Supplemental Material to:

Yun-Ling Zheng, Fan Zhang, Bing Sun, Juan Du, Chongkui Sun, Jie Yuan, Ying Wang, Lian Tao, Krishna Kota, Xuefeng Liu, Richard Schlegel, and Qin Yang

Telomerase enzymatic component hTERT shortens long telomeres in human cells

Cell Cycle 2014; 13(11) http://dx.doi.org/10.4161/cc.28705

http://www.landesbioscience.com/journals/cc/article/28705

Supplementary Information

Telomerase enzymatic component hTERT shortens long telomeres in human cells

Yun-Ling Zheng¹*, Fan Zhang², Bing Sun¹, Juan Du², Chongkui Sun², Jie Yuan³, Ying Wang¹, Lian Tao¹, Krishna Kota¹, Xuefeng Liu⁴, Richard Schlegel⁴, Qin Yang²*

¹Cancer Prevention and Control and ⁴Molecular Oncology Programs, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057; ²Cancer Biology Division, Washington University School of Medicine, Saint Louis, MO 63108. ³Medical College, Jinan University, Guangzhou 510632, China

Key words: Telomeres, telomerase, length regulation, hTERT, hTR, TPP1

* Corresponding authors:

Qin Yang, MD, PhD, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park, St. Louis, MO 63108, USA Tel: 314-747-5445 Fax: 314-362-9790 Email: qyang@wustl.edu

Yun-Ling Zheng, MD, PhD Laboratory of Telomere Health Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road, NW,Washington, DC 20057 Tel: 202-687-6654 Fax: 202-687-7505 Email: yz37@georgetown.edu

Supplementary Figure Legends

S-Fig. 1. Detect telomerase activity and expressions of hTERT wild-type, mutant and hTR. The TRAP assay was performed to evaluate the telomerase activity, qRT-PCR for mRNA level and Western blot analysis for protein expression. IMR90 was used as a reference to calculate fold change of hTERT mRNA and telomerase activity. Telomerase positive cell lines HT1080 and MDA231 were used as positive controls.

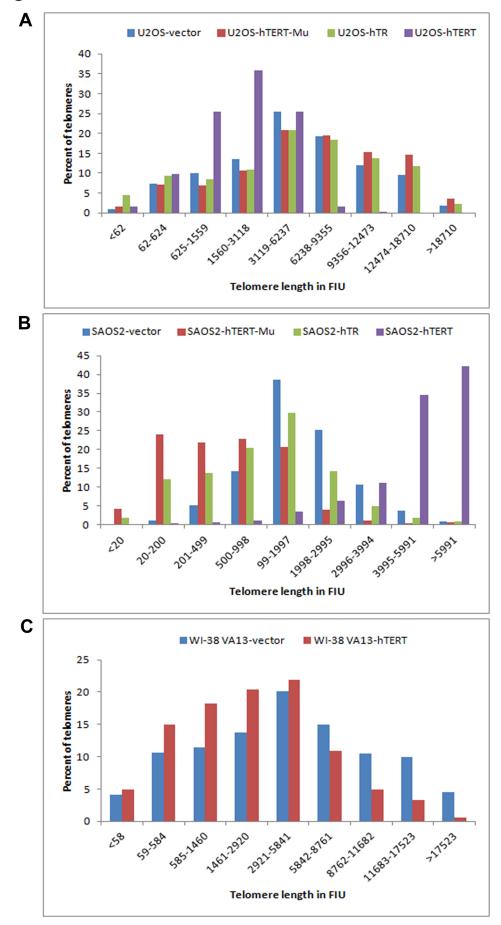
S-Fig. 2. Effect of hTERT over-expressing on telomere length. Histograms to analyze effects of telomere length in indicated cell lines (for main Fig. 1).

S-Fig. 3. hTERT shortens long telomeres in ALT+ cancer cells. Empty vectors or hTERT were expressed in ALT+ U2OS (**A**) and SAOS2 (**C**) cells. Correlation between the average TL at specific chromosomal ends in vector control cells and percent of TL change at the corresponding chromosomal ends in hTERT over-expressing cells. Each dot represents a chromosomal end. 30 cells were analyzed per cell line. **B**. TRF assays were performed to quantitative telomere length. Genomic DNA was loaded to gel and transferred to a Nylon membrane followed by telomeric DNA probe hybridization.

S-Fig. 4. Localizations of hTERT at long telomeres. ALT SAOS2 cells were processed for indirect immunofluorescence and telomeric DNA FISH. Images were captured with a 100x objective. hTERT (HA, green) localized at telomeres including those telomeres with high signal intensity (telomeric PNA probe, red). An enlarged co-localization focus of hTERT and a telomere with high signal intensity is shown in pictures on the right corner.

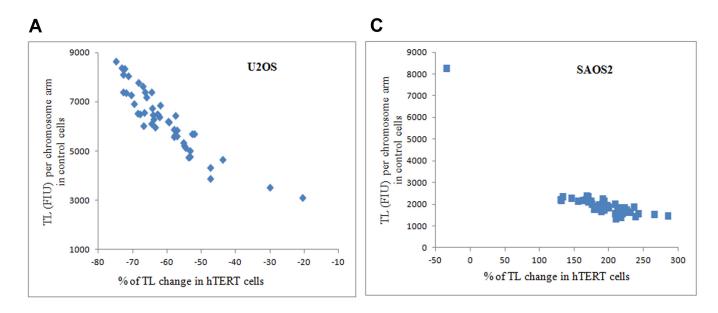
S-Fig. 5. Overexpression of hTERT does not induce telomere dysfunctional foci. IMR90 cells transduced with empty vector, hTERT or POT1-shRNA were immunostained with anti-7-H2AX mouse monoclonal antibody (*red*) together with anti-TRF1 antibody (*green*). The nuclei were counterstained with DAPI. POT1-shRNA is used as a positive control.

Α


		Tolomorooo ootivitu		
		Telomerase activity		
	(fold)	(fold)		
U2OS	1	1		
U2OS-hTERT	7.5	6.5		
U2OS-hTERT-Mu	8	1		
SAOS2	1	1		
SAOS2-hTERT	8.7	8.1		
SAOS2-hTERT-Mu	9	1		
IMR90	1	1		
IMR90-hTERT	7.5	8		
WI38	1	1		
WI38-hTERT	7	7.2		
WI38 VA13	1	1		
WI38 VA13-hTERT	7	7		
HT1080	10	9.5		
MDA231	10	9.2		

В

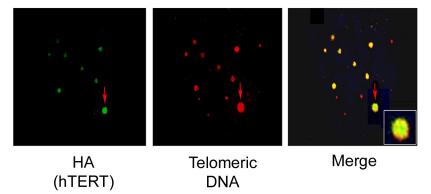
	U2OS		SAOS2		IMR90		WI38	
HA-hTERT	Con WT	Mu	Con WT	Mu	Con	WT	Con	WT
HA	-	-	-	-		-		-
Actin		-		-	-			-


S-Fig. 1

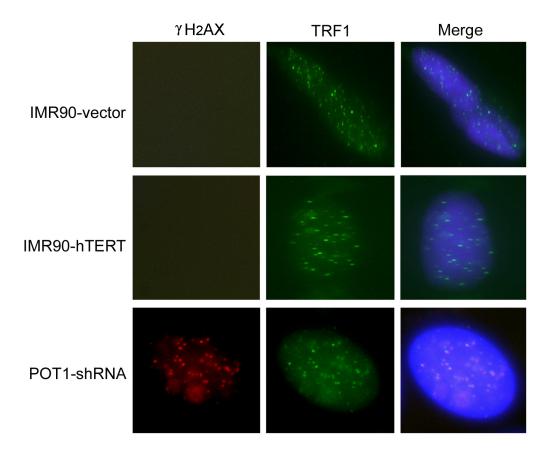
S-Fig 3

В

 kb
 ruting
 ruting


 48 23.1 0

 5.1 2 0


 Ave_TL
 19
 8.5
 18
 20
 kb

S-Fig. 4

SAOS2-hTERT

S-Fig. 5

