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In Vivo Substrates of the Lens Molecular Chaperones aA-
Crystallin and aB-Crystallin
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Abstract

aA-crystallin and oB-crystallin are members of the small heat shock protein family and function as molecular chaperones
and major lens structural proteins. Although numerous studies have examined their chaperone-like activities in vitro, little is
known about the proteins they protect in vivo. To elucidate the relationships between chaperone function, substrate
binding, and human cataract formation, we used proteomic and mass spectrometric methods to analyze the effect of
mutations associated with hereditary human cataract formation on protein abundance in ®A-R49C and aB-R120G knock-in
mutant lenses. Compared with age-matched wild type lenses, 2-day-old aA-R49C heterozygous lenses demonstrated the
following: increased crosslinking (15-fold) and degradation (2.6-fold) of aA-crystallin; increased association between oA-
crystallin and filensin, actin, or creatine kinase B; increased acidification of BB1-crystallin; increased levels of grifin; and an
association between BA3/A1-crystallin and aA-crystallin. Homozygous oA-R49C mutant lenses exhibited increased
associations between aA-crystallin and B3-, BA4-, BA2-crystallins, and grifin, whereas levels of B1-crystallin, gelsolin, and
calpain 3 decreased. The amount of degraded glutamate dehydrogenase, a-enolase, and cytochrome c increased more than
50-fold in homozygous aA-R49C mutant lenses. In aB-R120G mouse lenses, our analyses identified decreased abundance of
phosphoglycerate mutase, several B- and y-crystallins, and degradation of oA- and aB-crystallin early in cataract
development. Changes in the abundance of hemoglobin and histones with the loss of normal a-crystallin chaperone
function suggest that these proteins also play important roles in the biochemical mechanisms of hereditary cataracts.
Together, these studies offer a novel insight into the putative in vivo substrates of aA- and aB-crystallin.
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Introduction protein family of molecular chaperones [7]. Homo-oligomers of
aA-crystallin and aB-crystallin and the o-crystallin heteroaggre-
gates possess chaperone-like activity, binding to partially unfolded
or denatured proteins to suppress non-specific aggregation [7].
The molecular mechanisms by which point mutations in
crystallin genes lead to hereditary human cataract formation are
not completely understood [8-11]. Mouse models carrying

a-crystallins are major proteins of lens fiber cells that comprise
approximately 35% of the water-soluble lens protein and are
essential for lens transparency. Mutations in o-crystallin genes are
known to cause hereditary cataracts in humans. However, the
cellular functions of a-crystallin in maintaining growth, develop-

ment, and transparency of the lens and the mechanisms by which naturally occurring o-crystallin mutations have provided valuable

loss of o-crystallin function leads to cataracts are not fully information on the functions of these mutant proteins i vivo [12—
understood. 14]

The vertebrate lens expresses two o-crystallin proteins, oA and
aB, at a high concentration in lens fiber cells and at lower levels in
the lens epithelium [1-4]. Transcription of oA and aB-crystallin
genes commences early in lens development, beginning at
embryonic day 10.5 and 9.5 respectively in the mouse, and

The R49C mutation in aA-crystallin was found to be associated
with nuclear cataract in four generations of a Caucasian family
[15]. The mutant protein is mislocalized to the nucleus, and has
reduced solubility [15,16]. Most notably, this mutation is in the N-
terminal region of aA-crystallin, a region thought to be important
for aggregation interactions [16]. In mice, the R49C mutant
produces a small eye/lens phenotype and severe cataracts at birth
in 100% of mice homozygous for the mutation, indicating a gain

continues as the lens matures [5]. In lens fiber cells, a-crystallins
form heteroaggregates of atA- and aB-crystallins in a 3:1 ratio [6].
aA- and oB-crystallins are members of the small heat shock
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in toxic function of oA-crystallin protein. Compared with
homozygous mice, heterozygous aA-R49C knock-in mice, which
mimic human cataract patients, develop cataracts at approxi-
mately 2 months of age and exhibit decreased protein solubility
and altered cell signaling. Moreover, the R49C mutation
significantly alters interactions between oA-crystallin, oB-crystal-
lin, BB2-crystallin, y-crystallins, and the cytoskeletal protein
tubulin. The oB-R120G mutation in oB-crystallin also causes
cataracts in humans [8]. aB-R120G knock-in mice have lens
opacities, which are evident even in 3-week-old animals [17]. We
found that 100% of heterozygous mice ranging in age from 3
weeks to 5 months had lens opacities, with severity increasing with
age. Homozygous mice also developed lens opacities, but the effect
did not appear to be dependent on mutant gene dosage.

Our novel studies using knock-in mouse models for these
mutations have shown profound effects on the lens and eye and
indicate that o-crystallins affect lens epithelial and fiber cell growth
and survival, in addition to their well-known role in transparency
and optical properties of the lens. Moreover, our data suggest that
aA- and oB-crystallin mutations alter the structure and function of
lens epithelial and fiber cells and exert toxic effects at an early
stage of development, when primary fiber cell differentiation
commences.

It is well established that abnormal interactions between
chaperone and substrate proteins can result in increased protein
aggregation and disease [8,18]. The substrate-chaperone interac-
tion between oB-crystallin and its substrates involves multiple
interactive domains that have been extensively characterized
[19,20]. However, the i vivo substrates of aA- and aB-crystallin in
the lens have not been identified. In the absence or reduction of -
crystallin chaperone function, it is likely that partially unfolded
proteins will accumulate and aggregate [21,22]. We therefore
focused on determining which proteins are associated with o-
crystallin chaperones with the aim of identifying proteins that are
dependent on the chaperone activity of aA- and aB-crystallins to
retain their native conformations i wviwo. To achieve this, we
analyzed the abundance of proteins in ®aA-R49C and aB-R120G
knock-in mutant mice lenses by proteomics and mass spectrom-
etry. We have already applied this approach to identify several
proteins and enzymes not previously known to be affected by aA-
or aB-crystallin loss of function [23]. This method has also been
used to identify the effect of loss of function of the heat shock
chaperone protein HSP90 [24].

Results

Two-day-old aA-R49C Mouse Lenses

To identify proteins that showed altered abundance in mouse
lenses with the R49C aA-crystallin mutation, we performed 2D-
DIGE of 2-day-old WT, aA-R49C heterozygous mutant, and olA-
R49C homozygous mutant lenses. Figure 1 and Fig. S1 in File S1
show 2D gels of proteins and Table 1 lists the approximately 100
protein spots that showed a change in abundance between these
samples. Figure 2 shows the 3D plots for some of the spots that
changed in abundance in these lenses. Compared with WT, aA-
R49C heterozygous lenses had a 15-fold higher abundance of
crosslinked oA-crystallin, a 3-fold higher abundance of more
acidic aA-crystallin, and a 2.6-fold higher abundance of degraded
aA-crystallin. The association of aA-crystallin with filensin
increased 17-fold, the association of atA-crystallin with actin and
creatine kinase B increased 15-fold, and the amount of actin alone
increased 10.79-fold. The amount of a more acidic form of BB1-
crystallin increased, whereas that of a basic form of BB1-crystallin
decreased. atA-crystallin associated with BA3/A1 was more acidic
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and had a slightly lower apparent molecular weight than free olA-
crystallin. The number of protein spots with altered abundance
was much greater in the oA-R49C homozygous mutant lenses
than in the heterozygous lenses. In the homozygous lenses, several
proteins in the high molecular weight region (>75 kDa) were
altered. A high-molecular weight crosslinked oA-crystallin associ-
ated with creatine kinase B, actin, and erlin was enhanced 15-fold.
The association of aA-crystallin with o-enolase and BA3/Al was
also enhanced in homozygous lenses. In the same lenses, the
amount of BB1-crystallin decreased and more acidic forms of fB1-
and BB3-crystallins were associated with oA-crystallin. Among
proteins in the 20-kDa region (Table 1, Fig. 1 and Fig. S1 in File
S1), the amount of alA-crystallin and BA3/Al-crystallin decreased
in homozygous lenses. Among the cytoskeletal proteins, the levels
of more basic forms of filensin and phakinin decreased, whereas
levels of more acidic forms of these proteins increased. High
molecular weight forms of phakinin and actin decreased 2.9-fold in
homozygous lenses. The amount of tubulin, vimentin, and
microtubule associated protein RP/EB associated with oA-
crystallin increased in homozygous lenses, while that of phospho-
glycerate mutase decreased. The amount of hemoglobin subunit 1
complexed with yD-, oB-, yS-, yB-, fB3-, and YA-crystallins
decreased in homozygous lenses and increased with age. The
abundance of forms of Hsp71 increased 2.5-fold, and the amount
of aA-crystallin associated with vimentin, tubulin, and T-complex
protein increased 4-fold in homozygous lenses. The amount of
grifin associated with oA-crystallin increased in several spots.

There was an increase in B-globin, histone and peptidyl-prolyl
cis-trans isomerase associated with oA-crystallin in homozygous
lenses (Table S1). The abundance of oB-crystallin, hemoglobin,
and histones also increased. A spot containing a high molecular
weight form of spectrin-o. and nucleosome assembly protein
increased in homozygous lenses. In the high molecular weight
region, the abundance of aA-crystallin and spectrin increased and
that of filensin, gelsolin, and calpain 3 decreased in homozygous
lenses. There was an increase in mitochondrial 60-kDa HSP
associated with oA-crystallin, and many other proteins including
vimentin.

Among proteins in the cytoskeletal and 20 kDa regions (Table 1,
Fig. 1 and Fig. S1 in File S1), there was an increase in aA-crystallin
associated with BB3-crystallin, BA4-crystallin, grifin, fatty acid
binding protein, thymosin, and glutamate dehydrogenase in
homozygous lenses. Surprisingly, the amount of oA-crystallin
alone and in association with BA3/Al-crystallin, PA4-crystallin,
YE-crystallin, and yA-crystallin in the high molecular weight
region decreased in homozygous lenses.

Increased amounts of degraded proteins were detected in the
low molecular weight region (<20 kDa). The amount of degraded
glutamate dehydrogenase alone and in association with cyto-
chrome c increased 4-fold and 53-fold, respectively, in homozy-
gous lenses. The amount of more acidic forms of aA-crystallin,
and more degraded forms of creatine kinase B, oA-crystallin,
actin, and phakinin increased 19-fold in homozygous lenses. In the
molecular weight range below 20 kDa, the amount of degraded
aB-crystallin associating with BA2-crystallin, a-enolase, and other
proteins increased 112-fold in homozygous lenses. The amount of
other degradation products of atA-crystallin associated with - and
v-crystallins also increased in homozygous lenses. Some of these
were more basic than the original aA-crystallin. The amount of a
very acidic cohort of oA-crystallin with PA3/Al-crystallin,
hemoglobin subunit o, and G3PDH increased 7-fold in homozy-
gous lenses. There was also an increase in the amount of a very
low molecular weight aA-crystallin associated with stathmin and
other B-crystallins in homozygous lenses.
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Figure 1. 2D-DIGE analysis of proteomic changes in whole lenses of 2-day-old mice with knock-in of the aA-R49C mutation. (A) 2D
gel of cyanine dye-labeled lens proteins derived from wild-type sample 1 (WT1) proteins labeled with Cy2, WT2 proteins labeled with Cy3, and oA-
R49C heterozygous proteins labeled with Cy5. (B) 2D gel of cyanine dye-labeled lens proteins derived from WT1 proteins labeled with Cy2, WT2
proteins labeled with Cy3, and aA-R49C homozygous proteins labeled with Cy5. Protein spots that were selected for analysis from the gels shown in
(A) and (B) are shown in Fig. S1 in File S1 and were identified by tandem mass spectrometry and Mascot searches. Quantitative image analysis and
mass spectrometry data for the identified proteins are listed in Table 1. Arrows indicate the shift in position of the aA-crystallin bands (red) to a more

acidic pl with the mutation.
doi:10.1371/journal.pone.0095507.g001

Previous work demonstrated that there is less insoluble protein
in heterozygous lenses than in homozygous lenses [10]. To
determine whether changes in protein abundance reflect this
difference in solubility, equal amounts of W'T', heterozygous, and
homozygous mutant lens proteins were further analyzed on
multiple gels using various combinations of cyanine dyes to label
WT and mutant lens samples. Multi-gel analysis of WT and oA-
R49C mutant proteins is shown in Table 2 and Figures 3 and 4.
Biological variation analysis (BVA) of WT and oA-R49C
heterozygous and homozygous lenses showed that mutant gene
dosage correlated with an increase in alanyl-tRNA synthetase, olA-
crystallin, the mammalian cytoplasmic chaperone TCP-1 theta,
and high-molecular weight BA3/Al-crystallin. The statistical
significance of the change in protein abundance of each spot is
shown in Table 2. The levels of two different members of the
HSP70 protein family, HSC70 and mitochondrial stress protein
70, as well as the V-type proton ATPase catalytic subunit, also
increased in aA-R49C mutant lenses. Mitochondrial stress protein
70 increased in two spots (spots 928 and 948) and TCP-1
associated with aA-crystallin increased in three spots (spots 593,
1081, and 1146). High molecular weight BB1-crystallin increased
slightly in a mutation- and dose-dependent manner. The
abundance of PBA3/Al-crystallin associated with oA-crystallin
(spot 1477) and aA-crystallin alone (spot 1612) decreased. It is
noteworthy that for several spots, the differences were statistically
significant ($<<0.05) between WT and the aA-R49C homozygous
lenses only. The 79-fold increase in aA-crystallin (spot 1540) in the
high molecular weight region was highly significant, suggesting
increased crosslinking of aA-crystallin in ®A-R49C mutant lenses.
Creatine kinase B associated with oA-crystallin in the high
molecular weight region increased 22-fold (spot 1519), confirming
the results of the single gel analysis in Table 1. The amount of otA-
crystallin associated with eukaryotic translational initiation factor
increased 1.44- and 2.24-fold in heterozygous and homozygous
mutant lenses, respectively. Among the proteins that showed
decreased abundance in a mutation- and dosage-dependent
manner were BB1-crystallin (spots 1856 and 1868) associated with
eukaryotic translational initiation factor, aA-crystallin associated
with histone H4, implantin, myotrophin, and more basic oA-
crystallin associated with PA4- and BA3/Al-crystallins in spot
2772.

Additional proteins that decreased in abundance relative to wild
type (Fig. 4 and Table 2) were PBl-crystallin (in homozygous

PLOS ONE | www.plosone.org

lenses only), and a mutation- and dose-dependent decrease in
BA3/Al-, BA4-, BA2-crystallins associated with atA-crystallin (spot
2109), aB-crystallin, and BB2-crystallin (spots 2115 and 2123
showed a 8.57-fold decrease in homozygous lenses relative to WT).
The abundance of yD-crystallin, peptidyl-prolyl cis-trans isomer-
ase, YA-crystallin, yB-crystallin, and yC-crystallin also decreased
(spot 2413). Other spots that decreased in abundance in a
mutation- and dose-dependent manner were nucleoside diphos-
phate kinase, peptidyl-prolyl cis-trans isomerase, and yD-crystallin
(spot 2454), fatty acid-binding protein and oA-crystallin (spot
2553). A more acidic form of aA-crystallin increased 4- and 5-fold
in heterozygous and homozygous lenses (spot 2294). In contrast,
spot 2317 decreased 4.8- and 9.2-fold in heterozygous and
homozygous mutant lenses, respectively. Spot 2351 increased in a
mutation- and dose-dependent manner with 4.6- and 10.4-fold
increases in heterozygous and homozygous lenses, respectively.
Spots 2317 and 2351 contained only aA-crystallin at its normal
molecular weight, but spot 2351 was more acidic, suggesting a
decrease in the pl of aA-crystallin by the R49C mutation. Spot
2417, containing only a lower-than normal molecular weight otA-
crystallin also increased 7.5- and 10.5-fold in aA-R49C mutant
lenses relative to WT, but two additional spots containing only otA-
crystallin decreased (spots 2533 and 2631). The abundance of
epidermal fatty acid binding protein and 40S ribosomal protein
S12 also decreased in association with oA-crystallin, but these
changes were not mutation- and dose-dependent.

Two-week Old oA-R49C Mouse Lenses

Figure 5 shows 2D gels for 14-day-old WT and mutant proteins
of aaA-R49C knock-in mice. Table 3 shows the approximately 50
protein spots that showed a change in abundance between WT
and aA-R49C mutant in 14-day-old lenses. The abundance of the
high molecular weight cytoskeletal protein spectrin-o and its acidic
forms decreased in aA-R49C lenses (spots 700 and 769). Acidic
forms of filensin increased 4-fold (spot 2675), whereas basic forms
decreased 15-fold (spot 2448). Hsp70 also increased 3- to 6-fold in
three spots. High molecular weight phakinin decreased 10-fold,
while acidic and low molecular weight phakinin increased 8-fold.

Among the crystallins, the amount of aA-crystallin that was
crosslinked and associated with BA3/Al-crystallin increased in
four spots, and aA-crystallin associated with annexin increased 3-
fold in one spot (spot 4872). Normal and basic forms of BBI-
crystallin decreased 6- to 25-fold in three spots. More basic forms
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of BB2- and PB3-crystallins in association with glutathione S-
transferase-u (GST-p) increased 8-21-fold in two spots. Very acidic
forms of BB2-crystallin, fB3-crystallin, and GST-u decreased 18-
fold in spot 5625.

aB-crystallin that was degraded and associated with B- and y-
crystallins increased in two spots. The amount of otA-crystallin
slightly larger than 20 kDa decreased 60- to 71-fold (spot 6341),
and 13-fold when associated with B- and y-crystallins (spot 6352).
Acidic and degraded oA-crystallin increased 34-fold (spot 6485).
Spots containing YA-, YB-, YC-, and yD-crystallins decreased 6-
fold. Degraded aA-crystallin associated with yC-, YA-, and yB-
crystallins increased 15-fold. Nine spots containing degraded olA-
crystallin increased in mutant lenses, whereas degraded but more
basic forms than the original aA-crystallin decreased in abundance
(spots 7068, 7089, and 7419). Wild type and aA-R49C homozy-
gous lenses were further analyzed (Fig. S2 in File S1 and Table
S1). There was a large change in PB2-crystallin expression with
age of the wild type lenses (from 2 days to 2 weeks). Spots 5466
and 5466 (Table S1) show an increase in fB2-crystallin in wild
type mouse lenses confirming the results of a previous study [23].

Two-week Old aB-R120G Mouse Lenses

Figure 6 shows 2D gels for 14-day-old WT and mutant proteins
of aB-R120G knock-in mice. Table 4 shows the approximately 50
protein spots that showed a change in abundance between WT
and mutant spots in the 14-day-old lenses. Figure 7 shows 3D plots
for some of the protein spots that changed in abundance in the oB-
R120G mutant lenses. Heterozygous aB-R120G lenses showed
several spots with decreased abundance of phosphoglycerate
mutase (spots 5353, 5441, 5456 and 5468). Phosphoglycerate
mutase was the only protein in spots 5353 and 5468 but was
associated with PBl-crystallin in spots 5441 and 5456. aA- and
aB-crystallins decreased in a very basic high molecular weight spot
(spot 2982). The abundance of aA-crystallin increased 2.8- to 10-
fold in spot 6415, and was slightly degraded and more acidic than
normal oA-crystallin. In the same region, spots 6449 and 6848
(2A-crystallin associated with grifin) increased 12-fold and 2.5 fold,
respectively. Degraded and more basic forms of oA-crystallin
alone (spots 6920 and 7257) or with oB-crystallin and BB3-
crystallin (spot 7451) also increased in abundance in heterozygous
lenses. A spot containing oA-, YA-, yB-, yC-, and yD-crystallins
also decreased 2.7-fold in heterozygous lenses.

Homozygous aB-R120G lenses showed an 8-fold increase in the
abundance of a more acidic spot (5961) containing oB- and other
crystallins, whereas the more basic spot 5963 decreased 5.6-fold.
Spot 6120 containing aA-, aB-, and yB-crystallins also increased
in abundance in homozygous lenses. This spot was more acidic
than the other aB-crystallin spots and was located near the olA-
crystallin position. Spot 5938, which was very close to spot 5963
but slightly more acidic, also decreased in abundance. Spots 7164
increased in abundance by 2.0-fold in aB-R120G homozygous
lenses relative to WT. It contained both aA- and aB-crystallins,
which were more degraded and basic than the original proteins.
Overall, a few unique spots changed in abundance in aB-R120G
homozygous lenses than in aB-R120G heterozygous lenses.

To obtain a general perspective of cellular systems affected in
the aA-R49C and oB-R120G mutant lenses, we mapped the
proteins identified by mass spectrometric analysis to existing
networks. These networks represent interactions known to occur
among the proteins identified in our analysis. The interactions
shown in these networks did not originate from lens tissue in our
study. Ingenuity Pathway software analysis generated eight
different networks for the proteins identified in the aA-R49C
mutant lenses, two of which are shown in Figure 8, with additional
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Figure 2. Quantitative analysis of abundance changes in proteins from postnatal 2-day-old WT and adA-R49C knock-in lenses by
mass spectrometry. The 3D data sets for representative proteins in two WT (WT1 and WT2) and one aA-R49C heterozygous or oA-R49C
homozygous mutant sample are shown. WT1 and WT2 proteins were labeled with Cy2 and Cy3 dyes, respectively and aA-R49C mutant proteins with
Cy5. Fold changes between each sample are indicated on the right. See Table 1 for the identity of proteins present in each protein spot.

doi:10.1371/journal.pone.0095507.9g002

networks shown in Fig. S3 in File S1. One network generated by
this approach included the chaperones HSPA8 and HSPA2 which
interact with aB-crystallin. A second network included histone H4
which has been shown to interact with the PI3kinase complex.
Four different protein networks were generated by this method in
the aB-R120G lenses including one in which the ubiquitin
proteasome was at the hub (Figure S4). An interaction between the
lens-specific protein grifin and the transcription factor IKZF1 was
evident in both ®A-R49C and aB-R120G mutant lenses (Figs. S3,
S4 in File S1, and Table S2).

Discussion

Several mechanisms can cause hereditary cataracts, including
increases in protein mass, aggregation, insolubility, and light
scattering. In the present study, we characterized changes in
protein abundance at an early postnatal age in mouse lenses with
knock-in mutations of aA- or aB-crystallins. We also investigated
proteins that showed increased association with oA- or oB-
crystallins in mutant lenses, defined by an increase in the level of
urea-resistant protein in the same spot.

Several important assumptions of this study require further
discussion. The present study identified changes in abundance of

PLOS ONE | www.plosone.org

many spots in which oA- or aB-crystallin was present together
with other proteins. This association indicates similar pl and
molecular weights of the ancillary proteins and the o-crystallin in
these spots. We cannot speculate on the mechanism by which the
proteins are associated with a-crystallins. Our evidence from 2D-
gel analysis is suggestive of an association, but is not conclusive.
Since this association was observed in multiple gels of wild type
and knock-in mutant lenses, the presence of oA- and/or oB-
crystallin with specific proteins in the same spots is suggestive of a
true association. Previous studies suggest that mutant o-crystallins
may exert a gain-of-toxic function on the lens [25]. Thus, it is
possible that the differences in protein abundances between
normal and knock-in mouse lenses may not be directly due to
incompetent chaperones per se, although a previous study with the
oA and oB-crystalin DKO mouse lenses strengthens the
conclusions of the present work [23]. Nevertheless, a toxic gain-
of function by the mutant a-crystallins could be a potential factor
in the observed results.

There was a significant decrease in the abundance of actin
(15.6-fold), filensin (17.5-fold), BA3/Al-crystallin, yD-crystallin (6-
fold), and grifin (1.74-fold). We also observed degradation of
glutamate dehydrogenase, which was associated with cytochrome

12 April 2014 | Volume 9 | Issue 4 | 95507
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Figure 3. 2D-DIGE analysis of proteomic changes in whole lenses of WT, aA-R49C heterozygous, and aA-R49C homozygous mutant
lenses using a pool-based analysis. (A) WT samples were labeled with Cy2, a pool of all samples (containing WT, A-R49C heterozygous and
homozygous proteins) was labeled with Cy3, and the aA-R49C heterozygous mutant sample was labeled with Cy5. The pool sample was a common
comparator for each sample. (B, C) Spots that were selected based on analysis of the gels are shown. Quantitative image analysis by biological
variation analysis was performed across several samples, and mass spectrometry data for the identified proteins from these gels are listed in Table 3.

doi:10.1371/journal.pone.0095507.9003

¢ in some spots. Because the abundance of these proteins changed
at a young age, even in the heterozygous mutant aA-R49C lens,
with no apparent change in lens morphology, it is very likely that
they are i vivo substrates of a-crystallin. Our analysis also suggests
that enzymes involved in lens metabolism, such as creatine kinase
B and phosphoglycerate mutase, and the detoxification enzyme
GST-p are m viwo substrates of aA- and oB-crystallins. These
proteins may be structurally labile and might interact with atA- and
aB-crystallins for conformational maintenance during the early
stages of lens growth but become more stably associated with the
protein when the chaperone is mutated. Structural analysis of
these enzymes is necessary to reveal any common structural
domains. These findings suggest that key metabolic pathways are
involved in the mechanism of cataract formation by the aA-R49C
or aB-R120G mutations. The decrease in phosphoglycerate
mutase levels in the postnatal aB-R120G knock-in mouse lens
suggests that mutation of the chaperone protein in the lens affects
lens metabolism even before the opacification process becomes
evident.

The association of histones with atA-crystallin increased in the
mutant lenses. The possibility that histones are protected by o-
crystallins is particularly important because histones are critical
and long-lived proteins [26]. The R49C mutant of aA-crystallin
exhibits increased apoptosis and aberrant accumulation of nuclei
in the lens, suggesting a possible explanation for the increased
abundance of histones [15,27]. We previously reported an
increased abundance of histones in oaA/aB double knock-out
(DKO) lenses [23], and in lens cells expressing another human
cataract-related mutant of atA-crystallin in which the arginine 116
residue 1s replaced by cysteine [28]. Therefore it seems likely that
histones may be protected by oA- and aB-crystallins in the lens. In
2-week-old 0A-R49C mutant lenses there was an increase in oA-
crystallin associated with annexins. These proteins are associated
with apoptosis, which has been observed in the aA-R49C mouse.
Interestingly, phosphoglycerate mutase, o-enolase, and peptidyl-
prolyl cis-trans isomerase are oxidized and have reduced enzyme
activities in Alzheimer’s disease, another disease associated with
protein aggregation [29].

An intriguing observation of the present study was the presence
of albumin in the 2-day-old lens (Table 1). Extracellular albumin,
an abundant protein in the aqueous humor, becomes internalized
in the lens in vivo [30]. It has been suggested that albumin is a
carrier for lipids and other metabolites, and could be essential for
normal lens physiology [31,32]. A decrease in plasma albumin has
been linked with an increased risk of human cataract [33]. The
abundance of the spot containing albumin, oA-crystallin and
filensin showed a 3.6-fold variation between the two biological
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17

replicates of the WT mouse lens, and increased 16- to 17-fold in
the oA-R49C heterozygous lenses. Further studies will be
necessary to understand the significance of these observations.
We detected increased otA-crystallin in protein spots containing
cytoskeletal proteins, and increased abundance of degraded and
more acidic cytoskeletal proteins including spectrin-o, filensin,
phakinin, tubulin, vimentin, and microtubule-associated protein
RP/EB in the ®aA-R49C mutant knock-in lenses. The abundance
of filensin and phakinin decreased in aA-R49C mutant lenses,
suggesting that these proteins are i wviwo substrates for oA-
crystallin. The spectrin-actin  membrane skeleton contributes
significantly to lens fiber cell organization and is functionally
linked to the phakinin-filensin network [34]. Disruption of the
spectrin-actin membrane cytoskeletal complexes may therefore be
responsible for the morphological changes observed in aA-R49C
homozygous mutant lenses at an early age [27,35]. There was also
an increase in the amount of degraded and more acidic grifin, a
protein whose interaction with oA-crystallin has been demon-
strated previously [36], and the abundance of aA-R49C associated
with grifin increased 16-fold in homozygous mutant lenses. The
amount of hemoglobin subunit o decreased in oA-R49C
homozygous mutant lenses indicating that it is a likely substrate
for oA-crystallin. Previous studies support the possibility that
destabilized forms of hemoglobin show increased binding to oB-
crystallin i vitro [37].

We found an increase in B-crystallin isoforms with more acidic
pl in the mutant lenses. Decreases in more basic forms of fB1- and
BB3-crystallins and increases in more acidic forms indicate that
aA-crystallin is a chaperone for these two crystallins. Furthermore,
oA- and oB-crystallins were increasingly associated with f-
crystallins in the mutant lenses, suggesting that they may have
formed heteromeric complexes. Previous studies have identified
covalent multimers of crystallins in aging human lenses [38].
Recently, the crosslinks between B-crystallin isoforms have been
identified by mass spectrometry [39]. Deamidation of PB2-
crystallin has been proposed to disrupt normal crystallin structure
and short-range order necessary for lens transparency [40].
Deamidation has been shown to lower the temperature necessary
for PB2-crystallin unfolding and aggregation, suggesting decreased
BB2-crystallin stability, although its 3D dimeric structure was not
significantly altered [41]. Interestingly, the nature and amount of
the destabilized B-crystallin intermediate is important for recog-
nition by the chaperone [42]. Decreased amounts of BB 1-crystallin
were detected in five spots and in an additional four spots
containing other B-crystallin polypeptides. oA-crystallin  was
associated with B-crystallins in these spots. The decrease in BB1-
crystallin was noteworthy because PB1-crystallin has a unique role
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Figure 4. Pool-based quantitative analysis of changes in abundance of postnatal 2-day-old lens proteins from WT and oA-R49C
knock-in lenses by mass spectrometry. The 3D data sets for representative proteins in one WT, one pool, and one aA-R49C heterozygous or aA-
R49C homozygous mutant sample are shown. WT proteins were labeled with Cy2, pool proteins with Cy3, and aA-R49C heterozygous mutant

proteins with Cy5. Fold changes between each sample are indicated on the right. See Table 2 for the identity of proteins present in each protein spot.
doi:10.1371/journal.pone.0095507.g004
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increased significantly in homozygous 2-day-old lenses. Our
studies also demonstrated a decrease in y-crystallins in homozy-
gous lenses at a young age. Many of these changes occurred in a
mutation- and dose-dependent manner; ie., changes in the

in promoting higher order crystallin association in the lens, and
any change in this order could result in increased light scattering
and loss of transparency [43-45]. The amount of oA and oB-
crystallins associating with BA3/Al-, PA2-, and BA4-crystallins

Figure 5. 2D-DIGE analysis of proteomic changes in whole lenses of 14-day-old mice induced by knock-in of the adA-R49C mutation.
(A) A 2D gel of lens proteins labeled with cyanine dyes derived from WT1 proteins labeled with Cy2, WT2 proteins labeled with Cy3, and aA-R49C
homozygous lens proteins labeled with Cy5. (B, C) Protein spots that were selected for analysis from the gel in (A) are shown. Proteins were identified
by tandem mass spectrometry and Mascot searches of spots that were selected from the gels. Quantitative image analysis and mass spectrometry
data for the identified proteins from these gels are listed in Table 3.

doi:10.1371/journal.pone.0095507.9005
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Figure 6. 2D-DIGE analysis of proteomic changes in whole lenses of 14-day-old mice induced by knock-in of the ¢B-R120G
mutation. (A) 2D gel of lens proteins labeled with cyanine dyes derived from WT1 proteins labeled with Cy5, WT2 proteins labeled with Cy3, and aB-
R120G heterozygous lens proteins labeled with Cy2. (B) 2D gel of lens proteins labeled with cyanine dyes derived from WT1 proteins labeled with
Cy2, WT2 proteins labeled with Cy3, and aB-R120G homozygous proteins labeled with Cy5. (C, D) Protein spots that were selected for analysis from
the gel shown in (A) and (B) are shown in (C) and (D), respectively. Proteins were identified by tandem mass spectrometry and Mascot searches of
spots that were selected from analysis of the gels. Quantitative image analysis and mass spectrometry data for the identified proteins from these gels
are listed in Table 4.

doi:10.1371/journal.pone.0095507.g006

amounts of certain proteins were greater in the complete absence scattering also demonstrated an increase in low molecular weight
of a WT aA-crystallin gene (homozygous mutant) than with only proteins (~15 kDa) in these lenses [10]. We first examined the
one copy of the WT gene (heterozygous mutant). Examples are presence of low molecular weight proteins in the homozygous

shown in Tables 1-3 for the aA-R49C protein. The effect of lenses, and then compared WT, heterozygous, and homozygous
developmental age was investigated using 2- and 14-day-old R49C lenses. We subsequently identified the low molecular weight

mutant lenses (Fig. S2 in File S1 and Table S1). The increased proteins as oA-crystallin associated with other crystallins, gelsolin
abundance of several proteins and the degradation of atA-crystallin and degraded ceruloplasmin, that were absent from WT mouse
previously observed in 2-day-old homozygous mutant lenses were lenses but abundant in 2-week-old ®A-R49C homozygous lenses
confirmed at 14 days. (Table 3).

An important conclusion of the present study is that the oB- oA- and oB-crystallins were degraded in both aA-R49C and
R120G mutation causes specific ; wviwo changes in protein 0B-R120G mutant lenses at a young age, suggesting that the
abundance. Protein changes in the aB-R120G lenses were mutations make these proteins less stable. Decreased stability was
distinctly different from those in otA-R49C mutant lenses. The assoclated with increased crosslinking of aA-crystallin, as shown by
main changes in the aB-R120G mutant lens included altered the 15-fold increase in crosslinking of aA-crystallin to form a
abundance of B- and y-crystallins, increased degradation of aA-, higher molecular weight form of approximately 40 kDa that
aB-, and 7-crystallins, and degradation of phosphoglycerate corresponded to a crosslinked dimer. We detected increased
mutase, a glycolytic enzyme that is very important in metabolism crosslinking of atA-crystallin very early, even in lenses of 2-day-old
but has not been studied in the lens in detail [46-49]. There was postnatal oA-R49C heterozygous mice. Previous studies have
also a 12-fold increase in the amount of aA-crystallin associated shown that increased crosslinking can reduce the chaperone
with grifin in these lenses. activity of a-crystallin [52]. We previously used immunoblot

Our studies demonstrated that 2-week-old aA-R49C homozy- analysis to show an increase in the amount of water-insoluble oB-
gous lenses contained a high abundance of low molecular weight crystallin in 6-week-old aB-R120G mutant lenses [17]. We now
proteins (<14 kDa) indicating that the absence of WT aA- demonstrate the presence of high molecular weight aB-crystallin in
crystallin leads to protein instability, greater susceptibility to postnatal aB-R120G heterozygous and homozygous lenses,
proteolysis, and protein degradation. This occurred as a primary indicating that they appear early during postnatal development
event at an early postnatal stage. Previous studies have identified and consistent with their important role in opacification of oB-
lens protein truncation with age in human lenses [50,51]. In future R120G heterozygous and homozygous lenses.
work, we intend to identify the common structural features that In previous studies we investigated the effect of aA/B double
make the proteins more labile to proteolysis, which will provide knock-out. The expression of BB2-crystallin increased 40-fold in 6-
critical information needed to develop a model of i vivo cataract week-old oA/B DKO lens epithelial cells; however, the upregula-
formation. Our previous studies involving molecular weight tion of BB2-crystallin protein was not observed in 2-day-old DKO
measurements of the oA-R49C homozygous lenses by light lenses, indicating that this was not a physiological stress-induced

PLOS ONE | www.plosone.org 31 April 2014 | Volume 9 | Issue 4 | 95507
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Figure 7. Quantitative analysis of the changes in abundance of proteins in postnatal 14-day-old lens from WT and aB-R120G knock-
in mice by mass spectrometry. The 3D data sets for representative proteins in two WT (WT1 and WT2) and one aB-R120G mutant sample are
shown. (A) WT1 and WT2 proteins were labeled with Cy3 and Cy5 dyes, respectively, and aB-R120G heterozygous mutant lenses with Cy2. (B) WT1
and WT2 proteins were labeled with Cy2 and Cy3 dyes, respectively, and aB-R120G homozygous mutant lenses with Cy5. Fold changes between each
sample are indicated on the right. See Table 4 for the identity of proteins present in each protein spot.

doi:10.1371/journal.pone.0095507.g007

effect but probably developmental. Surprisingly, in 6-week-old
DKO mouse lenses we did not observe an increase of lower
molecular weight (<14 kDa) proteins as seen in the knock-in
lenses. This was the major difference between o A/B DKO lenses
and oA-R49C homozygous lenses although there were other
distinct differences between the proteins altered in knock-out
versus knock-in ®A-R49C mutant and aB-R120G mutant lenses.
For example, the following effects were observed only in knock-in
mutant lenses: increased abundance of creatine kinase B associated
with oA-crystallin (only in otA-R49C mutant lenses); decreased
abundance of phosphoglycerate mutase; changes in grifin associ-
ated with aA-crystallin; association of chaperones of the HSP70
and TCP-1 families with oA-crystallin (only in the oA-R49C
mutant lenses); decreased abundance of in y-crystallins; increased
abundance of the apoptotic protein annexin. In contrast,
degradation of titin, B1-catenin, and a decrease in serine threonine
protein kinase were observed only in aA/aB DKO lenses.
However, common features in our analyses of aA/aB-knock-out
lenses and the aA-R49C and aB-R120G mutant knock-in lenses
included changes in histones, hemoglobin, glutamate dehydroge-
nase, GST-u, and BBl-crystallin. An increase in BBIl-crystallin
crosslinking and degradation was observed in the knock-in mutant
lenses, but only its crosslinking increased in the knock-out lenses.

PLOS ONE | www.plosone.org

32

Crosslinking of vimentin, tubulin, and actin increased and their
abundance decreased in both knock-out and knock-in lenses.
These differences in protein abundance and degradation among
the three model systems indicate that specific cellular conditions
dictate the substrates for o-crystallins during the early stages of lens
development. This reveals variable substrate recognition by o-
crystallins, which when fully understood may provide insights into
how to limit the damage resulting from protein unfolding in
cataracts and could implicate use of the aggregation-preventing
properties of o-crystallins to control damage due to stress and
disease.

It has been proposed that a combination of interaction sites
could be key in substrate recognition by aA-crystallin [53]. The
interaction of o-crystallins with substrate proteins is non-covalent
in nature, and hydrophobic interactions need only a subtle change
on the protein surface of the target proteins. Hydrophobic
interactions are probably more common than previously believed
because proteins are dynamic systems. A very small area might
become exposed and bind to a hydrophobic surface on the
chaperone protein even though the particle size may not change
sufficiently to cause light scattering. Moreover, changes in the pl of
proteins can occur without a stability change. Surface anisotropy
can change many times in response to unidentified factors in the

April 2014 | Volume 9 | Issue 4 | 95507
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Figure 8. Ingenuity Pathways analysis of lens proteins identified in aA-R49C knock-in mutant lenses. Analysis of altered protein
networks by Ingenuity Pathway software. Biological networks and pathways generated from input data (Wild-type vs. 2A-R49C, Tables 1-3 and Table
S1) indicate proteins with altered abundance in gray. (A) A network with HSPA8 at the hub. (B) A second network highlights Histone H4 at the hub of
the protein connectivity map. Additional networks are shown in Fig. S3 in File S1.

doi:10.1371/journal.pone.0095507.9g008

environment of cells. There is no change in protein size in many
hereditary cataracts caused by y-crystallin mutations, instead the
cataract is formed by increased electrostatic interaction between
the positively charged E107A yD-crystallin and the negatively
charged a-crystallins, which increases the amount of light
scattering [54,55]. This may also occur in aA-R49C and oB-
R120G mutant proteins in which the negative charge on arginine
1s lost when it is replaced by cysteine or glycine, respectively, and
the proteins have a more acidic pl, resulting in an increase in light
scattering. Thurston et al. showed that the strength of the
interaction between native Y- and o-crystallins is essentially
optimal for lens transparency, and that a small increase in this
interaction can increase light scattering and lead to cataract
[56,57]. Further studies are needed to elucidate the hierarchy in
the interaction of oA- and aB-crystallins with different proteins
and the interactive sequences involved.

In summary, our studies demonstrate that characterization of
changes in protein abundance in postnatal lenses is an effective
way to identify i vivo substrates of aA- and aB-crystallins. Proteins
that showed the greatest change in abundance at an early age are
very likely to be i vivo substrates of the o-crystallins. Further
quantitative studies are required to define the relationship(s)
between binding of aA- and aB-crystallins and polymerization and
subcellular distribution of the substrates identified in this study.
This will provide new information into protein abundance changes
that may occur in cataracts, even before the opacification process
becomes obvious. Our approach could therefore characterize the
in vivo state at the beginning of cataract development in the mouse
lens, providing information necessary to develop interventional
strategies to prevent future lens opacities.

Materials and Methods

Animals and Lenses
0A-R49C knock-in mice and aB-R120G knock-in mice were
generated by stem cell-based techniques as described previously
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[17]. Mice were converted to the C57 background using speed
congenics. Wild type (WT), heterozygous mutant, and homozy-
gous mutant mice used in this study were genotyped by PCR-
based methods. All procedures involving mice were performed by
trained veterinary staff at the Mouse Genetics Core at Washington
University. All protocols and animal procedures were approved by
the Washington University Animal Studies Committee (protocol
number 20110258). Lenses from two different age groups of alA-
R49C knock-in mice (2-day old and 2-week-old) were analyzed by
mass spectrometry (2-4 mice in each replicate set of WT'1l, WT2,
and aA-R49C heterozygous mice and WT1, WT2, and aA-R49C
homozygous mice). W1 and aA-R49C knock-in mutant lenses
were subjected to two-dimensional difference gel electrophoresis
(2D-DIGE). Lenses from 2-week-old aB-R120G heterozygous and
homozygous mice were also analyzed by 2D-DIGE.

Mass Spectrometric Analysis

Lenses were dissected and placed in lysis buffer containing
30 mM Tris-HCI (BioRad, Hercules, CA), 2 M thiourea (Sigma-
Aldrich, St. Louis, MO), 7 M urea (BioRad), 4% CHAPS
(BioRad), and 1x complete protease inhibitor cocktail tablets
(Roche, Indianapolis, IN), pH 8.5. Lens proteins (50 pg) were
labeled with 400 pmol Cy2, Cy3, or Cy5. Pools were prepared by
mixing equal quantities of protein from each sample after dye
labeling [58]. 2D-DIGE was performed at the Proteomics Core
Laboratory according to published methods [59]. Briefly, samples
were equilibrated onto immobilized pH gradient strips at 100 V
and subjected to isoelectric focusing using a maximum of 10,000
focusing volts (PROTEAN IEF cell: BioRad). After focusing,
proteins were reduced with Tris(2-carboxyethyl) phosphine
hydrochloride (TCEP, 10 mM) and alkylated with iodoacetamide
(20 mM). The strip was then layered on a 10-20% polyacrylamide
gel, and proteins were separated by SDS-PAGE. Samples were
imaged with a Typhoon 9400 Imager (GE Healthcare, Piscat-
away, New Jersey) using specific excitation and emission wave-
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lengths for Cy2 (488 and 522 nm), Cy3 (520 and 580 nm), and
Cy5 (620 and 670 nm). Control and experimental samples were
labeled with blue or red fluorescent dyes and run on the same 2D
gel [60,61]. Image analysis was performed to assess differences
between WT and homozygous/heterozygous mutant lenses.
Individual protein spots that showed differential intensities were
excised from the gel and analyzed by mass spectroscopy. Fold
changes represented proteins with increased (positive numbers) or
decreased (negative numbers) expression in mutant versus WT
samples.

Single or multi-gel analyses were used to determine changes in
protein abundance between W'T and knock-in mouse lenses.
Single gel analysis was performed to compare the following
conditions: WT and aA-R49C heterozygous and homozygous
mutant lenses (Tables 1, 3, Figs. 1 and 2, Table S1), and WT and
aB-R120G heterozygous and homozygous mutant lenses (Table 4,
Figs. 6 and 7). In addition, multi-gel analysis was performed with a
pooled internal standard. This approach was used to compare 2-
day-old WT, aA-R49C heterozygous, and homozygous mutant
lenses (Table 2 and Figs. 3 and 4). Multi-gel comparisons were
performed using different combinations of sample sets. The WT
sample was labeled with Cy2 and mutant samples were labeled
with Cy). A pool of all samples was labeled with Cy3 and served as
a standard that was common to each gel. The pooled standard, the
control, and one test sample were combined and run on each gel.
Images were generated and compared within each 2D gel using
DeCyder v.6.5 image analysis software (GE Healthcare). Differ-
ential in-gel analysis (DIA) was used to normalize and compare
quantitative differences between images from each gel. Image
analysis using DeCyder software generates a relative value for the
abundance of the spot in different samples, but there is no
mechanism to determine the statistical significance of the
differences. We therefore performed analysis of combined
biological replicates for the different genotypes. In addition, we
used Biological Variation Analysis (BVA) for the 2-day-old oA-
R49C knock-in mouse lenses to obtain statistical significance as

described below [59].

Analysis of Pool-Based Data

Pool-based studies involved a pool of proteins from all samples
in the experiment, providing a common comparator for each
sample. Because the pool is identical on each gel, the fold change
“difference” for a spot in the pool image is 1.0 (representing no
change) when comparing pool images from any two gels. This
designation allowed us to compare protein amounts for spots of
WT or aA-R49C heterozygous lens samples to the pool on the
same gel to determine relative amounts of protein. Although WT
and mutant samples were resolved on different gels, their fold
changes were determined in comparison to the pooled sample,
which was also run on each gel. Because the pool from one gel is
identical to the pool from another, the WT and mutant fold
change values could be directly compared. Pairwise analysis of
proteins across different physical gels was performed using the
BVA module to quantify relative differences between the samples
[59]. BVA compares the quantitative value of the spot as it is
represented among different samples. BVA data generates #test
and assigns p value to identify statistical significance. p < 0.05
denotes statistical significance (Table 2).

Database Searching

The mass spectra were acquired using nano-LC-MS as
previously described [62]. All tandem mass spectrometry samples
were analyzed using Mascot (Matrix Science, London, UK;
version 2.1.1.0) as previously described [23]. Mascot was set to
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search the Uniprot mouse database (downloaded 12/28/2010,
135387 entries) using trypsin as the digestion enzyme, with a
fragment ion mass tolerance of 0.80 Da and a parent ion tolerance
of 50 ppm for data from the LTQ FT mass spectrometer. The
OSTAR data were searched using a parent and fragment
tolerance of 0.1 Da. The iodoacetamide derivative of cysteine
was specified in Mascot as a fixed modification and methionine as
a variable modification. Scaffold software (v. 3.6.1) was used to
display proteomic data. Additional data processing details have
been previously described [59].

Criteria for Protein Identification

Scaffold (version Scaffold_3_01_00, Proteome Software Inc.,
Portland, OR) was used to qualify MS/MS-based peptide and
protein identifications [63]. Protein identification was accepted if
identity could be established at >95.0% probability and involved
at least one identified peptide. Protein probabilities were assigned
using the Protein Prophet algorithm ([64] Al et al 2003). Proteins
that contained similar peptides but were not differentiated based
on MS/MS analysis alone were grouped to satisfy the principles of
parsimony. Mass spectra for all the proteins identified in this study
are shown in Table S4.

Knowledge-based Network Analysis

After false positive analysis (Protein Prophet) and removal of
contaminants (e.g., keratins), proteins listed in Tables 1-4 and S1
(identified by UNIPROT accession numbers) were entered into
Ingenuity Pathways (www.ingenuity.com) (IPA, version 8.8,
Redwood City, CA) as a *xIs file. The software mapped 99 of
118 Gi numbers, corresponding to 99 gene symbols. Duplicate
names corresponding to the same gene were eliminated. Ingenuity
was set to generate up to 25 networks containing up to 35
members each, with no additional restrictions. Biological networks
and pathways were generated from the input data (‘focus genes”)
and gene objects in the Ingenuity Pathways Knowledge Base
(IPKB). Interaction networks generated using this method showed
proteins present in our samples as shaded in grey and other
interacting proteins not identified from these gels as unshaded.

Supporting Information

Table S1 Analysis of proteins that showed differences in
abundance between 2-day-old WT, 14-day-old WT and 2-
day-old 0dA-R49C homozygous mouse lenses. WT, Wild-
type.

(DOC)

Table S2 Ingenuity Pathway Analysis (IPA) molecules
table for proteins affected by 0A-crystallin R49C muta-
tion in the mouse lens.

(XLS)

Table S3 Ingenuity Pathway Analysis (IPA) molecules
table for proteins affected by aB-crystallin R120G
mutation in the mouse lens.

(XLS)

Table S4 Mass spectrometry and database search

results for proteins identified in this study.
(XLSX)
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