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During exocytosis, classical and 
amino acid neurotransmitters are 

released from the lumen of synaptic 
vesicles to allow signaling at the synapse. 
The storage of neurotransmitters in syn-
aptic vesicles and other types of secretory 
vesicles requires the activity of spe-
cific vesicular transporters. Glutamate 
and monoamines such as dopamine 
are packaged by VGLUTs and VMATs 
respectively. Changes in the localiza-
tion of either protein have the potential 
to up or downregulate neurotransmitter 
release, and some of the mechanisms for 
sorting these proteins to secretory vesi-
cles have been investigated in cultured 
cells in vitro. We have used Drosophila 
molecular genetic techniques to study 
vesicular transporter trafficking in an 
intact organism and have identified a 
motif required for localizing Drosophila 
VMAT (DVMAT) to synaptic vesicles in 
vivo. In contrast to DVMAT, large dele-
tions of Drosophila VGLUT (DVGLUT) 
show relatively modest deficits in local-
izing to synaptic vesicles, suggesting that 
DVMAT and DVGLUT may undergo 
different modes of trafficking at the syn-
apse. Further in vivo studies of DVMAT 
trafficking mutants will allow us to deter-
mine how changes in the localization of 
vesicular transporters affect the nervous 
system as a whole and complex behaviors 
mediated by aminergic circuits.

The initiation and termination of synaptic 
transmission requires two types of neu-
rotransmitter transporters. Plasma mem-
brane transporters mediate the reuptake 
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of transmitter from the synaptic cleft into 
either the presynaptic terminal or adjacent 
glia following exocytosis.1-3 These proteins 
thereby help to determine the amount of 
neurotransmitter that is available for sig-
naling at the synapse.3 The structurally 
and bioenergetically distinct vesicular 
transporters are responsible for the storage 
of neurotransmitters in synaptic vesicles 
(SVs) as well as other types of secretory 
vesicles.4,5 These include specific vesicular 
transporters for acetylcholine (VAChT), 
GABA and glycine (VGAT/VIAAT), 
glutamate (VGLUTs), purine nucleotides 
(VNUT)6 and the monoamines serotonin, 
dopamine, noradrenalin, histamine and in 
invertebrates, octopamine (VMATs).4,5 A 
variety of papers published over the past 
fifteen years have shown that vesicular 
transporter expression, and the number of 
transporters that localize to each vesicle, 
can regulate the amount of neurotrans-
mitter that is stored and released dur-
ing exocytosis.7 Increasing the number 
of transporters on each vesicle may also 
influence the well-described electrophysi-
ological parameter of quantal size, defined 
as the amplitude of a post-synaptic signal 
generated by a single vesicle’s content of 
neurotransmitter.7 Changes in quantal 
size have classically been considered to be 
strictly the domain of post-synaptic recep-
tors and their attendant signaling machin-
ery. The idea that quantal size might be 
regulated by vesicular transporters opens 
up a host of interesting possibilities 
including the possible presynaptic scal-
ing of coordinated circuits in the central 
nervous system.8,9
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domain. Using biochemical fractionation 
of adult head homogenates, we showed 
that mutation of Y600 or deletion of the 
entire carboxy terminus dramatically 
reduces the localization of DVMAT-A to 
SVs. To our knowledge, these findings are 
the first to show that mutation of a traf-
ficking motif in a vesicular transporter or 
any vesicular protein can disrupt local-
ization to secretory vesicles in vivo. We 
are now investigating whether additional 
motifs might function as back-up signals 
for trafficking of DVMAT-A to SVs via 
alternative pathways, or for sorting to 
LDCVs.

In parallel with our studies on 
DVMAT, we have used both biochemical 
and genetic methods to study the traffick-
ing of DVGLUT. The Drosophila genome 
contains one VGLUT ortholog, thus facil-
itating the genetic analysis of glutamate 
release and signaling.27,32 Overexpression 
of DVGLUT can increase quantal size and 
the resultant increase in glutamate release 
is lethal (Daniels RW and DiAntonio AD, 
unpublished). Screening for intragenic 
mutations that suppressed lethality led to 
the isolation of a number of DVGLUT 
variants with missense or nonsense muta-
tions in potential trafficking domains. In 
addition, we used in vitro mutagenesis to 
more directly disrupt proposed traffick-
ing domains. Using mutants derived from 
both in vitro mutagenesis and in vivo 
screening, we then showed that large dele-
tions of the DVGLUT C-terminal traf-
ficking domain had very modest effects on 
either internalization in cultured cells in 
vitro, or on DVGLUT’s localization to SVs 
in vivo. Previous studies have shown that 
mutation of proposed trafficking domains 
in mammalian VGLUTs similarly result 
in relatively subtle effects on internaliza-
tion in cultured cells.26,33,34 Based on these 
differences, we speculated that the path-
ways that sort VMATs and VGLUTs to 
SVs at the synapse might be significantly 
different.29 This idea is supported by a 
recent demonstration that mammalian 
VMAT2 and VGLUT1 may undergo 
endocytosis to different populations of 
SVs in mammalian neurons.16

The relative resistance of VGLUTs 
to the disruption of canonical traf-
ficking motifs raises the possibil-
ity that VGLUTs could employ novel 

in particular, to determine which signals 
are needed for sorting to secretory vesicles 
in vivo. In time, these studies will allow 
us to determine how vesicular transporter 
trafficking may influence normal and dis-
ease-related behaviors and the physiology 
of the nervous system as a whole.

Most current models of SV trafficking 
indicate that endocytosis from the cell sur-
face is somehow required, thus predicting 
that endocytosis signals in vesicular trans-
porters should have an important role in 
sorting the transporters to SVs.20 Several 
studies have already identified signals on 
vesicular transporters that are important 
for both endocytosis and trafficking to 
SVs in cultured cells.10 The neural isoform 
of the mammalian vesicular monoamine 
transporter (VMAT2) contains a dileucine 
motif that is necessary for both internaliza-
tion from the cell surface and localization 
to synaptic-like microvesicles (SLMVs) in 
PC12 cells.21,22 A similar motif and pos-
sibly an additional tyrosine-based signal 
allows VAChT to internalize from the cell 
surface and localize to SLMVs in neuroen-
docrine cells.23-25 A variant of the dileucine 
motif (FV), and in some cases a polypro-
line motif may be important for recycling 
mammalian VGLUTs to SVs in cultured 
cells.26 These studies notwithstanding, the 
trafficking of vesicular transporters in vivo 
has remained relatively obscure.

As a first step toward determining how 
transporter trafficking might affect the 
function of the nervous system as a whole, 
we set out to identify trafficking motifs 
in the Drosophila orthologs DVMAT 
and DVGLUT.27-29 For DVMAT, we 
focused on DVMAT-A, the splice vari-
ant expressed in all aminergic neurons.28,30 
(Another splice variant, DVMAT-B, is 
expressed in a small subset of glia in the 
visual system and contains a distinct traf-
ficking domain).31 We find that a tyrosine 
in the carboxy terminus of DVMAT-A 
(Y600) is necessary for efficient endocy-
tosis in vitro.29 This signal is likely to be 
similar to the canonical tyrosine-based 
motif YXXΦ, where Φ represents a bulky 
hydrophobic residue.19 To determine 
whether this signal would affect target-
ing of DVMAT-A to synaptic vesicles in 
vivo, we generated transgenes containing 
the wild type protein and others contain-
ing mutations in the putative trafficking 

In addition to increased expression, 
membrane trafficking represents another 
mechanism to regulate the number of 
transporters that localize to each vesi-
cle.10,11 Membrane trafficking also adds 
the possibility of regulated sorting of 
transporters to different types of secretory 
vesicles. In addition to synaptic vesicles 
(SVs), which cluster at specific sites in the 
nerve terminal, monoamines and perhaps 
other types of neurotransmitters can be 
released from the more diffusely local-
ized large dense core vesicles (LDCVs), 
which also release peptide transmitters. 
It is possible that regulated events such as 
transporter phosphorylation could control 
the number of transporters that localize 
to LDCVs versus SVs.12,13 In addition, it 
is possible that vesicular transporters dis-
tribute to different subclasses of SVs at 
the nerve terminal. It has been known for 
decades that VAChT localizes to at least 
two biochemically distinct populations of 
vesicles at the neuromuscular junction.14,15 
Other vesicular transporters may also sort 
to functionally distinct pools of SVs.16 It is 
not yet clear whether distribution to sub-
sets of SVs can be regulated via membrane 
trafficking, but there are a few tantaliz-
ing clues suggesting that this may indeed 
occur.15,17

The potential contribution of vesicular 
transporter trafficking to neurotrans-
mitter release increases the importance 
of understanding the basic cellular 
mechanisms that sort the transporters to 
secretory vesicles. Some of the cellular 
machinery has been identified and appears 
to be identical to evolutionarily conserved 
proteins required for vesicle budding and 
fusion throughout the cell.10,18 For “cargo,” 
such as the vesicular transporters to be 
included in a particular budding vesicle, 
“sorting signals” must be encoded in the 
primary structure of the protein or added 
post-translationally. The signals required 
for protein trafficking in non-neuronal 
cells have been extensively characterized.19 
However, the sorting signals that allow 
vesicular transporters and other proteins 
to localize to secretory vesicles are less 
clearly defined. It also remains unclear 
whether different vesicular transporters 
use the same or different pathways to get 
to SVs at the nerve terminal. We are using 
the fly to help address these questions and 
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our studies of transporter trafficking 
in Drosophila may help determine how 
changes in neurotransmitter storage and 
release contribute to the pathophysiology 
and treatment of a variety of disease states.
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ing at the synapse. In addition, a subset 
of mutations in a cytosolic loop domain 
of DVGLUT appear to disrupt exit from 
the soma.29 Further study of these mutants 
may help disentangle non-specific changes 
in protein structure from potentially more 
interesting effects on trafficking.

In ongoing studies, we are testing the 
behavioral affects of disrupting trans-
porter trafficking. We have recently shown 
that dVMAT mutants exhibit several defi-
cits in monoamine-linked behaviors.36 To 
determine how DVMAT trafficking may 
influence behavior, we are genetically res-
cuing the dVMAT mutant with a panel 
of transgenes containing altered traffick-
ing signals. As described for DVGLUT,29 
forward genetic screens may be used to 
study trafficking of DVMAT or other 
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and DVAChT.38 In addition to identifying 
important motifs within the transporters 
themselves, future genetic screens may 
also be used to identify interacting pro-
teins possibly important for trafficking. 
This type of screen was recently used to 
identity a binding partner for the C. ele-
gans ortholog of VAChT.39

Since the mechanisms of neuro- 
transmitter transport and release are 
highly conserved, our studies in the fly 
may provide important clues about the 
potential contribution of transporter traf-
ficking to human behavior and disease. 
Several recent papers suggest that muta-
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ter transporters may be linked to specific 
neuropsychiatric syndromes.40 Alterations 
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