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Genome Biology

Exploration of bacterial community classes in

major human habitats

Yanjiao Zhou'*, Kathie A Mihindukulasuriya', Hongyu Gao?, Patricio S La Rosa’, Kristine M Wylie'*, John C Martin’,
Karthik Kota', William D Shannon?, Makedonka Mitreva', Erica Sodergren' and George M Weinstock'"

Abstract

Human Microbiome Project.

clinical phenotypes.

Background: Determining bacterial abundance variation is the first step in understanding bacterial similarity between
individuals. Categorization of bacterial communities into groups or community classes is the subsequent step in
describing microbial distribution based on abundance patterns. Here, we present an analysis of the groupings of
bacterial communities in stool, nasal, skin, vaginal and oral habitats in a healthy cohort of 236 subjects from the

Results: We identify distinct community group patterns in the anterior nares, four skin sites, and vagina at the genus
level. We also confirm three enterotypes previously identified in stools. We identify two clusters with low silhouette
values in most oral sites, in which bacterial communities are more homogeneous. Subjects sharing a community class
in one habitat do not necessarily share a community class in another, except in the three vaginal sites and the
symmetric habitats of the left and right retroauricular creases. Demographic factors, including gender, age, and
ethnicity, significantly influence community composition in several habitats. Commmunity classes in the vagina,
retroauricular crease and stool are stable over approximately 200 days.

Conclusion: The community composition, association of demographic factors with community classes, and

demonstration of community stability deepen our understanding of the variability and dynamics of human
microbiomes. This also has significant implications for experimental designs that seek microbial correlations with

Background

Knowledge of the composition, distribution and variation
of bacteria in the human body has grown dramatically in
the past decade. Different human habitats are composed of
distinct microbial populations [1-8]. The range of abun-
dance of components of the human microbiome extends
over many orders of magnitude [9]. Inter-subject variation
in bacterial community structure is also extensive in healthy
humans [4,7]. Determination of the extent of the variability
of the human microbiome is, therefore, crucial for under-
standing the microbiology, genetics, and ecology of the
microbiome as well as for practical issues in experimental
design and interpretation of clinical studies. In addition,
the human microbiome is subjected to a continual flux
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of organisms from air, food, and other sources, transfer of
organisms between body habitats through routine activity,
cyclical changes in the physiology of body habitats on daily,
monthly, and other timescales, which create changing
selective pressures for each organism. Thus, temporal
changes in bacterial communities (community stability) are
also an important component of microbiome variation.
Evaluation of inter-subject variation is the first step to
understanding the bacterial distribution in the human
population. Furthermore, categorization of subjects based
on the similarity or dissimilarity of their microbiota into
groups by clustering techniques will not only help to re-
veal the bacterial distribution pattern in the population,
but also facilitate our understanding of the underlying
causes or the clinical association of specific types of mi-
crobial distributions. Indeed, recent data suggest the feasi-
bility of such operational clustering. Specifically, the
vaginal flora of asymptomatic women identified five
groups by hierarchical clustering [6,10]. The five groups
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were defined based on the species or genera they con-
tained. Race was found to be associated with the groups.
Similar studies on microbial populations in stool samples
identified three enterotypes [11]. Another approach iden-
tified two stool enterotypes by k-means clustering and
found that long-term diet was associated with enterotypes
[12], which emphasized the biological significance of these
enterotypes. Old Amish stool microbiota is disproportion-
ally of the Prevotella enterotype [13]. Enterotypes have
been discovered not only in humans, as recent studies
have described two and three enterotypes in mice and
chimpanzees, respectively, which resembled the human
stool enterotypes [14,15].

Several studies have not favored the enterotype concept
[16-18]. Those studies focused on the stool microbiome
distribution pattern in the human population, concluding
that the stool microbiota was not a discrete distribution
(three or two enterotypes) but rather a smooth gradient.
Another issue is the appropriate number of clusters in the
enteric bacterial community, for example, two or three
stool enterotypes. These discussions largely emphasize the
technical challenges in clustering data, and de-emphasize
the value of categorization, namely, to codify and simplify
relationships in a complex system and explore sensible
biological groupings. A recent investigation on entero-
types across all the human body using the Human Micro-
biome Project (HMP) data showed that the enterotypes
were affected not only by the data structure, but also by
the methods applied in the clustering, such as clustering
algorithms and distance measures [17]. These issues of
clustering methodology are not surprising, since similar
issues were previously seen in comparisons of clustering
approaches for microarray data [19-21].

Because previous enterotype analysis of the HMP data is
more technically orientated [17], biological inferences
from the categorization are limited. Here, we used HMP
16S rRNA gene data from over 200 subjects, 18 body sites
and two time points to interrogate the associated biology
and explore the potential underlying mechanisms of the
groups generated by two widely used clustering ap-
proaches. Because ‘enterotype’ originally referred to the
microbiota type in stool, here we use an ecological term,
‘community class; to refer to the clusters we identified in
different habitats based on our cluster identification criter-
ion, and use the generic term ‘cluster’ to refer to the
groups of bacteria that do did not meet our criterion. We
have identified three stool enterotypes and various com-
munity classes in the other 17 body habitats from the
HMP 16S rRNA gene data and metagenomic shotgun
data. We found association of demographic factors with
different community classes. Also, for the first time we
systematically assessed the stability of community classes
and compared the subject composition in each commu-
nity class from different habitats.
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Results

Identification of community classes in human microbiota
Currently, there is no uniform statistical approach to de-
termine the presence and optimal number of clusters or
community classes from metagenomic samples [6,11].
Multiple approaches are recommended because the clus-
tering approach is sensitive to the data sets [17]. We ex-
plored the community classes in each body site using
both hierarchical clustering (complete linkage) and fuzzy
k-means clustering with Bray-Curtis distances. The opti-
mal number of clusters for a given habitat was deter-
mined by the silhouette method, a criterion used to
choose the optimal number of clusters in previous enter-
otype studies [10-12]. The silhouette value is a measure
of within and between cluster similarities. The number
of clusters with the highest silhouette value is the opti-
mal number of clusters in a data set. Twelve of eighteen
sites had equal or higher silhouette values using hier-
archical clustering with complete linkage, compared with
k-means clustering (Table S1 in Additional file 1). The
cluster similarities between different approaches and
linkages used for hierarchical clustering are summarized
in Table S2 in Additional file 1.

Three community classes from stool were determined
based on the averaged silhouette statistics (silhouette =
0.25 for three clusters). This clustering solution resulted
in clusters of size N=128, N=15, and N =66, which
correspond to the Bacteriodes, Prevotella and Rumino-
coccus enterotypes identified from 39 European subjects
[11], referred to as MetaHIT, as illustrated by principal
coordinate analysis (PCoA) (Figure 1). It should be
noted that the silhouette value only differs by 0.04 be-
tween two and three enterotypes.

To determine the effect of sample size on the number
of clusters, we randomly subsampled 50, 100, 150 and
180 samples 100 times from the total 209 stool samples
and computed the frequency of 2, 3, 4, and 5 clusters as
the optimal cluster number in hierarchical clustering. At
the subject scale, 52 of 100 subsamplings supported 2
clusters as optimal. With increasing numbers of subjects
the frequency that 3 clusters was the optimal number
increased to 72 of 100 subsamplings (Figure S1 in
Additional file 2). This suggests that sample size as well
as subject composition affects the number of clusters.

To further test the reliability of the clusters generated,
we used two external confirmation methods. First, we
clustered our data using an alternative approach. The
209 HMP stool samples were clustered using k-medoids
with Jensen-Shannon divergence. This approach was
identical to the approach used by the MetaHIT group
[11], and generated the three clusters they identified
with the highest silhouette values=0.17 (Figure S2 in
Additional file 2). The silhouette values for three clusters
in the k-means clustering were less than those generated
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Figure 1 Examples of community classes of human body habitats as illustrated by PCoA. PCoA was used to visualize the community
classes in different habitats. Samples are color-coded according to their community classes within the habitat. Only the major community classes
from retroauricular crease are colored. The community classes show better separation in retroauricular crease and vaginal sites with higher
silhouette values, and a less clear separation in stool and anterior nares with lower silhouette values.

anterior nares

Moraxella

by hierarchical clustering (0.17 versus 0.25), suggesting
that the latter technique performs better with the stool
data type.

Although the same three enterotypes were generated
by both clustering approaches, the prevalence of the
specific enterotypes among the sampled subjects dif-
fered. Using hierarchical clustering, 61.2%, 31.6% and

7.2% of the stool samples were assigned to Bacteroides,
Ruminococcus and Prevotella community classes, re-
spectively. Using the MetaHIT approach, 47.4%, 42.1%
and 10.5% of the stool samples were grouped to the
above community classes.

To further confirm the validity of the clusters, whole
genome shotgun (WGS) sequencing was conducted on 81
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of the 209 samples. Applying our clustering/silhouette
process to the metagenomic shotgun data recapitulated
the same number and type of clusters as found with the
larger sample size 16S rRNA gene and the MetaHIT data.
Hence, the clusters were not due to bias from the amplifi-
cation step of the 16S rRNA gene sequencing protocol.

Community classes were similarly determined for the
rest of the 17 habitats. Silhouette values are similar for
different numbers of clusters tested in the skin and vagi-
nal sites (Table S1 in Additional file 1). For example, the
average silhouette values for two to nine clusters in the
right retroauricular crease ranged from 0.51 to 0.52. Al-
though the high silhouette values suggest that there were
true clusters in this habitat, the optimal number of clus-
ter was undetermined. The structure of this habitat
always involved a single large cluster with high silhou-
ette value and a variable number of smaller clusters
(Figure S3 in Additional file 2), and the indeterminacy
was due to estimating the number of these smaller clus-
ters. Manual inspection of clusters determined the opti-
mal number of clusters under this condition: placement
of 158 samples from the right retroauricular crease in
one cluster produced a very high silhouette value (0.59),
while placement of 31 samples in the other cluster re-
sulted in a silhouette value of 0.15. Further dividing of
the 31 samples into two clusters resulted in much higher
silhouette values (0.49) for the 19 samples in the first
cluster, but an even lower value for the 12 remaining
subjects (0.007). The latter value suggests that the
bacterial community structures from the group of 12
subjects were very heterogeneous, prompting assign-
ment of these samples as different clusters. Based on the
above inspection of the silhouette values from individual
groups and the taxonomic profiling from the dendro-
gram (Figure S6 in Additional file 2), we chose six clus-
ters as the optimal number for the right retroauricular
crease. Most subjects had high silhouette values for
the six clusters, suggesting the cluster solutions are ap-
propriate. A subset of samples had negative silhouette
values, indicating improper grouping. For example, the
subject with a negative silhouette value at the top of
Figure S3 in Additional file 1 was grouped into Staphylo-
coccus community classes with 16% of the Staphylococ-
cus and 68% of Helicobacter. The relative abundances of
Helicobacter in the rest of the subjects are low (<1%);
thus, this subject is inappropriate to be grouped in any
clusters. In general, subjects with negative silhouette
values are regarded as outliers. These subjects with
unique bacterial community structure are not surprising
considering the heterogeneity of the skin microbiota.
Manual inspection, following the logic described above,
was necessary for the three vaginal sites and four skin
sites where silhouette values were similar between two
or more clusters.
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Table 1 summarizes the optimal number of community
classes, corresponding silhouette values, and the number of
subjects in each community class. Silhouette values for the
optimal number of clusters vary by habitat. Three to six
classes for skin sites and two to three classes for the vagina
were identified with high silhouette values (>0.5), indicating
that community classes at these sites were well-defined
(Figure 1) [22]. We also identified the five community clas-
ses (four driven by the genus Lactobacillus and one by an-
aerobic genera) in a subset of posterior fornix samples
using WGS data, as previously reported [6,10]. Strain level
analysis achieved finer resolution. The Lactobacillus gasseri
group was divided into two subgroups occupied by the
same species but different strains of L. gasseri (Figure S4 in
Additional file 2). Interestingly, two anaerobic community
classes were identified in the posterior fornix: Gardnerella
dominated one community class, while Prevotella and Ato-
pobium dominated the other. Although it was well known
that all three genera were associated with vaginosis, our re-
sult calls attention to further categorization of these bac-
teria in healthy subjects as well.

The remaining habitats presented relatively low silhou-
ette values. Four community classes were identified from
166 anterior nares samples (silhouette = 0.24; Figure 1).
Except for keratinized gingiva, buccal mucosa and hard
palate, the silhouette values in the rest of the oral sites
were <0.2, suggesting that the bacterial communities in
these habitats were more homogenous [23]. However,
biologically interesting community classes were identifi-
able in some of the habitats with silhouette values <0.2,
as addressed below.

The number of community classes was not consistent
among similar sites. Symmetric sites, the left and right
retroauricular creases, have three and six community
classes, respectively, while the left and right antecubital
fossas have five and six community classes, respectively.
However, both retroauricular crease sites contained the
same dominant community classes defined by Coryne-
bacterium, Staphylococcus and Propionibacterium. The
difference in the less dominant community classes is
partly because the source subjects for the left and right
site samples did not completely overlap. The high degree
of inter-variation among the skin microbial community
can produce some unique community classes in a small
subset of subjects. The three vaginal sites are proximal,
but contained different numbers of community classes.
Most subjects were dominated by Lactobacillus. A small
proportion of the subjects were dominated by one or
two groups of anaerobic genera.

Habitat classification and indicator taxa of community classes
In the high silhouette value habitats (>0.5), such as the
retroauricular crease, many samples from the main com-
munity class (Propionibacterium community class) were
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Table 1 Summary of community classes and their stability in human habitats
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Habitat type Habitats

Silhouette value Clusters Membership

Dominant genera

ARI for two visits

Type | Posterior fornix 0.86 3 3/5/80 Gardnerella / Prevotella / Lactobacillus 0.57
Mid-vagina 0.78 2 7/81 Anaerobic genera / Lactobacillus 0.58
Vaginal introitus 0.66 2 13/67 Anaerobic genera / Lactobacillus 044
Left retroauricular crease 0.6 3 6/14/158 Corynebacterium / Staphylococcus / 0.56
Propionibacterium

Right retroauricular crease  0.52 6 4/4/4/4/19/154  Neisseriaceae_Unclassified®/ Corynebacterium / 047
Pelomonas / Anaerococcus / Staphylococcus /
Propionibacterium

Type Il Left antecubital fossa 0.30 5 2/6/7/28/30  Sporacetigenium / Staphylococcus / Ralstonia/ 0.07

Propionibacterium / Corynebacterium

Right antecubital fossa 037 6 3/3/4/6/8/61  Streptophyta / Corynebacterium / Staphylococcus / 0.16
Streptococcus / Haemophilus® / Propionibacterium

Keratinized gingiva 032 2 59/140 Prevotellaceae_Unclassified / Streptococcus 037

Buccal mucosa 0.28 2 32/153 Haemophilus / Streptococcus 0.12

Hard palate 0.25 2 10/183 Veillonella /Streptococcus 0.04

Anterior nares 0.24 4 8/13/44/101  Moraxella / Staphylococcus / Propionibacterium / 0.26
Corynebacterium

Stool 0.25 3 15/66/128 Prevotella / Ruminococcaceae® / Bacteroides 0.26

Tongue dorsum 0.18 3 35/77/94 NA

Subgingival plaque 0.21 2 97/104 NA

Throat 0.19 2 91/93 NA

Supragingival plaque 0.15 2 97/111 NA

Palatine tonsils 0.17 2 96/103 NA

Saliva 0.14 2 89/93 NA

Neisseriaceae in retroauricular crease and Ruminococcaceae in stool are the dominant orders (not genera).

PA heterogeneous group.

ARI, Adjusted Rand Index; NA, not applicable (indicator genera are not shown because of very low silhouette value).

tightly clustered, while the remainder of the samples
formed smaller community classes, in which only a few
subjects were included (Figure 1). On the other hand, in
community classes in the relatively low silhouette value
habitats (0.25 to 0.5), such as stool and anterior nares,
samples were less tightly clustered than for the high sil-
houette value habitats.

To examine the structure underlying different commu-
nity classes, we correlated the alpha diversities (number
of taxa within a sample) and the silhouette values in the
18 habitats. As indicated by Figure S5 in Additional file
2, silhouette values are strongly negatively correlated
with the Shannon diversities (Pearson correlation =
0.96). In particular, the two lowest alpha diversity habi-
tats, vagina and retroauricular crease, had the highest
silhouette values of the clusters, and the high alpha
diversity habitats (saliva) exhibited low average silhou-
ette values of its clusters. Based on the alpha diversity
and silhouette values, the 18 habitats were divided into
two types: type I (low diversity with median Shannon
index <1.5 and high silhouette value) and type II (high
diversity and low silhouette values) habitats. Type I habi-
tats with low alpha diversity (Figure 1) were dominated

by one genus. For example, Lactobacillus was present in
each of the vaginal samples with an average abundance
of 92% in the tightly clustered subgroup. Alternatively,
bacterial communities in type II habitats were domi-
nated by different genera to different degrees, leading to
highly diverse communities. This diversity was reflected
in the clusters, where samples were less tightly clustered
than in type I habitats (Figure 1).

The definition of community class is based on the
relative abundance of genera in bacterial communities.
Certain key taxa are assigned as indicators, whose
presence, absence, and relative abundance characterize
that community class [24]. Indicator taxa were deter-
mined using the Dufrene-Legendre Indicator Species
approach [25].

Type | habitats

The left and right retroauricular crease share three of
the same three community classes (Propionibacterium,
Staphylococcus, Corynebacterium) and most subjects
were found in these three community classes. We used
the left retroauricular crease as an example to show the
indicator taxa that differentiate the community classes.
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While Propionibacterium is ubiquitously present on the
skin of the healthy population, the median relative abun-
dance is 86.5% in the Propionibacterium community
class, but only 8.3% and 11.4% in the other community
classes (Figure 2A). Likewise, the Staphylococcus com-
munity class features high abundance Staphylococcus
(median relative abundance 55.0%), compared with
6.4% and 19.8% in the other community classes. The
median relative abundance of Corynebacterium is 41.7%
in the Corynebacterium community classes and 0.6%
and 10.8% in other classes. Differentiation of community
classes also involves less abundant taxa. In total, 14 taxa
were significantly different between the community clas-
ses of the left retroauricular crease samples (P<0.01;
Table S3 in Additional file 1).

Using mid-vagina as a vaginal habitat representative,
we determined indicator genera for the vaginal commu-
nity classes. The relative abundance of Lactobacillus
ranges from 31.3% to 99.9% in the Lactobacillus com-
munity class. In the anaerobic community class, Lacto-
bacillus is less abundant while the anaerobic genera,
such as Prevotella, Sneathia, Bifidobacterium, Mega-
sphaera, Dialister, and Atopobium, are more abundant
(Table S3 in Additional file 1). These genera are reported
to be vaginosis-associated genera [26].

Type Il habitats

The top four most abundant genera in the anterior nares
are Corynebacterium, Propionibacterium, Staphylococcus,
and Moraxella, each of which is the dominant genus
for a distinct community class (Figure 2B; Table S3 in
Additional file 1). Each of these genera contains pathogenic
species, suggesting that the anterior nares is a potential
reservoir for pathogens.

Characterization of anterior nares bacterial communities
in 40 individuals by 16S rRNA fingerprinting based on
single-strand conformation polymorphisms demonstrated
10 clusters with the majority of subjects (36 of 40)
grouped into five clusters [27]. Four of these clusters
were identified in our analysis, the exception being a
Finegoldia group. In our 16S rRNA gene data set Finegoldia
was present in only one of the samples, and with very
low abundance. Finegoldia is isolated most frequently
from various infected sites [28], and is less common in
healthy subjects.

Five and six community classes were identified in the
left and right antecubital fossa samples, respectively.
Three of these, dominated by Propionibacterium, Cor-
ynebacterium, and Staphylococcus, were also found in
the retroauricular crease samples. However, Propionibac-
terium abundance in the Propionibacterium community
class of antecubital fossa is lower than that in retroauri-
cular crease (average of 61.6% of the community com-
pared with 92%), it is still 5-fold more abundant than in
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the other community classes. In total, 24 indicator gen-
era were identified among the 7 community classes
(Table S3 in Additional file 1).

In the MetaHIT study, the Ruminococcus type is the
most frequent enterotype in stool, followed by Bacter-
oides and Prevotella [11]. In our analysis, most of the
subjects were grouped to Bacteroides followed by Rumi-
nococcus and Prevotella. The average abundance of Bac-
teroides in our data set is 55%, in contrast to the average
abundance of 35% in the other study (Figure 2C) [11].
There are methodological as well as demographic differ-
ences in the subjects in these studies, so the quantitative
differences are not surprising.

It is difficult to delimit clusters in most oral sites due
to the homogeneity of bacterial communities. We never-
theless observed biologically important groups in the
subgingival plaque in this healthy cohort. We found that
the subgingival plaque from 122 subjects was inhabited
by periodontitis-associated genera such as Treponema
and/or Porphyromonas with a median relative abun-
dance of 4.3% and 3.9%, compared with 0.05% and
0.73% in the rest of the subjects, respectively. Fourteen
subjects exhibited significant amounts of Treponema
and/or Porphyromonas, accounting for 26% to 44% of
total bacteria in their subgingival plaque. Those subjects
are major components of cluster 2 in Figure 2D. We use
the generic term cluster in this context to distinguish
the community classes described in other habitats where
clusters have a higher silhouette value. On the other
hand, the relative abundance of Veillonella, a genera that
slows the development of dental caries [29], was very
low in cluster 2 (Figure 2D). In the supragingival plaque,
pathogenic anaerobes are less abundant compared with
subgingival plaque because this is a less anaerobic envir-
onment compared with the subgingival region [30].

In keratinized gingivae, buccal mucosa, hard palate, pal-
atine tonsils and throat, one community class was domi-
nated by Streptococcus, and the other community class was
dominated by genera varying with habitats (Table S3 in
Additional file 1). Interestingly, 59 subjects had keratinized
gingiva microbiome distinguished by a high abundance of
unclassified Prevotellaceae and unclassified Bacteroidales;
this community class represented a less characterized taxo-
nomic group (Figure S6 in Additional file 2). Tongue dor-
sum and saliva are two habitats in which the Streptococcus
abundance is less dominant than in other oral sites. In-
stead, Neisseria is an essential genus in one-third of tongue
dorsum samples, resulting in detection of the Neisseria
community class (Table S3 in Additional file 1; Figure S6
in Additional file 2).

Community class comparisons across all habitats
The HMP data sets not only provide the opportunity to
characterize the community classes of multiple habitats,



Zhou et al. Genome Biology 2014, 15:R66
http://genomebiology.com/2014/15/5/R66

Page 7 of 18

A left retroauricular crease

Propionibacterium

Staphylococcus

Corynebacterium

Figure 2 (See legend on next page.)

8 A 3 - S
f = — e 7 = Corynebacterium 2
2 o | o | = Propionibacterium o
-'g" ® @ — Staphylococcus ®
2 8 - : 3 3
o H N o
e EE ® 1 == |
—— s
— j— B _i
o — o o ——
T T T T T T T
B  anterior nares
Corynebacterium Propionibacterium Moraxella
S - 8 o
< 2 Corynebacterium S ° S
o = Propionibacterium I
S84 — 8 - . o
< ' ® Moraxella ' @ I
g 2 - Staphylococcus 2 4 ' o |
] —_ - .
2% E 1 T s o
B : - — o o i
el | pmim | s{BE S _FF| ] .
— ] : — o
e T = T T ° T T T ° d 8
T T T T
Staphylococcus
o
S
o | 1
© '
o | :
: —
P
< : 8 —_
o | B
N
==
T T T T
C stool
Bacteroides Ruminococcaceae(Oscillibacter) Prevotella
Q o
27 —— =Bacteroides 27 8
b i = Prevotella
§ & ! Ruminococcaceae 8 8 o
©
o
2 —_ —_
e T | : —
k= ! '
g L
e =E = , ® s
o - — O |  — == é o §
T T T T T T T T T
D subgingival plaque
Veillonella Porphyromonas Treponema
S o o >
R = cluster 1 ~ < °
= m cluster 2
o o
f=4
3 . §
f=
g8 : B : : =
o ! S o H
2 . 8 —— .
& — o : ° !
i | L . ; N
o — o [ e — ° 8
T T T




Zhou et al. Genome Biology 2014, 15:R66
http://genomebiology.com/2014/15/5/R66

Page 8 of 18

(See figure on previous page.)

Figure 2 Examples of indicator taxa between community classes. Indicator taxa driving the differentiation of community classes were
identified using the indval function in the labdsv package in R. Boxplots are labeled according to the dominant taxa in the community class.
(A-D) The colors represent different community classes. The relative abundances of dominant taxa (y-axis) in each community class are plotted
for the type | habitat left retroauricular crease (A), and the type Il habitat anterior nares (B), stool (C), and subgingival plague (D). In (D), the
name of the community classes are designated as a generic term, cluster 1 or cluster 2, because of the very low silhouette value (<0.2).

but also allow us to determine if there are any correla-
tions between community classes at different habitats in
the same individual. This can be addressed by determin-
ing if a group of subjects who carry a particular commu-
nity class in one habitat also belong to the same
community class at other habitats.

To answer this question, we compared the subjects from
different community classes in each pair of habitats. Sub-
jects who had samples from both habitats were included
in the clustering analysis. The Adjusted Rand Index (ARI)
was used to assess the similarity between clusters in differ-
ent habitats [31], where a comparison is made between
the assignments of each pair of subjects in the clusters of
the two habitats under comparison. Complete correlation
between subjects at two habitats produces an ARI of 1. As
shown in Figure 3, the subject composition in the commu-
nity classes was highly consistent, with ARI=0.64 in the
three vaginal sites. The left and right retroauricular creases
were also similar when comparing subject compositions in
the community classes (ARI = 0.32). Other paired habitats
showed low similarity for community classes (Figure 3).

Because the anterior nares, retroauricular crease, and
antecubital fossa each have three community classes
dominated by Propionibacterium, Corynebacterium, and
Staphylococcus, we performed a detailed comparison of
subjects carrying these three community classes. In particu-
lar, the Corynebacterium community class is the most com-
mon community class in the anterior nares, yet only 18%
(16 of 87) of samples with the Corynebacterium community
class in the anterior nares belonged to the Corynebacterium
community class of antecubital fossa. In contrast, 50%
of the samples with the Corynebacterium community class
in the anterior nares were assigned to the Propionibacter-
ium community class of antecubital fossa. The rest were
assigned to the Staphylocccus community class or other
small classes in antecubital fossa. Moraxella was the fourth
community class in anterior nares, and subjects with a high
abundance of Moraxella in their anterior nares did not
have high abundance Moraxella in their skin. Therefore,
bacterial community structures across subjects are confined
to a given habitat and the drivers of community structure
act independently of other unrelated habitats.

Associations of demographic factors with bacterial
community structure

The association of demographic factors (gender, geo-
graphical location, ethnicity, body mass index (BMI),

age) with each community class was tested by Fisher’s
exact test or ANOVA, and P-values were corrected using
the Bonferroni approach (Materials and methods; Table 2;
Figure S6 in Additional file 2).

Gender was significantly different between the commu-
nity classes in the retroauricular crease, antecubital fossa
and anterior nares (Figure 4). In the retroauricular crease,
the Staphylococcus community class was mainly carried
by females in contrast to the relatively even gender distri-
bution for Propionibacterium and Corynebacterium com-
munity classes (P = 0.0004; Figure 4A). In the antecubital
fossa, male samples were dominated by Propionibacterium
and females by the Staphylococcus community class
(P =0.005; Figure 4B). In anterior nares, female subjects
had over-representation of Staphylococcus community
classes in anterior nares, whereas the Moraxella com-
munity class was mainly composed of male subjects
(P =0.05; Figure 4C). As expected, the relative abun-
dances of each genus described above in male and female
subjects from skin and anterior nares sites were also
significantly different (Figure S7 in Additional file 2).

Among the 15 subjects with the Prevotella enterotype
in stool, 13 were male, which did not differ from the
gender distributions of Bacteroides and Ruminococcus
enterotypes after Bonferroni correction (P =0.14). How-
ever, among samples in which Prevotella was present, we
found that the median abundance of Prevotella in all the
male samples was 10-fold greater than in female samples
(P =0.005; Figure S7 in Additional file 2). We did not
detect a correlation of BMI with any enterotypes or with
the ratio of Bacteroidetes and Firmicutes in stool.

Consistent with prior studies [6], pH was strongly associ-
ated with the bacterial community structure in the vaginal
sites (Table 2). pH was significantly higher in the anaerobic
bacteria-dominant community class (P=0.01). Ethnicity
differs significantly (P = 0.04) in the Lactobacillus commu-
nity class compared to the anaerobic bacteria subgroup.

The subjects in the Propionibacterium community class
are about 4 years older than other community classes in
retroauricular crease (P =0.003; Figure 4D). Age was also
significantly different between community classes in hard
palate (P =0.02), as were site of residence (St Louis versus
Houston) and race in oral sites (Table 2).

Community class stability
Figure 5A illustrates the community class changes be-
tween two time points using left retroauricular crease as
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an example. Three community classes were identified
in left retroauricular crease in the first sampling and
maintained in the second sampling. The ARI measuring
the agreement of paired subjects in the clusters of two
time points was 0.47. In particular, 86% of the subjects
were in the same community class on both visits. This
relative stability is largely because of the stability of
the major Propionibacterium community class. Of
44 subjects, 39 maintained the Propionibacterium com-
munity class (Figure 5A). One of three subjects from
the Corynebacterium community class switched to the
Staphylococcus class while the three subjects in the
Staphylococcus class still clustered in the same class.
One subject from the Propionibacterium and two sub-
jects from the Corynebacterium class switched to an
unclassified Neisseriaceae class at the second time
point. Because each community class was defined by
the relative abundance of the genera in the community,
switching between community classes indicates a sig-
nificant change in the abundance of genera.

We also evaluated community class stability in the va-
ginal introitus. The ARI was high (0.57) for community
classes from the two samplings. Eighty-six percent of
subjects retained the same community classes between
visits. Most subjects (23 of 25 subjects) from the Lacto-
bacillus community class stayed in the same community
classes at the second visit. Two subjects switched to the
anaerobic community class. Two of four subjects from
the anaerobic community class in the first visit switched
to the Lactobacillus class on the second visit (Figure S8
in Additional file 2). Subjects that switched from the
Lactobacillus to the anaerobic community class showed
increased vaginal pH, which may be caused by the de-
crease in lactic acid bacteria. Overall, the community
classes in type I habitats (retroauricular crease and va-
gina) tend to be stable over time because of the high
abundance of single genera in their communities.

In contrast to the type I habitats, community classes
in type II habitats appeared to be less stable over time.
For this analysis, the left and right antecubital fossa data



Table 2 Association of demographic factors with community classes

Gender Age

Race

Sites Vaginal PH

Community classes PP
for comparison®

Community classes PP
for comparison®

Habitats

Community classes PP
for comparison®

Community classes P°
for comparison®

Community classes e
for comparison?

Anterior nares Propionibacterium 0.05
Corynebacterium,
Staphylococcus,

Moraxella

Antecubital fossa Staphylococcus, 0.005

Propionibacerium

Retroauricular crease Staphylococcus, 0.0004  Propionibacterium 0.003
Propionibacterium, non-Propionibacterium
Corynebacterium

Hard palate Veillonella, Streptococcus  0.02
Buccal mucosa

Subgingval plaque

Supragingival plaque

Throat

Palatine tonsils

Saliva

Vagina

Two clusters 0.03
Two clusters 0.04
Two clusters 0.03
Two clusters 0.03

Lactobacillus, anaerobic class 0.04

Haemophilus Streptococcus  0.00005

Two clusters 80x10"°
Two clusters 38%107

Two clusters 62x10°

Two clusters 95%x 107

Two clusters 0.00005

Lactobacillus, anaerobic class 0.01

2Community classes used in the demographic association analysis.
bp.values after Bonferroni correction.

Empty fields indicate there is no significant difference between the community classes for a give demographic factor.
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Figure 4 Examples of demographic factor correlations with community classes. (A) Gender differences in retroauricular crease samples,
with females more prevalent in the Staphylococcus community class. (B) Gender differences in community classes of antecubital fossa. The
Propionibacterium community class has significantly more males than females while the non-Propionibacterium community classes have
significantly more females than males. (C) The Staphylococcus community class in anterior nares is dominated by females, and the female
proportion is significantly higher than in the other three community classes. (D) The ages of subjects in the Propionibacterium community class
and the other community classes of retroauricular crease are significantly different. Asterisks indicate statistically significant differences.

were combined at each time point because of the small
amount of repeat data available. The ARI was 0.2 for
the antecubital fossa. Of 33 subjects, 20 (60%) maintained
their community classes at the second visit (Figure S8 in
Additional file 2). The less dominant community under
active switching represented the less stable community
class. Likewise, 22 of 48 sample pairs (45%) switched their
anterior nares class at the second visit (ARI = 0.26), indi-
cating the dynamic nature of the bacterial community in
the anterior nares (Figure 5B). Thirty-two percent of sub-
jects switched from Corynebacterium to Propionibacter-
ium and 24% of Propionibacterium subjects switched to
Corynebacterium. Subjects also switched in both direc-
tions between the Corynebacterium and Moraxella clas-
ses. Switching also was observed from Propionibacterium
to Staphylococcus, Staphylococcus to Corynebacterium,

and Moraxella to Staphylococcus. We did not observe
switching from the Staphylococcus to the Propionibacter-
ium or Moraxella classes. This may be because of the
small sample size (two subjects) for the Staphylococcus
community class. Also, it will be interesting to probe the
role of gender barriers in the transition between commu-
nity classes because male and female subjects were domi-
nated by different community classes.

Switches between stool community classes (31%) were
more frequent than in type I habitats, but less frequent
than in other type II habitats (ARI 0.26). The switching
mainly occurred between the Bacteroides and Ruminococ-
cus community classes (Figure 5C). Although Bacteroides
dominates in the Bacteroides community class, a subset of
subjects had high relative abundance of Ruminococcus.
These subjects tended to convert to the Ruminococcus
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second visit.

Figure 5 Dynamics of community classes over time. (A-C) Subjects from different community classes switch to other community classes or
maintain their original community class in different habitats: (A) retroauricular crease, (B) anterior nares, and (C) stool. The colored circles represent
different community classes. The names of community classes are followed by the number of subjects belonging to the community classes at
the first visit. Subjects transferring to other community classes at the second visit are indicated by arrows along with the number of subjects
that switched. The number inside each community class indicates the number of subjects maintaining the same community class at the

community class. This is also true for subjects belong-
ing to the Ruminococcus community class but with a
relatively high abundance of Bacteroides. These subjects
tended to convert to the Bacteroides community class
at the second visit.

As addressed above, community classes in most oral
habitats are not as distinct as type I habitats, the active
conversion between classes reflecting the uncertainty of
the clusters in those habitats except saliva, tongue dor-
sum and keratinized gingiva (Table 1).

We additionally examined the variation of Treponema
between visits in subgingival plaque. The 14 subjects with
high relative abundances of Treponema (26% to 44%) at
the first visit retained 7- to 8-fold higher than average
abundance of Treponema at the second visit. The stability
of the high abundance Treponema phenotype between
visits in a subset of the subjects shows that the predomin-
ance of Treponema in these individuals is not a transient
event, reinforcing the concept that these subjects are at
higher risk to develop periodontal disease.

Discussion
Reports on the three stool enterotypes sparked an on-
going debate on whether stool microbiota is actually
discrete or a continuum [16]. Enterotypes have been re-
ported in humans and other animals [12,14,15]. There
has been controversy regarding the conceptual appro-
priateness of discrete or categorical enterotypes versus
a population description based on a gradient pattern of
bacterial community structure [18]. The debate has
been focused largely on the clustering techniques [17]
and the assignment of the number of clusters in the
community. However, these concerns overlook the pur-
pose of the categorization of the microbiota in the hu-
man body, that is, determination of like versus not-like
groupings of organisms, and easily conveyed descrip-
tions of populations with which to find biologically
meaningful groups. Clustering simplifies the complex
relationships between objects and the cluster solutions
vary with different distance/dissimilarity measurements
and clustering algorithms [17,20,21]. Clustering is only
an exploratory technique and should not play a decisive
role in data analysis.

Our analysis of stool identified three stool enterotypes,
consistent with previous studies. A study using the HMP
metagenomic data indicated only two clusters for each

of the 18 body sites, including stool [17]. Our analysis
identified two clusters for oral and two vaginal sites, but
more in stool and skin habitats. We further manually
inspected the hierarchical cluster solutions in skin and
vaginal sites where the silhouette values were similar for
different numbers of clusters. This manual inspection re-
solved more biologically interesting clusters. This man-
ual inspection is based on subjective interpretation and
related biological knowledge is thus required. For ex-
ample, our inference of two community classes in the
posterior fornix was based on our findings from an inde-
pendent project where race differed in different anaer-
obic groups (data not shown). Overall, the clustering
analysis serves as a starting point for assessing the exist-
ence and number of the groupings, and obligate further
investigation to determine biological validity.

Recent work has shown the effect of diet on entero-
types [12]. Specific long-term diets, especially those high
in protein and fat, were linked to Bacteroides entero-
types, while carbohydrates were linked to Prevotella
enterotypes [12,15]. The predominance of the Bacter-
oides enterotype identified in the HMP healthy cohort
may reflect the natural presence of enterotypes in St
Louis and Houston populations on American diets. Our
findings might have clinical relevance. For example,
metabolic diseases such as obesity are associated with
the elevation of a wide range of cytokine and inflamma-
tion markers. Calprotectin, a gut inflammation marker,
is higher in mice that harbor a Bacteroides enterotype
[12,15], suggesting that this genus triggers low-grade in-
flammation reactions in the gut. The relationships of
enterotypes, diet and inflammation raise the possibility
of manipulating gut enterotypes to mitigate risk of meta-
bolic diseases.

Subjects from the HMP cohort are healthy as defined
by clinical criteria; we nevertheless detected signals for
disease. For example, a cluster dominated by periodontitis-
associated genera such as Treponema and/or Porphyro-
monas was identified in subgingival plaque samples.
Treponema is considered a major etiological bacteria in
periodontitis and Porphyromonas is strongly associated
with chronic adult periodontitis [30,31]. Treponema is a
genus consisting of many species, but the Treponema
species are rare in healthy subjects compared with sub-
jects with periodontal disease [32]. The high abundance of
periodontal disease-associated genera and low abundance



Zhou et al. Genome Biology 2014, 15:R66
http://genomebiology.com/2014/15/5/R66

of protective genera in the healthy population is an ex-
ample of the pathogenic bacterial load carried by healthy
individuals. Similarly, the anaerobic group was identified
in a small subset of the vaginal samples from this cohort.
A high abundance of anaerobic genera in vagina is often
linked to vaginosis. The identification of an anaerobic
group in the HMP cohort may be a result of the inclusion
of unhealthy individuals in the cohort, because of the in-
complete criterion used for the diagnosis of bacterial
vaginosis [32]. Alternatively, it may represent a normal va-
ginal flora for non-Caucasians [6].

Phenotypic characterization of community classes also
sheds light on mechanisms underlying these differences.
Gender correlated with community classes in the skin,
anterior nares and stool. What drives the difference
between male and female skin and nasal community
composition? Intrinsic properties of bacteria and physio-
logical differences between genders may contribute to
the microbiota composition difference. Male skin has
more collagen and sebum with larger pores, a richer blood
supply, and an increased tendency to sweat [23,33]. Thus,
male skin may provide more nutrition for the two slow-
growing genera, Propinionbacterium and Corynebacter-
ium, that are favored among men in this cohort. The
different bacterial compositions of male and female skin
might also lead to phenotypic differences. For example,
odor precursors in men and women’s sweat are modulated
by the gender differences in bacterial compositions
[34]. We found significantly more male subjects in the
Prevotella community class before statistical correction,
although this becomes insignificant after correcting for
multiple comparisons. Human microbial communities
interplay with both environmental and host factors, so the
community class pattern may result from the combined
influence of both endogenous and exogenous factors.

The habitat-specific community classes for subjects
are dynamic. This includes differences based on age [35],
point in menstrual cycle [36,37], changes in health states
and other lifetime events. It has been reported that
bacterial abundance can vary over short periods [38].
We observed that community class stability is habitat-
dependent, with the conversion between community
classes being more common in type II habitats. It is
noteworthy that for those habitats with relatively well-
defined classes (skin, vagina, anterior nares and stool),
switching mainly occurs in minor community classes
whereas dominant community classes maintain dominance
over time. The fundamental mechanism of conversion be-
tween community classes is not known. Short-term diet
can change the microbial composition and abundance,
but has not been shown to lead to the replacement of
enterotypes [12]. Delimitation of the genetic demographic,
environmental, behavioral and nutritional factors that
influence community classes in humans is challenging.
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Animal experiments in a well-controlled setting will be an
attractive approach to address to what extent the above
factors or a combination of multiple factors contribute to
the formation of and changes between community classes.
This information will provide significant value in how to
alter the human microbiome to prevent or treat disease in
the future.

Conclusion

We identified 2 to 6 community classes for each of the 18
habitats from the HMP healthy cohort by clustering aug-
mented by manual inspection. These community classes
are associated with a number of host factors, including
gender, race, age and geography, suggesting that the iden-
tification of the community classes is non-random. The
dynamics of the community classes over a year-long inter-
val underscores the complex interplay of our microbiota
with the internal and external environment.

Materials and methods

Ethics statement

Subjects provided written informed consent for screen-
ing, enrollment and specimen collection. The protocol
entitled 'HMP-07-001 Human Microbiome Project -
Core Microbiome Sample Protocol A" was reviewed and
approved by institutional review board at Washington
University in St Louis, IRB ID#: 201105198 (previously
08-0754) and Baylor College of Medicine, IRB ID#:
H-22895. The data were analyzed without personal iden-
tifiers. Research was conducted according to the princi-
ples expressed in the Declaration of Helsinki.

Sample collection

Specimens were collected by teams at the Baylor College
of Medicine and Washington University in St Louis [32].
In total, 236 healthy adults were included in this ana-
lysis. Fifteen habitats comprising anterior nares, skin
(left and right retroauricular crease, left and right ante-
cubital fossa), oral (hard palate, keratinized gingiva, buc-
cal mucosa, subgingival plaque, supragingival plaque,
saliva, tongue dorsum, palatine tonsil and throat) and
stool were sampled from all subjects. Female subjects
were sampled at three extra sites: vaginal introitus, pos-
terior fornix and mid-vagina. For longitudinal studies, a
set of samples from each habitat was collected at two
time points (visit one and visit two) separated by 30 to
359 days.

DNA sequencing, quality control and taxonomic classification
To analyze the 16S rRNA gene, the V3-5 region of the 16S
RNA gene was sequenced on the Roche-454 platform to
define the composition of the bacterial community. Sample
preparation, DNA isolation, sequencing, and data process-
ing were performed following the standardized protocols
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developed by the HMP consortium [39]. In brief, data pro-
cessing allowed one mismatch in the barcode and up to
two mismatches in primer. The minimal acceptable se-
quence length was 200 bp.

This dataset is the July 2010 16S rRNA gene sequen-
cing data freeze, 7,518 SRA runs, the Human Micro-
biome Project 16S rRNA Clinical Production Phase I,
available from NCBI at [40], and from the HMP Data
Analysis and Coordinating Center at [41].

These sequences were subsequently processed as follows.
Chimeric sequences were filtered out by Chimera-Slayer
[42]. Average qual 25 was used as the minimal quality score
to remove low quality reads. Qualifying sequences were fur-
ther classified by the Ribosomal Database Project Naive
Bayesian Classifier version 2.2 using training set 6 [43] from
phylum to genus levels. Taxa assigned <0.5 confidence were
reassigned to the next higher taxonomic level in which the
classification threshold was >0.5.

Shotgun sequences from posterior fornix, tongue dor-
sum, supragingival plaque, anterior nares, stool and buccal
mucosa were used to confirm the community classes
identified by 16S rRNA gene sequencing. Shotgun data
were processed by the HMP consortium [39], resulting in
measurement of depth and breadth of microbiota based
on the reference database [44]. The WGS sequences can
be downloaded from [45] and at NCBI at [46].

Identification of community classes

To cluster subjects with similar bacterial composition in
sets of metagenomic samples, we followed the following
statistical recipe. First, Ribosomal Database Project data
are organized in a matrix format with rows being the sub-
jects, columns being the genera, and entries in the table
being the number of reads for that subject by genus com-
bination. These read counts are scaled by dividing the
number of reads belonging to that genus by the average
copy number of 16S rRNA genes for species belonging to
that genus [47]. This was done to avoid overcounting gen-
era with high gene copy numbers. The scaled counts were
then transformed to percentages by dividing each count
by the total number of scaled counts for that subject. Sec-
ond, the proximity matrix used for the cluster analysis is
built using the Bray-Curtis dissimilarity measure as a pair-
wise distance between the genera composition of subjects.
The Bray-Curtis dissimilarity measure, d(i, j), quantifies
the dissimilarity in species composition between samples
i and j, based on the taxa abundances at each sample, and
is defined as:

n

Z J’i,k—y,:,k‘
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k=1
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where y;x and y; are the abundances (in our case pro-
portions) of genus k in samples i and j, respectively, and
n is total number of distinct genera present in both sam-
ples. The measure d(i, j) ranges between 0 and 1, where
0 means the two samples share all the genera in similar
abundances, and 1 means the two subjects do not share
any genera at all. This metric was chosen because it is
commonly used in ecology because of its robust mono-
tonic and linear relationship with ecological distance
[48]. Third, the complete linkage criterion was used to
form an agglomerative hierarchical clustering and den-
drogram tree for identifying clusters [6]. The complete
linkage criterion is a method to calculate distances be-
tween two clusters, which is defined as the distance be-
tween their most dissimilar members. While there are
several criteria for agglomerative clustering, we choose
this algorithm because it tends to produce compact clus-
ters. Fourth, to determine the optimal number of clus-
ters within a dendrogram, we used the Silhouette
method [49]. The silhouette width s(i) for each observa-
tion j is defined as:

s(i) = (b(i)-a(i))/max( a(i), b(i) )

where a(i) is the average dissimilarity between i and all
other points of the cluster to which i belongs and b(i),
the dissimilarity between i and its nearest cluster to
which it does not belong. Observations with a large s(i)
(almost 1) are very well clustered, a small s(i) (around 0)
means that the observation lies between two clusters,
and observations with a negative s(i) are probably placed
in the wrong cluster [50].

Averaged s(i) for all the members of the clusters was
used to assess the overall cluster quality. The number of
clusters that yield the highest silhouette value was
chosen to be the optimal number of clusters. Lastly,
clusters with similar average silhouette values (<0.02 dif-
ference) were manually inspected. We have followed two
general rules in this process: (a) within each cluster, sil-
houette values for the majority of the subjects were high -
this ensures the subjects with high similarity are grouped
together and avoid heterogeneity within a cluster; (b) clus-
ters with fewer than two samples were removed and clus-
ter analysis was redone with the same procedure. This
ensures the clusters we identified are sufficiently represen-
tative within a population.

We also performed fuzzy k-means clustering [50],
using the same data matrix and dissimilarity measure-
ment as described in hierarchical clustering.

Principal coordinate analysis (PCoA)

To illustrate the community classes identified in the hu-
man habitats, we performed PCoA analysis with the
ade4 packages [51] in R. This starts with the Bray-Curtis
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dissimilarity matrix generated in the clustering analysis and
assigns for each sample a location in a two-dimensional
space. S class function was used to add additional variables
into the graphs as indicated by the community classes with
different colors. Cellipse indicating the inertia ellipse size
was set to 1.5.

Indicator genera

Indicator values were calculated using the Dufrene-
Legendre Indicator Species approach from the labdsv
[25] package in R. The sample frequency (f) and relative
average abundance (a) of each genus were calculated as
follows:

p_{i,j} = presence/absence (1/0) of species i in sample j;
x_{1,j} = abundance of species i in sample j;

n_c = number of samples in cluster c; ? for cluster c in
set K;

f {i,c} = {Z_{j \in ¢} p_{ij} \over n_c}

a_{i,c} = {(Z_{j \in ¢} x_{i,j}) / n_c \over ¥_{k=1}"K
((5_1j 48] x_{i}) / n_k}

d_{i,c} =f {i,c} \times a_{i,c}

In this analysis, indicator genera were chosen based
on: (1) indicator P-value <0.01; (2) genera present in at
least 50% of subjects in either cluster.

Quantifying the agreement of clusters between habitats
and between visits

The ARI was recommended for measurement of the agree-
ment between two partitions in the clustering analysis after
comparing many different indices [52]. The ARI is derived
from the Rand Index and is the corrected-for-chance ver-
sion of this index. It was computed by the fossil package in
R [53]. Detailed information can be found in [54]. We used
the ARI to compare the cluster similarity between different
habitats. Clustering was performed as described above
using the samples present in both compared habitats. To
evaluate the stability of community class over time, cluster-
ing used all data from sampling times 1 and 2.

Measurement of Shannon diversity

The Shannon index was used to calculate alpha diversity.
The samples were first rarified to 1,000 reads by the rar-
efy function in vegan [55] to prevent the bias caused by
different read depth. Shannon diversity was calculated
using the BiodiversityR package [56] as described below:

S

H' = _Z(Pi In p;)

i=1

where S is the number of species, and p; is the relative
abundance of each species, calculated as the proportion
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of individuals of a given species to the total number of
individuals in the community.

Association of demographic factors with community
classes and single taxa

Demographic factors were mapped to the dendrogram
from the hierarchical clustering [57]. The distribution of
different of geographical locations (St Louis, Houston),
gender (male, female), race and ethnicity (Hispanic/Latino/
Spanish, not Hispanic/Latino/Spanish) and BMI (BMI <25,
25 < BMI < 30, BMI >30) between community classes were
assessed using Fisher’s exact test. The ANOVA test was
used when the data were continuous (age). Association of
single taxa with gender was assessed by Mann-Whitney-
Wilcoxon test. P-values from multiple comparisons were
corrected using the Bonferroni method. P-values <0.05
after correction were considered as significant.

Data access

The 16S rRNA gene sequences used are the July 2010
16S rRNA gene sequencing data freeze, 7,518 SRA runs,
the Human Microbiome Project 16S rRNA Clinical Pro-
duction Phase I. It is available from NCBI at [40], and
from the HMP Data Analysis and Coordinating Center
at [41]. The WGS sequences can be downloaded from
[45] and at NCBI at [46]. Metadata were downloaded
from dbGAP (study accession phs000228.v2.p1) [58].

Additional files

Additional file 1: Tables S1 to S3 and the figure legends for Figures
S1 to S8.

Additional file 2: Figures S1 to S8.
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