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Tian-Xiao Zhang, Yi-Ran Xie, John P Rice’

From Genetic Analysis Workshop 18
Stevenson, WA, USA. 13-17 October 2012

Abstract

Rare variants have been proposed to play a significant role in the onset and development of common diseases.
However, traditional analysis methods have difficulties in detecting association signals for rare causal variants

because of a lack of statistical power. We propose a two-stage, gene-based method for association mapping of
rare variants by applying four different noncollapsing algorithms. Using the Genome Analysis Workshop18 whole

the potential statistical properties of these approaches.

genome sequencing data set of simulated blood pressure phenotypes, we studied and contrasted the false-
positive rate of each algorithm using receiver operating characteristic curves. The statistical power of these
methods was also evaluated and compared through the analysis of 200 simulated replications in a smaller
genotype data set. We showed that the Fisher's method was superior to the other 3 noncollapsing methods, but
was no better than the standard method implemented with famSKAT. Further investigation is needed to explore

Background

During the past five years, genome-wide association stu-
dies (GWAS) have rapidly become a standard method for
discovering susceptible genes for a variety of complex
diseases [1]. Up to now, hundreds of loci with more than
3000 single-nucleotide polymorphisms from approxi-
mately 7000 GWAS have been reported to be associated
with complex diseases [2]. Nevertheless, a large propor-
tion of heritability is left unexplainable from GWAS
results that are mainly based on association signals cap-
tured by common variants [3]. One potential explanation
for this “missing heritability enigma” has been the contri-
bution of rare variants, which is often not assessed in reg-
ular GWAS studies [3]. Unfortunately, traditional
methods often fail in association mapping of rare variants
because of poor statistical power. Several methods have
been proposed to detect association signals for rare var-
iants with improvements in statistical power compared to
traditional methods [4-6].

* Correspondence: john@zork.wustl.edu
Department of Psychiatry, Washington University, 660 S. Euclid Ave,, St.
Louis, MO 63110, USA

As part of Genetic Analysis Workshop 18 (GAW18),
simulated phenotypic data, based on a real sequencing
data set, were provided to the scientific community to
evaluate and compare statistical genetic methods for rare
variants association mapping. We consider a two-stage,
gene-based method to detect association signals for both
common and rare variants. We first obtain significance
p values by fitting a mixed effects model for each variant,
and then apply 4 noncollapsing algorithms to obtain the
gene-wise association p values. Collapsing (or burden)
methods combine variant information by assuming con-
sistent direction of effects across variants. None of the
methods considered here adopt this assumption,
although some (Fisher’s, Gene Set Enrichment Analysis
[GSEA], sequence kernel association test [SKAT]) do
combine variant information.

Methods

Model fitting and algorithms

A mixed linear model was fitted for each variant as
described in previous literature [7]. The model was
defined as:Y = X8 + Qv+ Zu + €
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where Y is the quantitative trait of interest (we used
first-visit systolic blood pressure [SBP] data were used
in this study); x is the genotype; B is the fixed effects of
the genotypes; and Q represents the population struc-
ture variables. In this study, we chose the first 10 princi-
pal components from principal component analysis
(PCA) for Qv is the fixed effects of Q; Z is the variable
that evaluates familial relatedness (the theoretical kin-
ship matrix was used for Z); and y is the random effects
coefficient for Z that corrects the polygenic impact.

After obtaining the variant-wise p values by fitting the
mixed linear model, four noncollapsing algorithms were
modified and applied to the data set to obtain the gene-
wise association p values. The algorithms of the 4 meth-
ods are summarized as followed:

1. Naive method. The most significant variant-wise p
values within a specific gene were chosen as the gene-
wise association p values.

2. Fisher’s method [8]. The gene-wise statistics were
calculated through the following equation:

k
X=-2)log,(p)

i=1

where p; is the p value for variant i, and k is the total
number of variants within a specific gene. Because many
variants are highly correlated, the basic assumption of
independent tests for Fisher’s method is violated. Fisher’s
formula will not have a chi-square distribution, so we
assessed the significance via permutation analysis.

3. Simes’ method [9]. The gene-wise p value was sum-
marized by the following equation:

Psimes = min {@}
i 1

where p; is the p value for variant i, and k is the total
number of variants within a specific gene.

4. GSEA method [10,11]. The test statistics (indicated
as ES score) were aggregated from variant-wise p values
within each gene via a Kolmogorov-Smirnov-like pro-
cess in which running sums are accumulated. The equa-
tion is given as:

ES(S) = lrgjzgi]

Iy IP 2
sy 2

N
GjeSjr<j R GjsgSjr<j

where N is the total number of variants, r(j) is the j™
largest statistic values, Ny is the variant number of a
given gene, S is any given gene, P is the parameter that
gives a higher weight to variants with extreme statistic
value, arbitrarily set to 1 in this study, and Ny, is given by:

Ng = ZGM |7y 1P
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Statistical significance and adjustment for multiple
hypothesis testing were assessed by a 1000-permutation-
based procedure. A family-wise error rate (FWER) proce-
dure was used to adjust for multiple hypothesis testing.
The FWER is a highly conservative correction procedure
that seeks to ensure that the list of reported results does
not include even a single false-positive gene. In this
study, the FWER p value was calculated as the fraction of
all permutations whose highest statistics (or smallest
p values) in all genes is higher than a given gene. In addi-
tion to the 4 noncollapsing algorithms introduced above,
we also included 2 standard rare variants analysis meth-
ods: SKAT [12] and famSKAT [13] in our analysis. FamS-
KAT is an extended version of SKAT and can analyze
rare variant when family correlations are present.
Furthermore, to evaluate the statistical power of these
methods, we extracted the variant information related to
the 22 true-positive genes located on chromosome 3 and
analyzed these data for all 200 simulated phenotype
replicates.

Data and computation

The chromosome 3 sequencing data were analyzed only
for phenotype replicate number 1 because of a huge
computational burden. The sequencing data were anno-
tated by ANNOVAR[14]. Intergenic variants (variants at
least 1 kilobase [kb] away from any known gene regions)
were excluded. We kept only variants mapped to regula-
tory regions.

To preserve the familial structure, a permutation-of-
residuals procedure was applied for the 1000 permuta-
tions [15,16]. First, we fitted a mixed effects linear model
on the phenotypic data with all predictors in the model
(except for genotype term) and preserve the residuals for
these models. Second, we shuffled the residuals (rather
than the phenotypic data used in an ordinary permuta-
tion procedure) and randomly assigned them to each
subject and generated 1000 phenotypic data replicates.
And third, we obtained the permuted statistics and
p values by fitting a univariate linear model with geno-
type as the only predictor of the residuals. This method
may introduce potential bias to the permuted statistics
and p values comparing to directly fitting the full model.
To quantify this potential bias, we randomly chose 1429
variants and calculated the percentage difference of the
-logl0 scaled p values obtained from directly fitting a
full model and from the 2-step permutation procedure
proposed in this paper.

Genotypes were coded as dominant, that is, the geno-
types with 1 or 2 minor alleles were coded as 1, while
genotypes with 2 major alleles were assigned 0. Variants
with minor allele frequency >0.3 in genome-wide asso-
ciation data set were selected for PCA. We used Eigen-
strat 3.0 for this analysis [17]. The R package kinship2



Zhang et al. BMIC Proceedings 2014, 8(Suppl 1):553
http://www.biomedcentral.com/1753-6561/8/51/S53

(http://cran.r-project.org/web/packages/kinship2/index.
html) was used to calculate the kinship coefficient
matrix for our data set. The R package coxme (http://
cran.r-project.org/web/packages/coxme/index.html) was
implemented for fitting the mixed linear model. The R
package SKAT (http://cran.r-project.org/web/packages/
SKAT/index.html) was implemented for rare variant
analysis with SKAT. The R source code for famSKAT
was downloaded (http://www.bumc.bu.edu/linga/
research/publications/famskat/) and implemented for
rare variant analysis. Receiver operating characteristic
(ROC) curves were made and compared among the 4
algorithms and two standard methods.

Results

The data consisted of 1237 genes with 87,190 variants
that passed the annotation criteria were extracted from
the sequencing data set of chromosome 3 for 849 sub-
jects. After fitting the mixed linear model, the Q-Q plot
and histogram of p values of these 87,190 variants is
shown in Figure 1. To compare the 4 noncollapsing
methods and the 2 standard methods, ROC curves
based on these 6 methods were calculated and are
shown in Figure 2.

Data for the 22 true-positive genes with 1098 variants
were extracted and used for analysis with 200 simulated
phenotype replicates. The statistical power information
for the 6 methods was summarized and is presented in
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Table 1. The results of the permutation bias analysis
showed that the percentage difference was only approxi-
mately 10%, and the correlation coefficient of variant-
wise statistics was 0.9959. These results indicate that the
effects of this bias will be limited.

Discussion

The noncollapsing methods introduced in this paper have
been broadly used in testing the significance of biological
pathways in GWAS data sets [11]. When we substitute the
term"pathway” in these noncollapsing algorithms for the
term “gene” in sequencing analysis and “gene” for “var-
iants,” we can apply these noncollapsing algorithms to
gene-based association detection through modifications.
An obvious advantage of aggregating p values (or statis-
tics) by applying noncollapsing algorithms, compared to
ordinary variants collapsing methods, is that it is a method
free of the assumption that all the causal variants from a
gene have effects in the same direction. This assumption
may not be held in many scenarios even though it is the
assumed in many existing rare variants association map-
ping procedures.

Another advantage of this research is the utilization of
residuals-of-permutation procedure [15,16]. Conducting
a permutation on family data has been a challenge in sta-
tistical genetics research. Ordinary permutation proce-
dures have been mostly utilized in case-control data,
which simply shuffle the phenotypic data and randomly
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Figure 1 Q-Q plot and histogram for the mixed effects model. Q-Q plot (left) of —log10 scaled p values and histogram (right) for the mixed
effects model based on 1237 genes (87,190 variants) from 849 subjects. In Q-Q plot, black line, expected; blue dots, observed.



http://cran.r-project.org/web/packages/kinship2/index.html
http://cran.r-project.org/web/packages/kinship2/index.html
http://cran.r-project.org/web/packages/coxme/index.html
http://cran.r-project.org/web/packages/coxme/index.html
http://cran.r-project.org/web/packages/SKAT/index.html
http://cran.r-project.org/web/packages/SKAT/index.html
http://www.bumc.bu.edu/linga/research/publications/famskat/
http://www.bumc.bu.edu/linga/research/publications/famskat/

Zhang et al. BMC Proceedings 2014, 8(Suppl 1):553 Page 4 of 6
http://www.biomedcentral.com/1753-6561/8/51/553

n
o _ Ly S
Q _|
L ° £
© T 2 |
o o o
o © ] (0]
= © =
‘© i)
@] (o]
o <« | o 2
[} o (b}
2 g S
o —— Naive method —— Naive method
= —— Fisher's method —— Fisher's method
—— Simes' method —— Simes' method
GSEA method - GSEA method
—— SKAT o —— SKAT
g - famSKAT = famSKAT
T T T T T T ° T T T T T T
0.0 0.2 04 0.6 0.8 1.0 0.00 0.02 0.04 0.06 0.08 0.10
False Positive Rate False Positive Rate

Figure 2 ROC curves for 4 noncollapsing algorithms and 2 standard methods. ROC curves for 4 different pathway algorithms based on
1237 genes from 849 subjects on trait SBP (first visit). In the left plot, false-positive rate (FPR) ranges from 0 to 1. In the right plot, FPR is scaled
to be less than 0.1 as only the true-positive rate (TPR) with a low FPR is of interest. Black curve, naive method; blue curve, Fisher's method; red
curve, Simes’ method; green curve, GSEA method; purple curve, SKAT; yellow curve, famSKAT.

Table 1 Comparison of the power of the 4 noncollapsing and 2 standard methods

Chromosome Gene Power of methods
Naive method Fisher's method Simes’ method GSEA method SKAT FamSKAT

3 ABTB1 0.015 0.18 0.025 0 0.075 0.01
3 ARHGEF3 0 0 0 0.035 0.005 0.005
3 B4GALT4 0.015 0 0.015 0.035 0.01 0.015
3 BTD 0 0 0 0.015 0 0
3 CXCR6 0 0 0 0.085 0 0
3 DNASETL3 0.005 0.005 0.005 0.005 0.04 0.01
3 FBLN2 0.005 0 0 0.035 0 0
3 FLNB 0.01 0.015 0 0.03 0 0
3 LOC152217 0.09 0.145 0.135 0 0.275 0.04
3 MAP4 1 1 1 1 1 1
3 NMNAT3 0.005 0.04 0.005 0 0 0
3 PAK2 0.07 0 0.05 0 0 0
3 PDCD6IP 0.005 0 0.005 0.005 0.04 0.03
3 PPP2R3A 0.045 0.01 0.02 0 0.005 0.005
3 PTPLB 0 0 0 0.02 0.005 0
3 SCAP 0.025 0.005 0.04 0 0.045 0.065
3 SEMA3F 0 0 0 0 0 0
3 SENPS 0 0.02 0.01 0.045 0.01 0.005
3 SUMF1 0.085 0.005 0.06 0.01 0.015 0.005
3 TFDP2 0 0 0 0.035 0 0
3 TUsC2 0.005 0 0.055 0 0.02 0
3 ZBTB38 0.01 0.005 0.01 0.02 0.04 0

Power is calculated based on the analysis of the 200 simulated phenotypic replicates. The largest power for each gene is highlighted in bold.
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assigns them to each subject, thus cannot be directly
applied to family data because it destroys the family
structure. In this paper, instead of shuffling the phenoty-
pic data, we shuffled the residuals obtained from fitting a
linear mixed effects model without genotype. These resi-
duals have already accounted familial relatedness in the
model fitting step and therefore our permutation proce-
dure preserves the familial structure.

From the ROC curves in Figure 2 we note that, overall,
the Simes’ method performed a little better than the other
5 methods, and that GSEA, SKAT, and famSKAT did not
perform as well. The other 2 methods were slightly better
than the GSEA, SKAT, and famSKAT methods. However,
when we limit the false-positive rate to be smaller than
0.1, as shown in the right hand plot of Figure 2 (in prac-
tice, only a high true-positive rate with a low false-positive
rate is of interest), we see that Fisher’s method and famS-
KAT performed better than the other methods at the low
false-positive rate range. They both capture approximately
15% of the causal genes (true positives) at a cost of only
5% false-positive signals. However, we did not test the sig-
nificance of the ROC curves, so that all these observed dif-
ferences could just be noise.

From the power analysis results in Table 1, we see that
the gene MAP4 was successfully identified to be signifi-
cant for all simulated 200 replicates. All six methods
achieved 100% power for this gene. This result is reason-
able because, according to the “answer sheet”, MAP4 has
the most “causal variants” and these variants have a rela-
tively larger effect size comparing to the variants within
other genes. However, this result was obtained when we
only analyzed 22 genes. For a genome-scale analysis, the
significant signals may be missed as a consequence of
correction for multiple comparisons. We have analyzed
the whole genotypic data set of chromosome 3 with
simulated phenotypic replicate number 1 (1237 genes
and 87,190 variants). The result indicated that only naive
method and the 2 standard methods identified gene
MAP4 to be significant. For the other 21 genes, the lar-
gest power was 0.275, which was achieved by SKAT for
LOC152217.

Several previous researchers have already applied the
noncollapsing methods proposed in this paper to con-
duct gene-based analysis [18,19]. However, this previous
work has mainly focused on common variants in GWAS
data set. As an attempt to apply these noncollapsing
algorithms to gene-based association tests using sequen-
cing data, we have demonstrated some potentially pro-
mising aspects of this approach. However, several
problems remain unaddressed. One important issue is
the computational intensity. In this study, we have uti-
lized a multiprocessor computing server with a 23 x 2.8
GHz CPU and 64GB of memory. The most time-con-
suming part of our analysis is the permutation-of-
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residuals process and linear model fitting of the per-
muted data sets. We have paralleled this process into 20
jobs, but it still takes around 30 hours to complete (this
is only the work done for 1 chromosome).

Compared to the permutation process, the p value
combination step can be completed much faster (~30
minutes). Because a lot of the non collapsing algorithms
require permutation procedures to create null distribu-
tion of the statistics, it is somewhat difficult to implement
them on a genome-wide-scale data set. In addition, many
noncollapsing algorithms cannot be utilized for a gene-
based association test directly without proper modifica-
tions. The choice of parameters in noncollapsing algo-
rithm for rare variant association detection is more an art
than a science. Finally, adjustment for multiple hypoth-
esis testing is another important issue that needs to be
addressed.

Our results indicate that the FWER method is too
conservative. For the future work, hierarchical modeling
combined with the Markov chain Monte Carlo method
may provide better solution to the multiple hypothesis
testing problems [20].

Conclusions

Our findings suggest that all the four new methods we
proposed along with the standard method implemented
with famSKAT were poor in statistical power. In sum,
more research is still needed in the statistical method of
association mapping for rare variants in the future.
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