric DNA repeats and proper binding 
of specialized proteins such as shelterin 
complex components and DNA repair 
factors are required for the maintenance 

integrity by attrition of telomere repeats 
below a critical threshold, or by defects in 
the binding of telomeric proteins is sensed 
by the cell as DNA double-strand breaks 
(DSBs), which activates checkpoint 
pathways.15 The DNA-damage response 
(DDR) can be considered a signal trans-
duction pathway where the DNA damage 
is detected by “sensors” that trigger the 
activation of a transduction system com-
posed of protein kinases and a series of 
“mediators”, which in turn activate “effec-
tors” that delay cell cycle progression until 
the damage is removed.16,17 DNA dam-
age repair occurs via high fidelity repair 
by the homologous recombination (HR) 
pathway, and the less accurate non-homol-
ogous end-joining (NHEJ) pathway. In 
the case of dysfunctional telomeres, the 
primary DDR is activation of the NHEJ 
pathway, leading to chromosome end-to-
end fusions.18 Telomere dysfunction leads 
to a permanent growth arrest, which can 
be bypassed by inactivation of tumor 
suppressor mechanisms, contributing to 
genomic instability. Similarly, defects in 
the repair of DNA lesions have a profound 

Figure 1. Nuclear organization of telomeres. (a) in budding yeast, association of telomeres to 
the nuclear envelope is mediated by two redundant mechanisms. One involves yKu70/Ku80 het-
erodimer, which tethers telomeres to the nuclear periphery via interaction with the telomerase 
complex Est1/Est2tlc1, and the SUN domain protein Mps3. in the second mechanism, Sir4 serves 
as a bridge between telomeres and the nuclear membrane protein enhancer of silent chromatin 
1 (Esc1). (B) in mammals, telomeres are distributed throughout the entire nucleoplasm. a-type 
lamins, key structural components of the nuclear matrix, contribute to their localization in the 3D 
nuclear space.
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tethering of heterochromatic domains 
such as telomeres and centromeres to the 
scaffold of A-type lamins (Fig. 2).

A-Type Lamins and Telomere 
Structure, Length and Function

The first evidence supporting a role for 
A-type lamins in telomere biology came 
from studies of patients with Hutchinson 
Gilford Progeria Syndrome. HGPS or 
progeria is a premature aging disease 
caused by a mutation in the LMNA gene 
that generates a truncated lamin A iso-
form known as progerin, which is toxic 
for the cell.50,51 HGPS fibroblasts were 
shown to undergo faster telomere attri-
tion during proliferation than normal 
counterparts.52,53 Fibroblasts from HGPS 
patients and aged individuals also present 
defects in epigenetic marks characteristic 
of constitutive heterochromatin, although 
the effect on telomeres was not tested.54,55 
The mechanism by which mutation in the 
LMNA gene resulting in the expression 

bind telomeric sequences by chroma-
tin immunoprecipitation, we do not 
know whether the interaction is direct 
or mediated by lamin-associated pro-
teins. LAP-2α is of special interest given 
that it binds to telomeres during nuclear 
reassembly after mitosis.47 In addition, 
LAP-2α mediates the interaction of Rb 
with A-type lamins, contributing to the 
stabilization of Rb family function,48 and 
is the only member of its family that is 
localized throughout the nucleoplasm. 
All these characteristics make LAP-2α a 
good candidate for mediating telomeres 
tethering to A-type lamins. From the 
telomere end, it is possible that compo-
nents of the shelterin complex associate 
with A-type lamins or lamin-associated 
proteins localized at the nucleoplasm. 
Alternatively, A-type lamins might rec-
ognize heterochromatic features at the 
telomere. Heterochromatin Protein 1 
(HP1) has been shown to form a com-
plex with A-type lamins and LAP-2α,49 

and therefore could participate in the 

and their relevance for telomere metabo-
lism remain unknown.42

Interestingly, the 3D organization of 
telomeres is altered in tumor cells,38,43 and 
in senescent cells that present defects in 
the nuclear lamina.44 This data suggests a 
relationship between changes in nuclear 
distribution of telomeres and alterations 
of telomere metabolism observed dur-
ing senescence and immortality. A recent 
study in our laboratory has shown that 
A-type lamins bind to mouse telomeres 
and participate in their nuclear com-
partmentalization.45 Embryonic fibro-
blasts from LMNA null mice exhibit 
changes in the nuclear distribution of 
telomeres towards the nuclear periphery 
and away from the nuclear center. This 
result was unexpected, since lamins are 
highly enriched at the nuclear periphery. 
However, while B-type lamins are exclu-
sively found at the nuclear periphery, 
lamins A and C are proposed to form part 
of a filamentous meshwork that expands 
throughout the entire nucleoplasm. We 
speculate that A-type lamins actively 
participate in the distribution of telom-
eres throughout the nucleus (Fig. 2). In 
the absence of A-type lamins, proteins 
at the nuclear periphery such as B-type 
lamins, inner nuclear membrane pro-
teins or nuclear pore complex proteins, 
could undertake the tethering of telom-
eres. In this model, the nuclear periph-
ery would represent a default pathway for 
telomere distribution, resembling telom-
ere localization in yeast, which do not 
express lamins. This model is supported 
by a study in human cells showing that 
intranuclear lamina structures colocalize 
with telomeres in human mesenchymal 
stem cells, and that expression of mutant 
isoforms that accumulate in the nucleo-
plasm increased the association of telom-
eres to lamins in these cells.44 This study 
supports the idea that A-type lamins 
help tether telomeres throughout the 3D 
nuclear space.

Prospect studies need to characterize 
the molecular determinants of the asso-
ciation of A-type lamins with telomeres. 
A-type lamins can bind directly to DNA-
chromatin and indirectly via their inter-
action with lamin-associated proteins 
such as LAP-2α, emerin and MAN1.6,46 
Although we found that A-type lamins 

Figure 2. a-type lamins as a scaffold for tethering telomeres. we propose that telomeres associ-
ate with a-type lamins either directly or via lamin-associated proteins such as LaP-2α. Shelterin 
complex components or heterochromatic features at the telomere might mediate the tethering. 
the scaffold provided by the lamins actively participates in the nuclear distribution of telomeres. 
in this model, the nuclear periphery represents a default pathway for telomere localization, which 
is revealed upon loss of a-type lamins.
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that A-type lamins play a key role in the 
control of telomere length. However, we 
do not know the mechanism behind the 
telomere shortening phenotype observed 
in A-type lamins-deficient cells. The lev-
els of telomerase activity and the bind-
ing of the shelterin complex components 
TRF1 and TRF2 were not affected by 
the loss of A-type lamins. Similarly, we 
did not observe any evidence of aberrant 
recombination at telomeres, which could 
explain the loss of telomeric sequences. 
It is possible that the binding of other 
shelterin complex components or DNA 
repair factors with a function at the 
telomere could be defective in LMNA 
null cells. Alternatively or concomitantly, 
loss of A-type lamins might hamper the 
accessibility of telomerase or other pro-
teins implicated in telomere metabolism, 
especially factors implicated in telomere 
replication.

Maintenance of a heterochromatic 
structure at telomeres is also critical for 
the control of telomere length. Previous 
studies demonstrated that loss of hetero-
chromatic features such as methylation 
of histones H3 and H4 at different lysine 
residues and methylation of subtelomeric 
DNA results in a pronounced telom-
ere elongation phenotype.42,57-59 In most 
cases, telomere elongation correlated with 
an increase of telomere sister chromatid 
exchange (T-SCE) events, characteristic of 
the activation of Alternative Lengthening 
of Telomeres (ALT) pathway of telomere 
maintenance.60,61 We found that loss of 
A-type lamins results in decreased levels 
of the heterochromatic mark H4K20me3-
histone H4 trimethylated at lysine 20. 
This defect is likely due to the fact that 
Rb family members, which have a known 
role in the stabilization of this chromatin 
modification, are targeted to degradation 
by the proteasome upon loss of A-type 
lamins.62 However, contrary to the telom-
ere elongation phenotype characteristic of 
Rb-deficient cells63,64 and H4K20me3-
deficient cells (Suv4-20 h dn),65 the loss 
of Rb or decrease in H4K20me3 was 
not sufficient to trigger telomere elonga-
tion in the context of A-type lamins defi-
ciency. Thus, A-type lamins, or a process 
regulated by these proteins, are necessary 
for the elongation of telomeres upon loss 
of Rb family members and decrease of 

are consistently shorter than the corre-
sponding wild-type controls, and exhibit 
an increase in signal-free ends (loss of 
telomeric signals).45 Furthermore, acute 
depletion of A-type lamins by shRNAs 
specific for depletion of lamins A and C, 
leads to telomere shortening after only 
a few passages of the cells in culture as 
determined by Quantitative Fluorescence 
In Situ Hybridization (Q-FISH) with a 
telomeric probe. Most importantly, rein-
troduction of either lamin A, lamin C, or 
both by retroviral transduction of A-type 
lamins-depleted cells rescues the telomere 
shortening phenotype to varying degrees 
(Fig. 3). Reintroduction of lamins lead to 
a significant increase in average telomere 
length, as well as a decrease in the pool 
of short telomeres and an increase in the 
pool of long telomeres. These data indicate 

of progerin leads to telomere shortening 
remains unknown. Additional evidence 
of a crosstalk between A-type lamins and 
telomeres was provided by studies show-
ing that telomerase rescues proliferative 
defects of human fibroblasts expressing 
lamin A mutants,56 and that senescence-
associated alterations of the nuclear lam-
ina are accompanied by aggregation of 
telomeres to the nuclear lamina.44

Despite the importance of telomere 
maintenance for cancer progression, the 
impact that the loss of A-type lamins that 
characterizes certain tumor types has 
on telomere biology remained undeter-
mined. Our study using LMNA knock-
out mouse fibroblasts as a model revealed 
that A-type lamins play a key role in the 
maintenance of telomere structure, length 
and function. Telomeres in Lmna-/- mice 

Figure 3. a-type lamins play a role in maintenance of telomere length. (a) western blot to 
detect the levels of lamins a/C upon lentiviral transduction of wild-type MEFs with constructs 
carrying a shRNA specific for lamins A and C (shLmna), or a shLucif control (left two lanes). The 
right four lanes show levels of lamins after retroviral transduction of lamins a/C-depleted MEFs 
with cDNas for GFP, lamin a, lamin C or both. Note how lentiviral transduction with shLmna 
efficiently depletes A-type lamins, and retroviral transduction with cDNAs for lamins A and C res-
cues the cellular levels of the proteins. (B) Q-FiSH analysis to measure telomere length of MEFs 
after depletion of a-type lamins (compare shLmna and shLucif), and after reconstitution of lamin 
a, lamin C or both into lamins a/C-depleted MEFs. Note the decrease in average telomere length 
upon depletion of A-type lamins after only five passages of the cells in culture, and the telomere 
elongation induced by reconstitution of a-type lamins.
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cells, although this point remains to be 
clearly demonstrated. It is possible that in 
addition to maintaining 53BP1 stability, 
A-type lamins play an active role in the 
DDR and in the 53BP1-mediated regula-
tion of mobility and NHEJ of dysfunc-
tional telomeres.

Concluding Remarks

In recent years, interest in A-type lamins 
has increased due to the association of 
alterations of these structural nuclear pro-
teins with a variety of human diseases, 
including premature aging syndromes 
and cancer. The molecular mechanisms 
contributing to the phenotypes of lamin-
related diseases are only beginning to be 
uncovered. We have summarized here 
recent data indicating that loss of A-type 
impacts telomere structure, length and 
function as well as the stability of 53BP1, 
a key factor in the DNA damage response 
also implicated in NHEJ of dysfunctional 
telomeres. Future studies need to deter-
mine if loss of A-type lamins affects the 
maintenance of telomeres and the stability 
of 53BP1 in human cells, contributing to 
the genomic instability that drives malig-
nancy. In addition, it must be determined 
if alterations of these processes play a role 
in the pathophysiology of the different 
laminopathies resulting from mutations 
in the LMNA gene.
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