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Dendritic cells (DCs) are key regulators of both immunity and tolerance by controlling acti-
vation and polarization of effector T helper cell and regulatory T cell responses. Therefore,
there is a major focus on developing approaches to manipulate DC function for immunother-
apy. It is well known that changes in cellular activation are coupled to profound changes
in cellular metabolism. Over the past decade there is a growing appreciation that these
metabolic changes also underlie the capacity of immune cells to perform particular func-
tions.This has led to the concept that the manipulation of cellular metabolism can be used
to shape innate and adaptive immune responses. While most of our understanding in this
area has been gained from studies with T cells and macrophages, evidence is emerging
that the activation and function of DCs are also dictated by the type of metabolism these
cells commit to. We here discuss these new insights and explore whether targeting of
metabolic pathways in DCs could hold promise as a novel approach to manipulate the
functional properties of DCs for clinical purposes.

Keywords: metabolism, oxidative phosphorylation, mitochondria, glycolysis,TLR signaling, immunogenic dendritic
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INTRODUCTION
Dendritic cells (DCs) play a crucial role in the development of
adaptive immune responses during infections and inflammatory
diseases, as well as in the regulation of immune homeostasis dur-
ing steady state, by governing the activation and maintenance of
T cell responses. In response to many viral and bacterial infec-
tions, DCs promote the generation of effector CD4+ T helper 1
(Th1) and CD8+ T cell-dominated immune responses, while fun-
gal and parasitic worm infections are predominantly associated
with Th17 and Th2 responses, respectively. In addition to these
effector responses, DCs can be instructed to become tolerogenic
and promote regulatory T cells (Tregs), which regulate effector T
cell responses, a process that is crucial for maintenance of immune
homeostasis and control of autoimmune disorders and allergies.
Because of the powerful immunoregulatory functions of DCs,
there has been great interest in delineating the cellular processes
that control the different properties of these cells, to ultimately
identify ways to manipulate the function of DCs for the rational
design of DC-based immune-interventions.

It has long been appreciated, especially in the cancer field, that
changes in cellular activation coincide with, and are underpinned
by, alterations in cellular metabolic state (1, 2). Importantly, over
the last couple of years it is becoming increasingly clear that
immune cell activation is also coupled to profound changes in cel-
lular metabolism and that their fate and function are metabolically
regulated (3). This has led to the idea that manipulation of cellu-
lar metabolism of immune cells can be used to shape innate and
adaptive immune responses to our advantage. While most of our
understanding in this area has been gained from studies with T cells
(4–6) and macrophages (7, 8), evidence is emerging that metabolic

processes also control the activation and immune-priming func-
tions of DCs. In the current review, we will discuss these recent
findings and explore whether targeting of metabolic pathways in
DCs could hold promise as a novel approach to manipulate their
functional properties for DC-based immunotherapy.

ROLE OF CELLULAR METABOLISM IN DC FUNCTION
Under non-inflammatory conditions, most DCs reside in periph-
eral tissues where they exist in a resting immature state. In this
quiescent state, DCs are poorly immunogenic. However, upon trig-
gering of a set of germline-encoded pattern recognition receptors,
including Toll-like receptors (TLRs) by pathogen-derived prod-
ucts or inflammatory stimuli, DCs undergo a well-characterized
process of cellular activation, termed DC maturation, which ren-
ders them highly immunogenic. This process involves an increase
in capturing and processing of antigens for antigen presentation
in context of major histocompatibility complex I (MHC-I) and
MHC-II and the induction of expression of chemokine recep-
tors, pro-inflammatory cytokines, and costimulatory molecules.
This activation program endows DCs with the capacity to traf-
fic, via tissue-draining lymphatics, to T cell zones of secondary
lymphoid organs to efficiently prime and control effector T cell
responses (9).

In T cells, catabolic metabolism centered around mitochondrial
oxidative phosphorylation (OXPHOS) is associated with cellular
longevity and quiescence, whereas cellular activation and prolif-
eration are accompanied by a switch to glycolytic metabolism to
support anabolic pathways needed for biosynthesis (4–6). Consis-
tent with these observations, DCs when activated by TLR agonists,
undergo a robust metabolic switch characterized by an increase
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in glycolysis and a concomitant progressive loss of OXPHOS (10–
13). We have shown that in inflammatory DC subsets, such as
murine GM-CSF-derived bone marrow DCs (14), this switch from
OXPHOS to glycolysis is a direct consequence of TLR-induced
inducible nitric oxide synthase (iNOS) expression that through the
production of nitric oxide (NO) poisons the mitochondrial res-
piratory chain in an autocrine fashion (15). In this setting, in the
absence of functional OXPHOS, TLR-agonist activated inflamma-
tory DCs depend heavily on glycolysis as their sole source of ATP
for survival both in vitro and in vivo (12). Consistent with this,
in vitro and ex vivo TLR-activated Nos2−/− inflammatory DCs
still have functional OXPHOS and as result do not display a long-
term increase in glycolytic metabolism (12). Likewise, we did not
observe a switch to glycolytic metabolism following TLR stimula-
tion of conventional DCs (cDCs) ex vivo (12), which do not express
iNOS in response to TLR stimulation. However, a more recent
in vivo study showed that TLR-activated cDCs do display long-
term diminished mitochondrial activity and enhanced glycolysis
(13). They found that this metabolic shift is iNOS-independent
and instead driven by TLR-induced autocrine type I interferon
production. Despite the differences in mechanism underlying the
metabolic switch, similar to inflammatory DCs, cDCs seem to rely
on the glycolytic shift for ATP production for their survival (13)
(Figure 1).

These studies suggest that the metabolic reprograming toward
glycolytic metabolism is a consequence of TLR-driven DC acti-
vation, rather than a prerequisite for it. However, given the fact
that TLR stimulation results in a rapid activation program in both
cDCs and inflammatory DCs, we recently tested the hypothesis
that rapid metabolic reprograming needs to occur in both types of

DCs to meet the bioenergetic and anabolic needs of TLR-driven
DC activation itself. Indeed, we observed that TLR stimulation
in both cDCs and inflammatory DCs results within minutes in
an increase in glycolytic rate that is maintained for several hours
after which it returns to prestimulation levels in the absence of
iNOS (16). Inhibition of this early metabolic reprograming blunts
DC activation, migration, and T cell priming both in vitro and
in vivo, illustrating its importance for DC biology. Functionally,
as opposed to the long-term glycolytic commitment, the rapid
increase in glycolysis appears not to be important as a rapid source
of ATP, but rather to serve a central anabolic role by acting as
a carbon source for both the pentose phosphate pathway (PPP)
and the tricarboxylic (TCA) cycle to support the generation of
NADPH and citrate, respectively, that are used for de novo fatty
acid (FA) synthesis. Moreover, glycolysis-supported de novo FA
synthesis plays a crucial role in DC activation and function at
the posttranscriptional level, by allowing for the synthesis and
expansion of membranes including Golgi and ER that are required
for synthesis, transport, and secretion of proteins associated with
TLR-driven DC activation (16). These findings share strong paral-
lels with activated T cells that heavily rely on glycolysis as a carbon
source for de novo FA synthesis to support the need for mem-
brane synthesis required for cellular proliferation (17). However,
in contrast to T cells, DCs do not proliferate and seem to use this
pathway to expand the cellular machinery necessary for increased
production and secretion of the mediators that are integral to DC
activation (Figure 1). This is consistent with a recent study posi-
tively correlating lipid content with immunogenicity of DCs in the
liver and showing that the immunogenicity of DCs with high lipid
content is dependent on FA synthesis (18). Taken together, these

FIGURE 1 |TLR-induced metabolic changes in dendritic cells.
(A) Rapid induction of glycolysis in DCs by TLR stimulation serves an
anabolic role in DC activation, by generating lipids for synthesis of
additional membranes including ER and Golgi to support the increased
demands of synthesis and transport of proteins required for DC

maturation. (B) Following activation, DCs sustain high glycolytic rates to
generate ATP to compensate for the loss of mitochondrial function. In
cDCs this process appears to be driven by autocrine type I interferon,
while in inflammatory DCs this is a direct consequence of iNOS-derived
NO that blocks OXPHOS.
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studies illustrate that the induction of glycolysis plays a central
role for DCs to acquire immunogenic properties as well as their
survival following activation.

While the metabolic features of immunogenic DCs are becom-
ing more well characterized, there is still little known about the
metabolism of tolerogenic DCs. Tolerogenic DCs, as opposed to
immunogenic DCs, are generally characterized by the absence
of traditional signs of activation, are maturation-resistant, and
express increased levels of immunoregulatory factors, impor-
tant for controlling Treg responses (19–21). Consistent with this
immature, maturation-resistant phenotype, proteomic analysis of
human DCs treated with dexamethasone and vitamin-D3, two
well known immunosuppressive drugs that induce tolerogenic
DCs, revealed increased expression of genes associated with mito-
chondrial metabolism and OXPHOS (22, 23). Furthermore, DCs
conditioned by IL-4 acquire a phenotype highly reminiscent of
alternatively activated (M2) macrophages and expression of M2-
associated activation markers on DCs is required for optimal
induction of IL-10-secreting T cells (24). The fact that M2 activa-
tion by IL-4 is dependent on increased fatty acid oxidation (FAO)
and OXPHOS (25–27) makes it conceivable that there is a causal
link between mitochondrial metabolism fueled by FAO and the
acquisition of a tolerogenic phenotype by DCs. The observations
that direct inhibition of glycolysis in TLR-activated DCs favors the
induction of Foxp3-expressing Th cells at the expense of IFN-γ-
producing Th1 cells (16), and that resveratrol and rosiglitazone,
drugs known to promote FAO (28) and mitochondrial biogen-
esis (29), respectively, interfere with TLR-induced DC activation
and can render them tolerogenic (30–33), would support this idea.
However, these studies are mostly correlative and more work will
be needed to elucidate whether there is a direct functional link
between mitochondrial catabolic metabolism and the acquisition
of tolerogenic properties of DCs.

REGULATORS OF DC METABOLISM
In recent years, major advances have been made in unraveling
the signaling pathways in immune cells that regulate their meta-
bolic state. The conserved kinase mammalian/mechanistic target
of rapamycin (mTOR) and its upstream activators PI3K-Akt have
been identified as central regulators of cellular activation and pro-
liferation due to their ability to control glycolysis and anabolic
metabolism (34–36). Consistent with a role for mTOR in regulat-
ing DC metabolism as well, cDCs isolated from mice with a DC-
specific deletion of tuberous sclerosis 1 (Tsc1), a negative regulator
of mTOR, display enhanced mTOR activity, an increase of expres-
sion of glycolytic and lipogenic genes, and of maturation markers
at steady state (37). Also in response to TLR ligands inflamma-
tory DCs depend on signaling through PI3K, Akt, and mTOR for
their long-term commitment to glycolysis (10, 38). mTOR pro-
motes anabolic pathways and glycolysis by driving expression and
stabilization of transcription factors such as sterol-regulatory ele-
ment binding protein (SREBP) (39, 40) and hypoxia-inducible
factor (HIF)-1α (41), that control expression of genes involved in
lipogenesis and glycolysis, respectively. While it remains unknown
whether SREBP plays a role in DC metabolism, several studies have
documented an important role for HIF-1α in supporting the long-
term commitment in glycolytic metabolism of both inflammatory

DCs and cDCs in response to TLR stimulation (11, 13). More-
over, consistent with its well-recognized role in regulating innate
immune cell function under inflammatory conditions (42), TLR-
induced DC activation and T cell priming appear to rely on HIF-1α

(11, 13, 43). However, whether this is a consequence of the role
of HIF-1α in promoting glycolytic metabolism and thereby cell
survival, or a reflection of the direct control of expression of
inflammatory cytokines independently from glycolytic regulation
(44, 45), remains to be addressed. In addition to direct tran-
scriptional regulation of glycolysis through HIF-1α, mTOR may
regulate the TLR-induced commitment to glycolysis indirectly in
inflammatory DCs, through induction of iNOS expression and
NO production (46,47) that forces these cells to switch to glycolysis
in the absence of mitochondrial respiration (12).

In contrast to the clear role for the mTOR-HIF-1α axis in regu-
lating TLR-induced long-term metabolic changes, recent evidence
suggests that the early TLR-driven induction of glycolysis to sup-
port the anabolic demands of DC activation itself does not depend
on mTOR or HIF-1α signaling (16, 48). Instead, there is a critical
role for Akt in this response that directly enhances the enzymatic
activity of rate-limiting glycolytic enzyme hexokinase-II (HK-II)
by promoting its association with the mitochondria. Interestingly,
Tank-Binding Kinase 1 (TBK1) and IκB kinase-(IKK) but not the
canonical Akt activators PI3K or mTORC2 appear to be the cru-
cial upstream regulators of Akt activation in this TLR-driven rapid
induction of glycolysis (16). Taken together based on these recent
findings a picture is emerging that TLR-signaling drives two func-
tionally and temporally distinct waves in glycolytic metabolism
in DCs that are controlled by largely separate signaling pathways
(Figure 1).

While the signaling pathways that promote the shift to glycoly-
sis and anabolic metabolism required for TLR-induced activation
and immunogenicity of DCs are starting to be characterized,
much less is known about the signals in DCs that may antag-
onize these responses and that are potentially important for
induction and function of tolerogenic DCs. In this respect, in
T cells and in macrophages the metabolic sensor AMP Kinase
(AMPK) is known to play a central role in antagonizing biosyn-
thetic pathways, including lipogenesis, and has instead been shown
to promote catabolic metabolism by, amongst other pathways, the
activation of peroxisome proliferator-activated receptor gamma
coactivator (PGC)-1α that promotes mitochondrial biogenesis to
increase mitochondrial OXPHOS (7, 35). Consistent with these
observations, pharmacological activation of AMPK suppresses
TLR-induced glucose consumption and activation of DCs, while
knockdown of AMPK has the opposite effect (10, 49), suggesting
an important role for AMPK signaling in the metabolic con-
trol of DC activation. Furthermore, systemic administration of
drugs activating AMPK signaling to promote catabolic metabo-
lism drives induction of tolerogenic immune responses in several
inflammatory disease models (50–52). However, it remains to be
determined whether these treatments exert their effects through
direct induction of tolerogenic DCs. Moreover, resveratrol, a drug
that has been linked to induction of tolerogenic DCs, is thought
to favor catabolic metabolism through activation of the histone
deacetylase Sirtuin 1, which is known to suppress HIF-1α function
as well as enhance PGC-1α activity (29, 32, 53). In addition,
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Everts and Pearce Metabolic control of DC function

FIGURE 2 | Putative metabolic pathways and upstream regulators in
tolerogenic versus immunogenic dendritic cells. In red examples are
depicted of pharmacological approaches currently tested or used in other
therapeutic settings, that could be used to manipulate DC metabolism.

DCs deficient for Nuclear factor-erythroid 2 p45-related factor-
2 (NRF2) or PPAR-γ, downstream targets of PGC-1α, display
increased maturation and T cell priming capacity (31, 54, 55).
Hence, these studies may point toward an important role for the
AMPK-PGC-1α axis in promoting mitochondria-centered cata-
bolic metabolism in DCs, which may be crucial for the acquisition
of a tolerogenic phenotype (Figure 2). However, how these signal-
ing pathways are regulated under physiological conditions and to
what extent the effects of these factors on DC biology can be attrib-
uted to direct regulation of DC metabolism are still unresolved
questions.

MANIPULATING DC METABOLISM FOR THERAPEUTIC
PURPOSES?
There is a great interest in the use of DCs as targets for immune-
intervention and for vaccine strategies, because of their powerful
immune stimulatory as well as regulatory functions (56). The
use of highly immunogenic DCs can be used to promote robust
cellular and humoral immunity that is central for improving vacci-
nation efficacy against a variety of infectious diseases and tumors,
while the use of tolerogenic DCs will allow for induction of regula-
tory immune responses in settings where unwanted effector T cell
responses need to be controlled, such as to prevent rejection fol-
lowing transplantation. It is of pivotal importance to identify and
characterize the regulatory processes underpinning these different
functions of DCs. It is becoming clear from the aforementioned
studies that the activation and T cell-priming function of DCs is
tightly regulated by their metabolic fate. What can we learn from
these new metabolic insights in DC biology and would there be
ways to use this knowledge in developing approaches to enhance
DC-based immunotherapies? The idea of manipulating cellular
metabolism for therapeutic purposes is not a new concept. In fact,
in the cancer field there is great interest in the use of pharmaco-
logicals that inhibit anabolic metabolism or glycolysis to reduce
tumor growth (57–60). Likewise, studies in T cells have provided
a clear proof of principle that targeting of cellular metabolism can
provide a viable means for improving the efficacy of vaccinations
(61, 62).

Based on the importance of anabolic metabolism and glycol-
ysis in supporting DC activation and immunogenicity, and the
possible role of catabolic metabolism in supporting tolerogenic
DC function, it will be of great interest to assess whether promot-
ing these types of metabolism in DCs can be used as a strategy to
enhance the immunogenicity or tolerogenicity of DCs in therapeu-
tic settings. It should be noted that some of the pharmacological
approaches currently used to manipulate the immunogenicity of
DCs, such as dexamethasone, Vitamin-D3, and rapamycin (63–
66) that are known for their capacity to induce tolerogenic DCs,
have been described to influence DC metabolism (22, 23, 38).
Thus it is possible that direct targeting of metabolism of DCs
as a single treatment may not be superior to some other already
existing manipulations that also affect metabolism. It is there-
fore more conceivable that manipulation of metabolism of DCs
for immunotherapy will be most effective when used in con-
junction with existing approaches to complement and enhance
their therapeutic efficacy. A second important advantage of direct
enforcement of certain types of metabolism in DCs is that is
it may render them more resistant to environmental metabolic
manipulation. This is highly relevant since a key parameter that
determines the efficacy of immunotherapies is how long targeted
DCs retain their phenotype following their functional manipu-
lation. The microenvironment, which DCs become exposed to
in situ, may lead to the loss of immunogenicity or tolerogenic-
ity and would significantly affect the outcome of the therapy. For
instance, the immunostimulatory capacity of DCs is often sup-
pressed in a tumor microenvironment (67). Given the important
role for cellular metabolism in regulating DC function, many of
the suppressive effects of tumors appear to be attributable to effects
on DC metabolism. It has been shown that tumor-derived IL-10
can suppress glycolysis in DCs through down regulation of gly-
colytic enzyme pyruvate kinase (68). Additionally, yet unidentified
tumor-derived factors can promote aberrant lipid accumulation
in DCs, resulting in impaired T cell priming (69, 70). Moreover,
immunogenic DCs are likely to be impaired in their function in
a microenvironment where glucose will be scarce due to the high
glycolytic rates of tumors themselves (71). Finally, caloric intake
and mitochondrial activity are important determinants of organ-
ismal as well as cellular lifespan (72, 73). Therefore targeting DCs
metabolism can also be used to manipulate DC longevity to affect
their immunostimulatory potential. For example, mTOR inhibi-
tion has shown to increase the lifespan of TLR-activated DCs and
enhance their capacity to induce protective tumor immunity (38).

Several agonist and antagonists of metabolic enzymes and
upstream signaling pathways that could be used to manipulate
DC metabolism have already been developed and tested for safety
and efficacy in other systems (58–60, 74) (Figure 2). In addition
to pharmacological approaches, genetic manipulation through
introduction of small hairpin RNAs has shown to be a successful
strategy to alter DC immunogenicity (75, 76) and could provide
a feasible alternative to target DC metabolism. In recent years,
there has been a major focus on manipulating the immunos-
timulatory properties ex vivo generated DCs for autologous DC
vaccination. Some of these vaccines have made it to the clinic (77)
or are currently in clinical trials (78–80). In addition, widespread
enthusiasm has been generated by results from the in vivo use of
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nanoparticles, consisting of antibody covered micelles carrying
antigens and potentially drugs or shRNA, that can be specifi-
cally targeted to DCs in situ (81, 82). Given the amenability of
cellular metabolic intervention, it seems feasible that metabolism-
targeted manipulations to DCs could be implemented in protocols
for DC-based vaccinations.

CONCLUDING REMARKS
It is becoming increasingly clear that the metabolic phenotype
of DCs dictates their activation and immunogenicity. However,
many of the details and underlying mechanisms of how cellular
metabolism controls the functional properties of DCs remain to
be determined. For instance, the precise metabolic processes that
underpin the function of tolerogenic DCs are still poorly defined.
Moreover, do different in vivo DC subsets have different meta-
bolic characteristics and are unique metabolic processes required
for DCs to perform particular functions, such as cross presenta-
tion or the induction of Th1/2/17 cell responses? Addressing these
and other questions will not only contribute to a better funda-
mental understanding of the biology of DCs, but will also aid in
the rational design of metabolism-based approaches to enhance
the efficacy of DC-based immunotherapies.
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