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ABS TRACT

There is a fundamental problem in synchronizing communication between

any two concurrently operating digital systems that lack a common time

reference. This problem involves the inability to build a completely re-

liable synchronizer or arbiter that will work in a prescribed amount of

time. Stimulated by the need for an interlock macromodule design of pre-

dictable reliability, the inability to find evidence of previous studies,

and indications that this problem has been responsible for significant

reduction in the reliability of several commercial machines, we undertook

theoretical and experimental studies of this problem. The results to date

of these studies are documented in this volume.
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1. INTRODUCTION

· iIt has long been known that there is a problem in communication b tween

two concurrently operating digital computer systems that lack a common time

reference, but until quite recently it has been generally believed that there

was a safe solution. The difficulty arises when one system attempts to
obtain information about the state of another system while that other system

may be undergoing a change of state. Depending upon timing, the inquiring

system may perceive the observed system as being in the state it had before

the transition, in the state that it took after the transition, or in some

other state having little or no relationship to either of these.

In clocked systems, the traditional solution to this problem is a

device called a synchronizer , which in its basic form consists of a flip-flop

whose input is formed by combining a binary level from the observed system

with a clock pulse from the inquiring system. In theory, it is assumed that

the state of this flip-flop at the time of the clock pulse next following

the reading of the input level represents either a logical "0" or a logical

"1", and can safely be used as an input to subsequent operations controlled
by later clock pulses.

Unfortunately, if the coincidence in time between the level change and

the clock pulse is such as to produce a reduced pulse input into the flip-

flop, it is possible that the flip-flop will not reach a stable state by the

time of the next clock pulse, and that its outputs will not correspond to

the defined logical "0" and "1" for the inquiring system. It appears to be

true that no finite value for the time interval between clock pulses will

_uarantee that the synchronizing flip-flop will be in a stable state at the

time of the clock pulse following the pulse used to sample the input level.

The effects of such a failure of synchronization are far worse than

merely an error in determining the state of the observed system. Since the

output of the flip-flop is not in a state that is defined logically, one

cannot predict with certainty what will happen to the control of the

inquiring system that is using the flip-flop output. The problem is general-

ly dealt with in the design of clocked systems by allowing a sufficiently

long time interval, T, between clock pulses so that the probability that the

flip-flop has not stabilized by the time its state is sensed is acceptably

small. Remarkably enough, there is little information in the literature

that would enable one to predict what T should be for a specified circuit

and failure probability.

Our recognition of the depth of the problem began early in the

development of macromodules (late 1965), when it was recognized that there

does not seem to be any way to design general asynchronous control logic-

that provides for concurrent multiple asynchronous interactions with a single

processor which does not, for some timing relationships of the input signals,

provide a flip-flop with a marginal input signal. Therefore some tests were

conducted to see what effects these "runt" pulses might have on the flip-flops

that we were using. The results of these tests, which were similar to the

results shown in the photographs of Fig. 2, clearly showed that a flip-flop
did not always reach a stable state in the time allowed.
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During 1966, the source of this problem and possible ways to avoid it

were discussed by us and debated extensively. Late in ·1966, we made our first

·informal attempt to record our understandings and feelings about· this problem,

which·we called "the Glitch". (See Appendix A, which is a reprint of [1].)

This report included a philosophical argument that synchronizers must have

imperfect reliability due to the glitch phenomenon. In our attempts to avoid

the problem by increasing the circuit complexity (playing the game of

"musical Glitch"), we were often able to obscure the problem but never able to

solve it. This report also presented a development of a mechanical system
analogy (a System for which a _potential energy curve is applicable) to show

that circuit "noise" does not affect the average response of a bistable to

input energies in the neighborhood of the "marginal energy" input that would,

in the absence of noise, leave the bistable* in the metastable state for ever.

Also presented in this report was an arbiter ·circuit based on detecting

the metastable region of the flip-flop that may receive a marginal energy

input. The use of this circuit, which appears to allow both a short average

throughput time and high reliability, requires that the ·interacting

processes stop while the arbiter circuit is making its decision.

From 1966 to 1971 several designs for interlock macromodules were pro-

posed [2,3,4,5]. Each of these schemes incorporated a metastable

detection circuit of the type described. Also during this period a detailed

Study was done of the behavior of a tunnel diode ·latch [6].·

With few exceptions, our attempts to interest Others in the problem

during this period were met either with disbelief or the attitude, "it's an

interesting problem, but it doesn't have any noticeable effect on today's

synchronizer designs". At least two papers concerning ·this problem were
submitted for publication during this period, one by Couranz and Wann of our

laboratory, and one by another party,· that were rejected on the grounds of

lack of general interest to the readership·. * A third paper, by I. Catt, was

published as a short note in the IEEE computer transactions [7] even though

the editor of the transactions "...was quite sure that the problem I (Catt)

was discussing did not exist. However, he (the editor) agreed to publish it

as a footnote because it might generate some interest and discussion. _ In

fact, the response was nil." (quote from Catt at the 1972 workshop on

synchronizer failures [8] .) ·One other early but obscure discussion of the

synchronizer problem is found in Gray [9]. Although this book was published

in 1963, the section dealing with the synchronizers was not brought to our

attention until 1971. Part of the reason is that Gray's discussion is in

chapter 6, "Digital Computer Circuit Analysis", section 6.21; which is a

4-page section between 6.20, "Graded-Base Transistors", and 6.22, "Pulse
Trans formers"

Showing of photographs of a misbehaving flip-flop at the December, 1971,

ARPA IPT contractors' meeting, and at a workshop on modular computer systems

in St. Louis, generated interest in a workshop on synchronizer failures.

This workshop was quickly organized by us and held in April of 1972. The

consensus arrived at during this worksho p can perhaps be summarized:

* It is interesting to note both these Papers were resubmitted in 1973 and

both were accepted for publication. [30,31]
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1) The problem is fundamental in any communication between two systems
not sharing a common time reference, and it is not possible to build

,o a completely reliable synchronizer or arbiter that will work in a
prescribed amount of time. (Nevertheless, theorists postulate such

devices and use them as components of systems which people then
build.)

2) There is no adequate theoretical treatment predicting the failure

probability of a synchronizer due to this class of mechanisms, and
new failure modes are still being discovered.

3) Specifications of existing integrated circuits are not adequate to

permit the evaluation of a particular circuit for synchronizer or
arbiter service, and representatives of the semiconductor industry

expressed pessimism with respect to any useful response from
manufacturers of semiconductors.

4) There is considerable evidence suggesting that present systems are
crashing and failing at significant rates due to this problem.

These conclusions, and our own need for an interlock macromodule design
of predictable reliability, stimulated efforts on our part toward further

theoretical and experimental study of the problem. The evidence from the

workshop that significant synchronizer reliability problems had occurred in
the IMP used in the ARPANET, and in several commercial machines made by

_ Honeywell (DDP-516) and Digital Equipment Corporation (PDP-10 and PDP-11/45)
also had encouraged us to redouble our efforts to make the problem more

widely known.

%
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2. OBSERVATIONS OF FLIP-FLOP RESPONSES TO MARGINAL INPUTS

Although it has been known for some time by others [7,9,13,14] as well
as by us that flip-flops, in response to marginal input conditions, can have

outputs that are logically undefined and that the probability the flip-flop
has settled from this undefined region in any given time interval is less

than one, very little experimental verification has been done prior to the
work of T. Chaney, who has observed and photographed many different types of
flip-flop misbehavior [6,10,11]. Some of the methods used to obtain these

photographs are discussed in Appendix B.

In one mode of flip-flop behavior, the output hovers for an indetermi-
nate time at a metastable value somewhere intermediate between the defined "0"

and "1" output levels. This mode is typical of flip-flop circuits that have a
small signal propagation time to signal rise time ratio. The sampling
oscilloscope photographs of Figure 1 show, by dot demsity, the relative

probability that the tunnel diode flip-flop has not settled when the input

triggering amplitude is adjusted to a marginal size. This flip-flop has
been slowed down by the addition of a 200-pf capacitor in parallel with the

tunnel diode so that better measurements can be taken to verify a model [6].
Figure la indicates the circuit response with a fixed trigger amplitude, and

Figure lb indicates the response when the trigger amplitude is modulated.

Figure 2 shows the response of an emitter-coupled logic (ECL) clocked R-S
flip-flop (MOTOROLAMC1016) when the clock input signal is switched off as
the data input signal is changing. The sampling oscilloscope photo shows the

relative probability that the flip-flop has not settled. The photographs from
a real-time oscilloscope show the details of some individual trajectories.

In another common mode of anomalous behavior, the Q and Q outputs
oscillate in phase a number of times between the "0" and "1" states before

finally coming to rest out of phase. This mode is typical ofxflip-flops
constructed from gates with large propagation time to rise time ratios.

Transistor-transistor logic (TTL) R-S type flip-flops are often constructed

by cross-tying two NAND gates. Figure 3 shows the resulting behavior when a
runt pulse is supplied to one input of the flip-flop. The mode of behavior

of R-S flip-flops constructed from low-power TTL (the SN74L00 gates) is
intermediate between the hovering and oscillating modes.

The flip-flop reaction shown in Figure 2 may be explained in simple
terms by considering two inverting gates connected in series as shown in

Figure 4. With the switch open, bias the input of the first gate such that

the output of the second gate is equal to the input bias voltage (V¥=Viw)
Then connect the output of the second gate to the input of the first ga_e'by
closing the switch (thus forming a flip-flop) and remove the bias input.

In the absence of noise sources, the system is at an unstable equilibrium
point and will stay there forever. Since any infinitesimally small energy

source will cause the flip-flop to leave this point, the presence of circuit
noise will cause the flip-flop to switch after some period of time.
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Figure 1. Sampling oscilloscope photographs of a tunnel diode type flip-
flop triggered into the metastable region with and without
amplitude modulation.

Photographs Reprinted From Technical
Report 15 [6]
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Reprinted from COMPCON - 72 Digest [10]
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Figure 3. Response of TTL R-S flip-flops, constructed by cross-tying two

NAND gates, to a runt pulse at one input. 1 V/div., 10 nsec/div.
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3. THEORETICAL STUDIES

The most commonly used model for metastable behavior of flip-flops is

essentially that presented by Gray [9], which assumes that the system is

linear and unstable with a single pole on the real axis in the right

half-plane. In the noise-free version of this model, the system output is

approximately of the form:

V(t) = [V(0) -Vo] exP(T)

where V(0) is the initial output voltage, V is the metastable voltage, and To
is a time constant characteristic of the circuit.

This model predicts the commonly observed result that the tail of the

decision time frequency distribution is exponential in form, and Couranz [6]

has shown that for the conditions he chose this noise-free model predicts

results essentially identical to those obtained assuming the presence of

reasonable amounts of Gaussian noise. On the other hand, Hurtado [16] has

demonstrated by analysis that there are conditions under which noise can have

a large effect.

While useful, this simple model is not adequate to explain a number of

observations, particularly those showing oscillatory behavior. It is also

too specific to be useful in discussing the fundamental limits of synchro-

nizer performance. Hurtado, in our laboratory, has undertaken development of

a more comprehensive theory based upon the general theory of bistable and

multistable dynamical system_ representable by a set of simultaneous

non-linear differential equations, relating the values of state variables and

their derivatives. In his preliminary results, he has found that for such

noise-free systems the "glitch" problem is inescapable. The theoretical

treatment of the effects of noise upon this conclusion is not complete, but

there is not any reason at present to expect that such systems with noise

can prove perfectly reliable synchronization either.

What is of particular interest in these studies is the fact that the

input interval as well as the free behavior interval of the system cam be

represented by this class of model, which also appears general enough to

account for all types of flip-flop behavior yet observed. Another aspec t Of

this model is the likelihood of being able to-justify the use of noise-free

models and to ascertain the conditions under which they are good approxi-
mat ions.

Other theoretical studies in our laboratory by Srinivasan and Chaney [12],

stimulated by difficult-to-explain observations of the behavior of flip-flops

constructed by Seitz [15] from TTL gates with totem-pole outputs, have

discovered a new set of unpleasant phenomena relatingto positive feedback within

the TTL output circuit. Under some conditions, particularly when inputs to

the gate are in the logically undefined region, the circuit can show negative

resistance at its input, output, and power supply terminals. When such gates

are cross-tied to construct flip-flops and these flip-flops are marginally
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triggered, very complex and potentially hazardous behaviors can be observed.

Painstaking attempts are now underway to classify these behaviors and account

for each type theoretically, using Ebers-Moll circuit models for the
transistors in the TTL devices.

Aside from its relevance to the synchronizer, this work suggests the
need for great caution in using TTL logic with slowly changing inputs.
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4. ANALYSIS OF A SYNCHRONIZER DESIGN

Although examples of poor synchronizer designs are abundant, we chose to

analyze carefully a commercially available TTL-type integrated circuit that

has been designed specifically for use as a synchronizer in order to

illustrate how the marginal energy condition affects the reliability of a

synchronizer. This device, whose logic diagram is shown in Figure 5, is ad-

vertised as a "Dual Pulse Synchronizers/Drivers" in which "Latched Operation

Ensures that Output Pulses are not Clipped" [17].

The function of this circuit is to gate the next clock (C) pulse(s)

through the synchronizer after an interrupt occurs at the output of gate B.

The A-B flip-flop provides wave shaping for the interrupt input and as such is

not part of the synchronizer circuit. To simplify the discussion, we will

disable the A-B flip-flop by setting the R input low and the S2 input _

high. Si then controls the output of gate B and will be considered the

interrupt input. Note that reasonable circuit performance requires that the

interrupt input signal be longer than one clock period.

The circuit is activated by switching Si low. If the mode (M) input is

grounded, beginning with next clock pulse, all following clock pulses will be

gated through the synchronizer (through gate J) until Si is switched back high.

If the M input is held high, only the next clock pulse will be gated through.

S1 must then be switched back high (to reset the D-E flip-flop), then low

again to produce another output pulse.

There are two cases of marginal energy input in this circuit that cause

anomalous behavior: the case when an interrupt arrives (S1 switching low)

about the time the clock pulse is switching high and, for the chain of pulses

mode (M grounded), the case when the interrupt is switching off (Si switching

high) as another clock pulse is arriving.

First let us consider the marginal energy case that occurs when the

asynchronous input is stopping the clock pulse chain about the time the next

clock pulse is switching high. The problem occurs when the input timing is

such that input No. 2 to gate J and input No. 1 to gate I are both switched

high at the same time. The flip-flop, consisting of gates I and J, is then

left to decide which output will be a "1" and which will be a "0". Some

typical responses are shown in Figure 6. These output waveforms were

produced by carefully adjusting the time between the input signals. The

circuit produced responses like these E_ses over an input signal timing
variation of approximately 10 psec (lO _ sec). Note that the Y output

pulse in Figure 6 is a logical high for more than 20 nsec. The waveforms

shown represent a family of pulses of varying width. Y output pulses of
this form as wide as 40 nsec. have been detected.

The apparent timing conflict between the description of the circuit per-

formance and the input pulse waveforms shown in Figure 6 can be rationalized

by noting that the 3-gate path of the Si input pulse (through gates B, H, and

I) to the output of gate I is through internal gates which typically have

propagation times that are much shorter than the typical propagation delay of

an output gate such as gate J. Therefore, the output response of gate J and

gate I can occur at the same time with the input pulse timing shown in Figure 6.
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Figure 5. Logic Diagram of the SN74120 "Dual Purpose Synchronizers/Drivers".
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The other marginal energy case, which exists for both modes of operation,

occurs when the first clock pulse is gated through. If the asynchronous

input, Si , is switched low about the time the clock pulse is switching high,

it is possible to produce a negative-going runt pulse at input No. 2 of gate

I. At the time this runt pulse arrives at I, the output of I is negative and

all other inputs to the H-I-J latch arrangement are high. If the runt pulse

has sufficient energy to switch either the H-I or the I-J flip-flop, the

other flip-flop will also switch. If the two flip-flops have different input

energy thresholds, the problem occurs when the flip-flop with the lowest

threshold is driven into the middle region. The runt pulse could drive the

H-I flip-flop into the middle region, and if the H-I flip-flop later

switched, the clock pulse would be gated through J late. Thus the clock

pulse delay through the synchronizer would be large. On the other hand, the

runt pulse might drive the I-J flip-flop into the middle region, resulting in

outputs much like those shown in Figure 6. Other modes involving all 3 gates

at once are also possible.

To illustrate one of the possible effects of these marginal energy

conditions, consider using this synchronizer driver circuit in the single
output pulse mode. The first pulse at Y will set the D-E flip-flop, which

will then inhibit any further output pulses until the D-E flip-flop is again

reset by the interrupt signal. If the input time relationships anH internal
gate thresholds are such that the first Y pulse is a runt pulse with enough

energy to set the D-E flip-flop, but not enough energy to propagate through

the external logic gates, then the logic circuit which detects the

synchronizer/driver output and then later notifies the external device that

the request has been serviced will never produce a pulse. Thus the interrupt

input will never be reset, and the external device will stop working for no

apparent reason.

This synchronizer/driver circuit is but one example of a circuit that,

except for this one fatal flaw, appears to be a good design. Because the

effects of marginal energy input conditions were apparently not understood by

the designer, an important product has turned out to have a serious hidden
flaw.
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5. EXPERIMENTAL DETERMINATION OF SETTLING TIME PROBABILITY

In order to provide data on the settling time probability of flip-flops,

two SN74120's with different date codes, and some ECL type flip-flops

(Motorola MC1016) were tested. The probability the output is not yet

resolved, shown in Figure 7, results from the test data taken, which covers

the full 8 decade range shown. The SN74120's were tested under the condi-

tions described in Figure 6 so that the results would reflect the performance

of TTL R-S flip-flops. The tests were conducted with the input signal timing

variation being controlled, using an adjustable air-dielectric coaxial line,

within the 10 psec "window" required to produce long resolution times. The

"window" size is a weak function of the input signal rise/fall times. A

change of input rise/fall times from 3 nsec to 20 nsec changed the window

width from 10 psec to 20 psec for the ECL circuits.

A pulse was generated with a width equal to the length of time the flip-

flop was in the middle region. The length of each output pulse was quantized

into one of several time intervals, and the outputs of the quantization
circuit were connected to a set of counters. The test results were numbers

in each of a set of counters. Figure 7 is a plot of these numbers normalized

to the beginning of the long resolution times. A more detailed description

may be found in Appendix C.

These test data are useful if a flip-flop is allowed a minimum of 16 to

21 nsec (depending on circuit type) to "settle". __,bef°re the output is used by

other logic. An equation of the form P = exp{- L-_)may be used to fit the
curves in Figure 7. P is the probability that the output has not yet

resolved; t is the time, measured from the input clock transition, allowed

for resolving; D may be thought of as an extended propagation time, like that

of a comparator to a small input overdrive; and T is calculated from the

slope of the curve. The following constants were derived for the two types

of flip-flops tested, along with an indication of the accuracy obtainable
from the test data.

TABLE 1

ECL (MECLII type) TTL (7400type)

D 16 nsec ± 1 nsec 21 nsec ± 2 nsec

T 2.1 nsec ± 0.1 nsec 1.8 nsec ± 0.2 nsec

Designers should be aware that the circuit model used to predict the

simple equation used above does not include the negative input and output

impedance exhibited over part of the active region by TTL gates with active

pull-up output stages [12]. Although the 7400 type flip-flops tested behaved

as predicted by the simple model, some flip-flops, made from Schottky-clamped

gates (SN74S00), have been observed to remain in the middle region for long

periods of time (seconds) when tested under marginal input conditions [15].

Also, a more complex Schottky-clamped latch, an Intel 3404 6-bit latch, was

tested. The probability that the flip-flop has not yet settled from the middle
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Figure 7. Probability flip-flop has not settled from middle region.
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region curve for this latch was to the right of the SN74120 curve in Figure 7
with a slope of a little less than the slope for the MC1016. The internal

circuit used to form the latches in the 3404 is different than the circuit

used in the SN74120. Therefore, at the present time, the results of the 3404

tests is only another indication that Schottky-clamped latches may make
particularly bad synchronizers.

Until the negative impedance effects are understood, a conservative

synchronizer design should use either ECL, or TTL gates with passive pull-up

output stages. If active pull-up TTL gates must be used, Schottky-clamped
circuits should be avoided.



-18-

6. RELIABILITY OF SYNCHRONIZERS

Returning to the SN74120, consider its use in a system with a clock rate

of 1 MHz and an external asynchronous input signal average rate of 100 Hz.
If we assume the interrupt signal meets the conditions defined in Appendix E

and the input "window" is 10 psec, a clipped pulse will be produced at the
output of the synchronizer:

MeanPeriod 1
Between = = 1000sec ' 17min.

Clipped Pulses (100 Hz ) (106Hz) (10xl0-12sec)

Most of these clipped pulses will probably not affect the operation of
the system, however; for comparison consider a synchronizer of the type shown

in Figure 8, which uses two edge-triggered latches. The asynchronous input is
strobed into the first latch on the one clock edge, then strobed into the
second latch on the next clock edge. The first latch thus has a full clock

period to settle. This synchronizer will not fail if the first latch settles

in less than a clock period, or mathematically (see Appendix E for equation
development):

exp C.R. D

Mean Period (Sec)for Output not Yet _- T
Resolved at End of Clock Period (At) (C.R.) (Average I.R.)

"C.R." is the clock rate in PPS; "I.R." is the interrupt rate in PPS;

"At" is the input "window" in sec (about 10 psec for the ECL and TTL circuits
tested); and "D" and "T" are derived from experimental data (see Table 1).

If we further assume that the clock rate and the average interrupt rate

are related by some factor, A=I.R./C.R., the curves in Figure 9 result.

These curves show that a small increase in clock rate can produce a dramatic

loss of reliability. Also note that the data rates used as an example for the
SN74120 give a mean time between failures of 10187 centuries for this two

flip-flop type synchronizer.

The synchronizer circuit of Figure 8 is a special case of a synchronizer

which strobes as asynchronous input into a flip-flop, then waits as long as
possible before using the output. Figure 7 can be used to calculate a mean

failure rate for any waiting period. If at least a ll0-nsec waiting period
is allowed, the mean predicted time between failures for typical circuits is

years. At the other end of the spectrum, if less than a 30-nsec waiting
period is allowed, the predicted mean time between failures will approach
seconds. *

·For applications which need a synchronizer that operates reliably with a

shorter waiting time, a faster-resolving bistable element is needed. Some
tunnel diodes resolve very fast, with values of T (Table 1) of 60 psec or less,
and D less than 1 nsec. Thus a settling time of less than 5 nsec for a fast

tunnel diode is equivalent to a settling time over 110 nsec for the ECL and
TTL flip-flops. An ECL type integrated circuit synchronizer which utilizes a
tunnel diode bistable is being developed at the M.I.T. Lincoln Laboratory [18].



-19-

ASYN.
INTER. D Q1 D Q2

FF1 FF2
> >

CLOCK I
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(for synchronizer of figure 8) with values of "D" and "T" from

Table 1. (The interrupt signal is assumed to be statistically

independent of the clock signal and all previous interrupt

signals, and have a uniform distribution in an average interval
of (I.R.)-i.)
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7. ARBITER SOLUTIONS FOR ASYNCHRONOUS SYSTEMS

A variation of the clocked synchronizer circuits previously described

has been proposed for use in asynchronous systems to provide arbitration

between signals [19]. However, it appears much more natural to adopt an

entirely different approach, which allows a short average throughput time and
high reliability by incorporating a circuit which detects the settled

flip-flop state [1]. This approach, however, does require that the two

interacting processors stop when the arbitrating circuit is making a decision.

The ECL waveforms shown in Figure 2 suggest that a comparator can be

used to detect when a flip-flop output is in the middle region. Such a

detecting circuit is shown in Figure 10. This circuit requires that when Q

and Q differ by less than V volts, both comparators will enable the AND. The

two batteries of V volts can be replaced by resistor divider or diode-resistor
networks.

Although the outputs of TTL flip-flops usually oscillate in phase a

number of times before settling, the commnn mode rejection characteristic of

the comparator allows this type circuit to be used in TTL designs as well as

ECL designs. The M output of this circuit can be used to inhibit action until

the flip-flop is settling. Then, after a short delay to allow the flip-flop

time to finish settling, the output of the flip-flop can be polled and the

appropriate action taken.

Various members of the Computer Systems Laboratory have designed ECL

versions of arbiters which used a circuit of the type shown in Figure 10

[1,2,3,4,5], and a Schottky TTL circuit using a different type offset

detection has been proposed by Seitz [21]. However, as an example of a

possible way the circuit of Figure 10 can be used, let us consider a simpli-

fied version of the circuit used in the INTERLOCK module [20]. A block dia-

gram of this simplified interlock is shown in Figure 11, and a logic diagram

of the central part of the interlock design is given in Figure 12. This

simplified interlock uses level signals as opposed to the transition signals

used by macromodules.

This interlock design is an answer-back type scheme. For example, a

level change at I1 will produce a level change at D.. The circuitry

receiving the D_ signal is expected to return a U1 signal when it is readyi

for another D 1 input signal. The interlock then returns the D 1 level to the

inactive state and produces a C1 level change. The circuitry That produced
the I. input signal must then return the I. signal to the inactive state,i 1

and finally the interlock returns the C1 level to its inactive state.

The logic diagram shown in Figure 12 includes that part of the interlock

circuit that controls the priority between inputs (I1 has the higher
priority), and the part that resolves the arrival ti_es of the inputs. The

numbers shown in the logic element symbols are Motorola MECL II part n,,mhers.

When an input signal arrives at I~ or I2, there is a period of time
(15-20 nsec ) before the W signal at t_e two bottom 1010 gates inhibits any

further inputs, or closes the 'Window". If a signal is arriving at the other
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Figure 10. Heart of an arbitrating circuit for asynchronous systems.
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Figure 11. Simplified macromodular interlock.
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I input just ms the W signal is arriving, the 1015 may receive a marginal

energy input pulse. If the other I input arrives before the W signal, then

both 1015 flip-flops will be set and the outputs, D and D , will be_1 2
activated in turn. If the second 1015 receives a marginal energy pulse and
enters the middle region, the interlock circuit will still function in a

logically defined manner.

The 1960-ohm and 316-ohm resistors replace the V-volt batteries shown in

Figure 10. The right-hand section (the U o side) of the logic diagram

includes a copy of Figure 10 consisting o_ the 1015 flip-flops, the two

resistor divider networks, the two 1035 comparators, and the 1010 (whose

output is equivalent to the M output of Figure 10). The left-hand side (the

U1 side) is somewhat abbreviated because if the left-hand 1015 is in the

middle region and later settles to a one, D1 will have first priority, and

therefore the output of the 1035 comparator can be used as the D1 output.

Also, it is sufficient that the lower-priority U2 side only know that the U 1
1015 flip-flop output is not a zero.

Asynchronous bus-oriented computers can use an arbiter design of this

type. The slower devices connected to the bus, which cannot be reasonably

stopped, such as tape drives and disks, could use a delay-type synchronizer

(such as the type shown in Figure 8) without appreciably degrading the system

p erfo rmance.
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8. CONCLUSION

Since the April 1972 workshop, we have served as a consulting resource
and a clearinghouse for information concerning this problem, and have

tested circuits and provided advice and information to others, particularly

the C.mmp project at Carnegie Mellon University and the ARPANET project at
Bolt, Beranek & Newman. We have had many dozens of requests for reports and
reprints, and feel that we have made an important contribution to awareness

and understanding of this problem.

There is still a gap between our experimental observations and available

theoretical explanations, particularly concerning the behavior during the
input pulse. The experimentally observed input "window" is not well defined,

but seems to be related in unexplained ways to circuit parameters such as
internal noise, gain, and frequency response. The relating of experimental
evidence and theory to achieve circuit performance predictions based on

easily measured parameters, and the understanding of optimum design of flip-
flops for synchronizer service, are yet to be realized.

There are still widely used flip-flop circuit types which have not been
ex_mlned, particularly those circuits which use field-effect transistors. As

recently es last s,_mer, senior representatives of companies marketing LSI

computer chips based on the MDS technology were not aware of the Glitch

problem, although their computers have internal synchronizers.

Our appreciation of the richness and complexity of the set of problems

associated with synchronizers and arbiters continues to grow with each

discovery of a new mode of misbehavior or a new system problem possibly caused

by synchronizer failure, and it is somewhat surprising that the problem is
taking so long to be widely appreciated. Despite the early publications of
Gray [9] and Catt [7], from 1966 until late 1971 we found little or no

evidence of understanding or concern about this problem, despite numerous
efforts to make it known. Some evidence of understanding the problem has
developed since the April 1972 workshop [22, 23,24,25].

We feel that it is critically important that this problem be fully
understood and that an awareness of its implications be aroused in system and
circuit designers, who are otherwise apt to be trapped into having to make an

unhappy choice, late in the design of a system, between severely degraded
performance or marginal reliability. The trend toward higher clock speeds,

more asynchronous operation, and multiprocessor systems is rapidly increasing
the vulnerability to this problem, and there is a serious need for better
information for designers.

The best promise, at present, for a trouble-free synchronizer appears to

lie in the use of a fast tunnel diode as the bistable element, since it can

offer highly reliable synchronization in times an order of magnitude faster
than needed for similar reliability with bipolar transistor circuits. The

design of a convenient integrated circuit interface for employing such cir-
cuits as part of an ECL 10,000 system is underway at Lincoln Laboratozy, but

an accelerated effort toward commercial availability of such circuits would
be wise.
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Although the synchronization problem appears to be fundamental, system

designers, through ignorance, frequently choose arrangements that create

needless exposure to the problem. Such examples have been found in inter-

face and bus designs, and in the design of multi-processor systems. These

errors sometimes cause trouble, and sometimes they appear not to. On

occasion they are easy to correct, but in other cases they have been deeply
embedded.

In closing, there are several pieces of advice that can be offered to

aid the system designer. First, minimize the unessential use of synchroni-

zers when an acceptable alternative is possible. Second, centralize

sychronization tasks in one or a few synchronizers; if there is trouble, there

are fewer circuits to study or replace. Third, test subsystems using

synchronizers under conditions that produce marginal inputs, and observe the

behavior for unexpected phenomena. Fourth, choose circuits and devices that

have more predictable behavior if at all possible, such as ECL, or ordinary

TTL, rather than Schottky TTL devices. We are unaware of any experimental

studies of this problem in MOS devices. Fifth, be wary if available decision

times are less than 100 nanoseconds, and take extreme precaution if the time

available is less than 50 nanoseconds. Sixth, consider in high-performance

systems the use of an asynchronous arbiter that detects the making of a

decision, rather than one which allows a fixed decision time. Seventh,

design the synchronizer to allow the decision-making element as much time to

settle 'as the system constraints will readily allow. Finally, ask yourself
whether an erratic system could possibly be due to this problem; it is

difficult to make a Glitch on the laboratory bench, and nearly impossible to

find one when looking for another cause.
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9. APPENDIX A: REPRINT OF TECHNICAL MEMORANDUM NO. 10_
"THE GLITCH PHENOMENON" (1966)

9_.1 INTRODUCTION

This paper deals with what has become known as the "Knife Edge" problem.
In essence, the problem is that of resolving two independent events such that

no ambiguity arises. It should be emphasized that at that point of uncer-

tainty it makes no difference how the decision is resolved, just so long as a
firm decision is made in a finite amount of time.

The treatment given in this paper, although somewhat lacking in formal
mathematical rigor, is not entirely cursory. Rather, emphasis has been
placed on an intuitive understanding of the problem, its solution, and

finally the implications of the solution. The problem will be considered in

two parts. First, the ideal noiseless case,which is admittedly an abstrac-

tion, but nonetheless instructive; and second, the "real world" noisy case
with its further probabilistic complications.

Let us first begin by fmmiliarizing ourselves with exactly what the
problem is. Consider a woman sitting in the living room of a house having
two doors, front and back, and likewise two doorbells. She has two pet
doorbell rules which are simply these: 1) She doesn't answer a doorbell that
hasn't been rung. 2) She answers the first one she hears. This solution works

as long as the milkman and the postman don't come at the same time. Having
foreseen that this event might occur one day, she made the arbitrary decision

that should they both ring at the same time, she will give priority to the
front door. Content in the knowledge she has solved her problem, she waits

in the living room for the doorbell to ring. One formidable day, the
postman and the milkman both decided to deliver at exactly the same time.

However, as fate may have it, the milkman's finger reached the back doorbell

just a millisecond or two before the post.man's finger reached the front
doorbell. Now, the poor lady of the house was fraught with indecision. It

appears that two milliseconds is on the threshold of her ability to dis-
tinguish between two simultaneous events, and two non-simultaneous events.

In a word, she could not decide whether the back doorbell rang first, or

whether they both rang simultaneously.

The postman and the milkman, both being very busy men (i.e. having more

than one delivery that must be made), cannot wait an arbitrarily long time
for her to make up her mind. They are somewhat indifferent as to which she

answers first, just so long as she makes up her mind. But there she sits,
steadfastly adhering to her rule, and unable to resolve which of the two

events occurred; simultaneity, or non-simultaneity. Hence, this pathological
event caused her system to "hang up".

Being a resourceful individual, she devised a means of making an
arbitrary decision in such a circumstance. Her new rule was, when in doubt
flip a coin, and abide by the outcome of the coin toss. However clever this

may have seemed to her, in so doing she has inadvertently complicated, but not
cured, the essential difficulty, for now she has to decide when she is in
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doubt, and when she isn't (i.e._when to use the coin, and when not to).

Thus, again on that pathological Monday, we find the postman and the

milkman, each at their respective doors, with the poor frustrated lady

trying to de'cide whether or not to use the coin./'

The poor lady keeps trying to change the _ules, hoping that there is
some magic formula that will not hang her up in indecision, but each time

/

her efforts are frustrated. The name of this game has affectionately been
called "musical glitch". The point of this story is that regardless of the

set of rules that is made to resolve all possible cases of two independent

events into one of two groups, there is always a pathological case that will

"hang up" your system for an arbitrarily long, but finite amount of time.

First, we will attempt to prove that the above statements are true in

general, and second, we will try to show that living with this fact, one

may still devise a "glitchless" system that will eventually make a firm

decision in a theoretically unspecifiable length of time. It should be

emphasized that the only assumption made in this treatment is that all

phenomena considered exhibit essentially continuous behavior. However, it

should be noted that the same arguments apply even for discrete particle

behavior. Nevertheless, this case will be ignored for the present.

9.2 THE GLITCH PHENOMENON

Throughout this analysis, we shall speak in terms of energy, as this is

the fundamentalunit of both the electrical and mechanical analogies of

which we will speak. This analysis is only applicable to ergodic systems,

or those systems for which a potential energy curve is applicable. Let us
begin with some fundamental definitions:

1. A stable state is a relative minimum in the Potential Energy
function.

2. A metastable state is a relative maximum or inflection point in the

Potential Energy function (i.e., any point of zero gradient that is

not a relative minimum).

lheorem I: Between any two stable states, there exists at least one
metastable state.

Assumption: Ail systems found in nature are essentially continuous* (i.e.,

the potential curve is continuous at all points).

Lemma: Between any two relative minimums, there must be a relative
maximum.

Theorem I follows by definition from the Lemma, hence it is sufficientr

to prove the Lemma. However, the Lemma follows directly from Rolle's

Theorem [26], and is also obvious by induction.

*In the macroworld of electronics, discrete electrons are considered in such

'numbers that the statistical behavior of the system may be considered
continuous.
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Thus, by choosing our definitions judiciously, a basic truth becomes

immediately apparent: Ail devices having two stable states have a third
metastable state in between.

Noiseless, Dissipationless Case

We shall begin our analysis by examining the noiseless, dissipationless

case. First we need to add a few more definitions to our vocabulary.

3. The metastable point is that point of zero potential gradient such

that should the system be displaced from this point by an amount 6,

where 6 is vanishingly small, the system will pass onto another

state. (See Figs. 13 and 15.)

4. The metastable line is the local continuum formed by all points of

zero gradient, terminated on at least one side by a line of

negative gradient. (That point of metastable line termination may

be considered a metastable point. See Figs. 14 and 15.)

5. The metastable region is that region about the metastable point or
line in which, for the purposes of measurement, it is impossible

to resolve whether the system is on the metastable point (or line),
or not.

Now that we've shown that there exists a metastable state between every

pair of stable states, we shall try to demonstrate that it is possible to

become "hung up" in the metastable region for an arbitrarily long period of

time, depending on the kinetic energy of the system as it passes through the

metastable state. We may now generate a Taylor Series expansion about a

point in the metastable region. The only restriction on the series expan-

sion is that there be no more terms in the expansion than there are

continuous derivatives in the function. Hence, we require, for a first-order

approximation, that the potential function and its first derivative be

continuous at that point. To do this, we again fall back on our one

assumption of nature exhibiting continuous behavior in the macroworld of

which we are speaking. The point which we pick will be the metastable

point, or the end point on the metastable line. If we define our coordinate

system about this point, then our Taylor series reduces to a simple MacLaurin
series:

P(x) = P(O) + P'(O)'x/l! + P"(O).x2/2! + .... (1)

Since the force on the system is given by the gradient of the potential,

the acceleration, or second derivative of x with respect to time, is

proportional to the gradient of the potential:

= -k. d_PP= -k[V'(O) + P"(O)-x + .... ] (2)
dx

Let us examine the case where the metastable state is a relative

maximum. (See Fig. 13.) In this case the second derivative in the meta-

stable region is negative, except on the metastable line (see Figs. 14 and

15), while the first derivative is zero. Thus, let us define a positive

cons rant,
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K2 = -k.P"(O). (3)

Hence:

= K2x+ .... (4)

within the metastable region. As usual, we shall throw out the higher-order
terms as negligible for very small values of x. The general solution to this

second-order differential equation is the familiar hyperbolic sine and cosine
function:

x = A sinhKt + B coshKt. (5)

The diverging quality that characterizes the metastable state is

immediately apparent in the solution. We shall now consider the boundary
conditions for the only two possible situations that a continuous world will
allow.

I. System initially at rest at x = x :
o

Then, 2(0) = 0 = A and x(0) = x + B. Thus, the specific solution for
thiscaseis o

x = x ·coshKt. (6)
o

Now, we ask, how long will it take for the system to reach the edge of the
metastable region, x = x _ Thus, solving for t we find:m' m'

1 cosh-l(__m_m)
tm = · · (7)

\ o/

Note that for x arbitrarily small, t will be arbitrarily large. In the limit,o m
we see:

Lim_ = _. (8)
x'">'O _ O/0

This simply says that if we should start the system with. zero initial

velocity on the metastable point, it will stay there ad infinitum. However,
the probability of being able to locate a system at a predetermined point in

a continuous line is zero: hence, we can only approach this limit, we can
never, in fact, reach it. This particular case is characteristic of the

case where a ball rolls up a hill, but never quite makes it to the top.
Somewhere, just before the top, it comes to rest. It is at this point that

we start our clock. We may conclude that depending upon how close the system

gets to the metastable point, the time to get out of the metastable region
will be arbitrarily long.
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II. System having initial velocity v as it passes through the metastable
O

"point at t = 0":

Then, x(0) = 0 = B and _(0) = v = A · K. Thus, the specific solution
forthiscaseis o

V
O

x = _--·sinhKt. (9)

Now, we asK, how long will it take for the system to reach the edge.of the

metastable region, x = Xm? Thus, solving for tm, we find:

·sinh-l(Kxm) (10)

1

tm = _ _ Vo_'

Note that for v arbitrarily small, t will be arbitrarily large. In theo m
limit, we see:

Lim _ · sinh -1 = _. (11)
v-+O

0

Again, this simply says that if we should start the system with zero
initial velocity on the metastable point, that it will stay there ad infinitum.
This case describes the situation where the ball has 'gone over the top of the
hill, and we now wish to know how long it will take to finally get out of the
metastable region.

Thus, cases I and II describe all possible situations that can occur in
the transition between two stable states. Either it starts from state A to

state B (see Figure 13), but does not make it over the potential hill, or it
does make it over the hill, with a finite velocity. In either case, the

system may become "hung up" in the metastable region for an arbitrarily long
time, depending only on the initial conditions of the system. Thus, it must

be concluded that it is impossible to place a maximum time limit on the length
of time that might be spent in the metastable region. One can only assign

probabilities as to the length of time that might be spent, depending on the
distribution of initial conditions.

Dissipative Case

We shall now complicate the picture slightly by adding dissipation to the

system. By adding damping (friction proportional to the speed of the system:
F = -3), we allow the system to come to rest at the bottom of one of the

stable states. If we critically dampen the system, then it should come to

rest monotonically (i.e., with no overshoot or oscillation). However, it can
be shown that this will not affect the overall performance of the system, as

outlined in the previous section, within the metastable region except to
modify the argument of the hyperbolic functions· However, there is one region

of performance which is radically changed, and that is the performance on a



-32-

hypothetical metastable line. Given that it is possible to create a line of

zero potential for a finite length, it would indeed be possible to start the

system on this line. Any initial velocity the system would be given could be
entirely dissipated before the system reached the edge of the metastable line

(see Figure 14). Hence, in the absence of noise, the system could indeed
come to rest on the metastable line. However, we are rescued from this

situation by the reality of noise. Thus, by adding dissipation to the system,
we have further forced ourselves to analyze the noisy situation.

Noisy Dissipative Case

Let us look at our metastable line once again. The equation of motion
on this line is now:

= -f._+ A(t), (12)

where f is the coefficient of moving friction and _t) is a gaussian random
noise term with a mean power value of g *. The solution to this equation waso
proposed by Einstein in 1905 [27]. This essentially describes the motion of a

free particle in the presence of noise. This random walk phenomenom is
described by chemists as Brownian Motion. If our particle started at the
origin, then the expected mean will remain the origin as t goes to infinity.

However, the standard deviation will diverge to infinity. Einstein's famous
equation for the standard deviation is:

-_ 2go
x =-_ t (13)

Thus, surprisingly enough, the system can be expected to diverge from
the origin with a variance linearly dependent upon time. Hence, if we begin
our system in the center of a metastable line of length 2L, then the expected

time that the system will reach the edge is given by:

f .L2 (14)
'_L = 2g °

Now, the only remaining question is how noise will affect the motion of

the system in general. Thus, we will now solve for the generalized noisy
damped case:

x = -f._+ c.x+ A(t) (15)

Again, we are solving this within the metastable region where our

approximation of a potential function of the nature of equation (1) is valid.
The solution to this equation is as follows:

-_ go f

Variance: x =--c + exp(-ft)'(X2o + fLq_c).(cosh w't +_w, sinh w't) 2 (16)

*In the case of purely thermal noise: go = KT, where T is the absolute
temperature, and K is Boltzmann's Constant.

I
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f

Mean: x = x exp(-f/2).(cosh w't + 2w' sinh 2't) (17)
O

where x = x(t=0) w' =_/f_ + c fo(0) = 0
O

The interesting thing to note from the statistics of the solution is the
fact that although the variance is dependent upon the noise power, the expected
value of x is completely independent of the noise power. In other words, the

expected performance of the system is identical to that in the absence of

noise. However, one must qualify the statement to the effect that the noise
energy should never exceed the height of the potential barrier that separates

the two states, or the system will lose all determinism whatsoever.

Thus, the total effect of adding noise to the system was to rescue the
theory from the metastable line case, but not change the general performance

of the system as originally outlined in the noiseless case.

Trinary Solution

Summarizing, we have shown that between any two stable states there
exists a metastable state through which it may take an arbitrary length of

time to pass, depending on the initial conditions. If your system does not
allow ambiguous decisions, but does allow an arbitrary length of time to make
a decision, then there is a solution to the problem. Simply stated, the

solution is to indicate a delay while the decision is being made. Once the
device is entirely committed to one of two alternatives, then the device should
be interrogated as to its decision. In this way, there is no danger of the

device ever yielding an ambiguous decision. Needless to say, while the device

is in the Paused mode, the system is "hung up", but this is a price that one
must pay for absolute certainty (in the absence of noise).

This solution is implied from the realization that three states, not two,
exist. Hence, we redefine our two-state device as a three-state device (see

Figure 16). The new state will be the Paused state, and its area must at

least include the metastable region, but beyond that restriction the
boundaries are arbitrary. Let us now look at a Boolean transition table, to

see how we might encode this. (See Figure 17.)

Note that our transition points, x and _, are judiciously chosen soa
that there is a finite gradient passing throug_ them. This insures the fact

that the system cannot get hung up at the transition points. Note also that
the coding is essentially a Gray code in that no races can possibly exist.

The nature of the gradient is such that the system may pass from A to P, and
then back to A again; however, once it has left P for B it must go all the

I way. This becomes clear if one considers the ball and hill analogy. You can

roll the ball so that it doesn't quite make it over the hill and rolls back

again, but once over the hill it keeps going. In traversing from A to B,
there is absolute certainty that once the ball passes over the summit, it will
continue on to B.
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There is one matter left to be pointed out, and that is the following:
There is a finite maximum delay between the initiation of the transition and

the time that it takes to reach the Paused state. If the system has not

reached the Paused state by this time, one can be absolutely certain that it

never will, and hence one can assume that the system will continue to remain

in the same state. Given the equation of motion of the system, this maximum
time is easy to compute.

Then let x = f(t), where x(t=O) = xa. Then

= f-l(xA) -f-l(xa) (18)tma x

To aid in the understanding of the previous analysis, an example has
been worked out for the case of a simple "ideal" flip-flop.

Example: It is desired to make an asequential gate. This gate will be

designed such that a pulse of known length will be gated against a level

whose value (Boolean) as a function of time is statistically independent of

the pulse. The output of this will be a pulse of defined length on one of
two separate lines, depending on the value of the level at the time of

gating. The schematic of this system is shown in Figure 18. It should be

quickly noted that the successful performance of this system depends solely

on the nature of the trinary flip-flop. It is this flip-flop that must

resolve any ambiguities that arise in the relative timing of the two events,

Y and Z. This flip-flop also determines the values of the delays D] and D2.
D3 is only constrained to have a duration longer than the value of The
pulse generated by the Pulse Generator, PG.

Let us now thoroughly examine our trinary flip-flop. We will assume it

to contain an "ideal" flip-flop with a potential curve as shown in Figure 16:

P(x)= .5(x4 - x2)+ P (19)o'

Note that this potential function displays all characteristics that we would

desire'in a flip-flop; it is continuous and symmetric, containing only two

stable states with one unavoidable metastable state, and a fast-rising

potential wall bounding the stable states at the extremes. For convenience,

we will arbitrarily define P = 0. We will define a voltage of xg.4 volts to
be state A, and a voltage of°x_-.4 volts to be state B. State P is defined

for -.4<x<.4 volts. Hence, the offset voltage indicated in Figure 19 will be

·4 volts. The equation of motion for the dissipationless system is simply
given by:

= -k2'grad(P(x))= k2x-2k2x3. (20)

State of the art integrated flip-flops have a k in the order of 108 . The

equation of motion contains the dissipation term whose value was chosen to

critically dampen the system:

= k2x- 2k2x3 - kfx. (21)
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For the purposes of critical damping, the coefficient of viscous
friction is dependent on the initial conditions. We will choose our f such

that the case for maximum initial velocity is critically damped. Thus, for

any case having a smaller value of initial velocity, the system will be
overdamped. In this manner, we can be certain that the states will be ap-
proached monotonically. Thus, we will arbitrarily choose our maximum initial

r. velocity to be ten times that necessary to carry the system over the

transition barrier (i.e., the maximum initial energy impulse is to be 100
times that necessary to pass over the barrier) in the absence of friction.

The value of f necessary to critically dampen the system under these
conditions was found to be f = 3.

The first problem is to determine what the value of delay D1 should be.
This delay time should be sufficiently long that one can be absoIutely sure
that if the system is going to reach the Paused state at all, it will have
done so by this time; in which case it will either be in the Paused state,

or will have passed out of it, having made up its mind. We can determine
what an outer bound on this time is by simply seeing how long the undamped

case takes to pass from x to x. given zero initial velocity. We know thata
this represents an upper _ound since with friction, the system must start

at a much higher velocity at xAin order to reach x at all. Consequently,
it will reach x much more quih_kly with damping thaw without. Note that this

a
is only true going uphill; the reverse is true going downhill. Thus, it

will suffice to simply solve equation 20. The general solution to this
equation is

x _2+K cn (_t+_ ml = _+k for_ > k (22)
=_2k ' ml)' 2k2' -

2X2-k

Ii forX 5 k (23)x = _2k · dn (lt+_ m2), m2 = t_ ,

These solutions are elliptic functions [28,29] where % and _ are determined

from the initial conditions. The dn(u) function represents the trapped case

where the system is oscillating about either xA or xB. The cn(u) function
represents the untrapped case where the system contains sufficient kinetic

energy to pass over the potential barrier separating the two states. To

determine the upper bound on D1, we are considering the trapped case with the
following initial conditions:

x(0)= x = .4 _(0)= 0.a

Therefore, solving for I and _, we find:

212-k
x = .9 dn(.83kt +2.26) with a squared modulus: m =--= .8. (24)

_2

Now, we wish to know the traversal time from x = Xa = .4 to x = XA = .707.
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= f-l(xA) _ f-l(xa) = 1 dn-l(.707) 2.26 1.72 (25)tmax .83k; .9 83k =T

= 108, = 17.2ns = D1.For k then, tmax

The only constraint on D1 is that it be long enough to insure that the
final output of the trinary fIip-flop has switched from the Paused state to

either A or B. Observing Figure 19, you will notice that this amounts to the

transition time of the upper flip-flop. Since this is being set by a level
change, and not a pulse, we can read the maximum transition time off the

specification sheet, thus defining D2.

D_ need be no longer than the length of the pulse from the pulse genera-
tor. _hus, if the desired output is a 100-ns pulse, D_ should also be set to

100 ns. It should be noted that this circuit can only be called again after
the trinary flip-flop is reset. This essentially clears the circuit, thus
readying it for reuse.

Now that we've defined the parameters of the circuit, we need only ask
what the expected delay time of this circuit will be, and more generally,

what the delay probability density will look like. Let us begin by computing
the minimum delay time of the system. Observing Figure 18, we can see that °
the total delay time is given by:

= + + D2+ t + t (26)Ttot tff + D1 + tg ttrinary Pg g ,

where tff = flip-flop delay, t = gate delay, and t = pulse generator delay.
The only-undetermined delay le_t is the trinary fli_flop delay. From
Figure 19, we can see that this can be further broken down into:

= + (27)
ttrinary tff + tg tidealf f .

Thus, what we wish to compute is the delay probability distribution of the
ideal flip-flop.

The maximum expected delay time within T seconds is a function of both

the parameters of the flip-flop and the shapemand length of the input pulse
which fires the flip-flop. For our example, the maximum expected delay time
is given by:

tmax(Tm) _ 26.1n(N.T .to/23) ns, for N.T -t >> 23, (28)m m o

where: T = mean time between glitchesm

n = duty rate of the ideal flip-flop given in #/sec

to transition time of the input pulse.

A glitch is said to occur whenever the delay is greater than t seconds.max
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The minimum transition time was found to be about 23 ns in any case. Thus,
using this approximate formula, one may now specify a mean time between

glitches. If one designs a circuit in which a delay of t>t causes a
mx

failure, then using equation 28 one can specify the mean failure rate. If,
however, one designs his system such that it does nothing until the asequen-

tial gate makes up its mind, then no failure will ever occur; and one may
simply use equation 28 to find the mean time between delays greater than

t . The most important point to note here is that the mean time between
ax

g_ltches is an exponentially increasing function of the expected maximum

delay time. Thus, if one specifies a t long enough, one can quicklymax
exceed the expected lifetime of the integrated circuit itself.

9.3 SUMMARY

We have shown that the glitch problem will arise whenever a Boolean

decision must be made regarding two independent events. Thus, in general,
we may say that this problem is inherent in the interaction between two
asequential machines. The greater the interaction, the more prevalent the

problem. Up to this time, computers have been essentially sequential
machines, with this problem only arising between the central processor and

the input-output equipment. However, with the advent of parallel mode
computers, the problem has become more and more pressing.

We have shown that this problem may be overcome if within each
sequential machine, the operation is paused until the trinary flip-flop has

made its decision. Thus, this problem may be overcome as long as we put no
time limit on the decision-making process.

So, let us look once more at the waiting woman. Her problem is one of

adjustment to the fact that once every pathological Monday, the
decision-making process may take an arbitrarily long time. Thus, as long as

the postman and milkman realize that this will happen only once in a Blue

Moon, they should be content to wait out her decision every time that Blue
Moon does occur.
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10. APPENDIX B: PHOTOGRAPHING FLIP-FLOPS IN MIDDLE REGION

The experimental evidence, both the photographs and the probability of
escape data, presented in this section required a special test set-up to
repeatably drive the flip-flop under test into the middle region. To achieve
these requirements, the set-up had to produce two pulses that had smooth rise

and fall transitions which could be varied in time with respect to each

other, including the ability to "fine tune" the timing between the pulses
over a 10-psec interval.

A diagram of the circuit used to drive the flip-flop under test into the

middle region is shown in Figure 20. This system consists of a pulse
generator, a circuit that produces two parallel output pulses from one pulse
generator pulse (the'%wo for one bo_'), a set of coaxial cables and air lines

of different lengths, and an adjustable air line for fine tuning. Ail
signals are passed via coaxial cable with proper line terminations. Most of
the cable beyond the "two for one" pulse producing box uses General Radio

type GR874 connectors to minimize line impedance discontinuities. For ECL

type flip-flop testing, the pulse generator is adjusted to provide a -0.8V
pulse. A +4.5V pulse is used for testing TTL type flip-flops. The TTL
"two for one" box will, with the transistors used, follow pulses with as
short as 3-nsec rise and fall times. The ECL box will follow 2-nsec rise
and fall times.

This setup is adequate to produce the sampling oscilioscope photographs.
However, additional circuitry is required to produce the single trajectory

photographs. A block diagram of this circuitry is shown in Figure 21. A
circuit of the type shown in Figure 10 is used to detect the logically unde-
fined state. FF2 is set if the flip-flop under test remains in the undefined

region longer than the time for which D3 is adjusted. If FF2 is set, the

oscilloscope will be triggered by the delayed (thru D5) pulse generator
pulse. The 50-ft. cable delay line, which is driven from an active oscillo-

scope probe (a Tektronix P6045 F.E.T. probe), is needed to compensate for
the triggering circuit delay. The dashed-in D1 delay is required, if the

flip-flop under test has a transition-sensitive clock input or if the
flip-flop is an R-S type, to reset the flip-flop after each event. For R-S

type flip-flops, the C and D signals are fed into an AND gate, with either
C or D inverted. The output of the AND gate is connected to the R input of
the flip-flop.

Adjusting the test setup involves connecting an oscilloscope to the

output of the flip-flop under test and adjusting the lengths of the input
coaxial cables until a runt pulse is produced by the flip-flop. The
adjustable air line can then normally be used to produce the desired results.

There are two general guidelines which make the adjustment easier.

1. Use a low duty cycle and always set the flip-flop under test to one
state for most of the period, so that all internal conditions, due

to both temperature and voltage changes, can settle before the next

input pulse is applied. For TTL circuits, a pulse rate of 2 to 10

KHz with a pulse width of only 200 nsec may be required. ECL flip-
flops usually function properly with pulse rates of up to 500 KHz.
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2. TTL flip-flops, with active pull-up output stages, should have a

2K_ to 5K_ resistor connected from each flip-flop output to
ground. These resistors are needed to prevent the output that is
high from being so high that the output pull-up transistor is
reverse biased.
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11. APPENDIX C: OBTAINING PROBABILITY OF ESCAPE DATA

The test set-up for obtaining data to calculate the data values used to

plot the curves in Figure 7 is shown in Figure 22. The flip-flop under test is
driven with the same circuit, described in Appendix B, that is used to

produce photographs. The circuit in Figure 22 with the output going to the
power supply sense circuit is used as feedback to compensate for drift. The

conditions necessary to cause the flip-flop to produce long resolving times are

critical enough that a small change in power supply voltage (10 to 20
millivolts typically) can change the flip-flop from never switching to always
switching. To verify that this feedback does not affect the results, tests
were conducted with and without the feedback connected, with different size

filter capacitors, and with the feedback biased to produce mostly "ones",

then mostly "zeros". The results of all these tests were, within the
accuracy given in Table 1, identical.

In Figure 22, the delay line (made of a series of gates), the AND gates,

and the latches comprise a circuit that provides a pulse to a counter if the
flip-flop under test stayed in the undefined region for a minimum length of
time. The last counter, N6, is a check counter to determine the number of

pulses that did not propagate through the delay line gates during a given
run. This last counter is required because the output of the Middle State

Detector can be a marginal pulse.

After the test circuit is allowed to run for a period of time, the

numbers in each of 6 counters are recorded. The number of times the flip-flop
settled in the time interval between N3 and N4 is (N3-N4). The ratios of the

number of settlings during different time intervals is the slope of the proba-

bility of escape curve. If we assume the probability of no escape is an
exponential function of time, then the probability of no escape curve will be
a straight line on a semilog plot, or:

N2 - N3
Slope = in N3 - N4'

To allow the use of this equation, the time intervals between the taps
on the gate delay line were carefully adjusted to be equal.

Several test runs were made, each run with a different propagation time
adjustment of the first 4 gates (the dashed-in adjustable delay line) until

there were 10 to 20 data points over the 8-decade plot shown in Figure 7.
The counter values from each test run were normalized against the count in

counter No. 6; the data points were then calculated and plotted as Figure 7.
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12. APPENDIX D: SCHMITT TRIGGERACTION IN TTL GATES

Figure 23 illustrates the circuit response of a TTL gate of the type
shown in Figure 24 to an input signal which begins at ground and is slowly

increased towards Vcc. The hysteresis region corresponds to the input
voltage range V1-V 2. For an increasing input voltage, the output follows

the path A,B,C,D. At D, transistors Q2 and Q3 are in the linear active

region and Q4 is in saturation. The diode D and the now forward-biased
collector-base diode of Q4 form a low impedance path between the emitters of
Q2 and Q3' The circuit may now be viewed as a Schmitt trigger circuit.
Further increase of the input voltage above point D results in regenerative

action, which causes Q3 to go more and more towards cutoff and Q2 more into

conduction. This regenerative action continues until Q3 is cut off and Q2
is saturated. Beyond this point in input voltage, the output is along E,F.

If the input is decreased now, the output follows F,E,G. At G, Q2 comes
back into conduction and Q2 enters the linear active region. Since Q4 is
still saturated, the regenerative action starts again and the output jumps

to H. Further decrease of the input voltage makes the output follow the
path C,B,A.

V OUTPUT

B

H' I_ D

G11iEI'4HE F _ViNPU T
v_ v 2

Figure 23. Transfer characteristic of SN7400.

l__' ' Vcc

>R2:1.5K _: R4:130.CL

Vc2--_--_ 3

ViNPU T Vi

Figure 24. Schematic of 1/4 SN7400 (with one input active).
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13. APPENDIX E: DEVELOPMENT OF?QUATIONS FOR TWO-FLIP-FLOP TYPE
SYNCHRONIZER BEHAVIOR

The mean period, in seconds, for the output of FF1 of Figure 8 to not
yet be resolved at the end of a clock period is (with some assumptions) the

inverse of the product of the number of times per second FF1 enters the
middle region at the beginning of the clock period times the conditional

probability that the flip-flop is in the middle region at the end of the
clock period given it enters this region at the start of the clock period.

The "input window" of a flip-flop is the range of differences in time
between the inputs which can cause the flip-flop to enter the middle region.

The number of times FF1 enters the middle region at the beginning of the
clock period is dependent on this input window.

Experimental observations indicate that the time position of the inputs

within the input window is independent of the output response of the flip-
flop. If the input signal timing relationship is changed by varying the
length of an adjustable air line while the output of the flip-flop is being

observed on an oscilloscope, the flip-flop output seems to almost "jump" from
never switching to sometimes switching with some long resolution times and

then, with more air line adjustment, to always switching. Ail of this takes
place with a change in length of the air line of approximately 1/4 cm.
Light travels 1/4 cm. in approximately 10 psec.

Within the window, the flip-flop output response is then treated as
being independent of the input condition, for 3 reasons. The first is the

experimental observations; the second is that a mathematical model that would

allow a better definition has not been developed; and the third is that, as
related to the effect of inaccuracies of some of the other parameters, the

inaccuracy of treating the window this way appears to have little effect on
the accuracy of the resulting predicted system reliability.

Therefore, with this assumption, the portion of each second that the
flip-flop can be caused to enter the middle region by the interrupt signal

is: [FF1 Window (sec.)] [Clock Rate (PPS)].

If we assume that the arrival of each interrupt signal is statistically
independent of the arrival of a clock signal and of all previous interrupt

signals, and the time distribution of each interrupt signal is uniform in

the average interval of (interrupt data rate) -1, then:

Number of Entries

Into Middle Region I = (FF1 Window).(Clock Rate).(Average Interrupt Rate)Per Second

)
The probability that FF1 is in the middle region at the end of a clock

period, given that it entered the middle region at the start of the clock
period, is derived from Figure 7 with the time (measured from the input clock

transition) allowed for resolving being (Clock Rate)-l:
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Prob. Still In = exp (-1/C.R. - D)T

where C.R. is the clock rate, and D and T are derived from experimental data
(see Table 1).

The mean period (in seconds) for the output of FF1 of Figure 8 to not
be resolved at the end of a clock period is then:

Mean Period (sec)for exp< 1/C.R. - D)Output Not Yet Resolved= T
At End of Clock Period (At) (C.R.) (Average I.R.)

where C.R. is the clock rate in PPS, I.R. is the interrupt rate in PPS, At

is the input '_indow" in seconds, and D and T, which are experimentally
derived, have units of seconds.



-51-

14 . ACKNOWLEDGMENTS

To a large extent, the "Glitch problem" has been the concern of the

entire Laboratory staff, with many helpful suggestions and discussions

coming from many different members. In addition to those whose names
appear in the references, special thanks is given to Dr. Fred Rosenberger,

who has made many helpful observations and suggestions; to Mr. David Shupe,
who converted the faint oscilloscope photographs into publishable prints;

and to Mrs. Christine Coaker, who provided assistance in the preparation of
the text.



-52-

t

15. REFERENCES

1. W.M. Littlefield and T.J. Chaney, "The Glitch Phenomenon", Computer
Systems Laboratory Technical Memorandum No. 10, Washington University,
St. Louis, Mo., Dec. 1966.

2. W.M. Littlefield, "Interlocken", Computer Systems Laboratory Technical
Memorandum No. 26, Washington University, St. Louis, Mo., June 1967.

3. K. Harada, "A Proposal on Interruption and Priority Control Schemes",
Computer Systems Laboratory Technical Memorandum No. 36, Washington

University, St. Louis, Mo., Aug. 1967.

4. G.R. Couranz, "An Unclocked Two-Line Interlock", Computer Systems
Laboratory Technical Memorandum No. 55, Washington University, St. Louis,
Mo., Feb. 1968.

5. K. Harada, "Diversified Interlock Module", Computer Systems Laboratory
Technical Memorandum No. 63, Washington University, St. Louis, Mo.,
July 1968.

6. G.R. Couranz, An Analysis of Binary Circuits Under MarBinal Triggering
Conditions, Computer Systems Laboratory Technical Report No. 15,
Washington University, St. Louis, Mo., Nov. 1969.

i

7. I. Catt, "Time Loss Through Gating of Asynchronous Logic Signal Pulses",

IEEE Transactions on Electronic Computers (Short Notes), EC-15:108-111,
Feb.1966.

8. I. Catt, "My Experience With the Synchronizer Problem", presented at the

Workshop on Synchronizer Failures, Washington University, St. Louis, Mo.,
April 27-28, 1972.

9. H. Gray, Digital Computer Engineering, Prentice-Hall, Englewood Cliffs,
New Jersey, pp. 198-201, 1963.

10. T.J. Chaney, S.M. Ornstein, and W.M. Littlefield, "Beware the
Synchronizer", in Digest of Papers -- COMPCON '72, IEEE Computer Society

Conference, pp. 317-319, Sept. 1972.

11. T.J. Chaney and C.E. Molnar, "Anomalous Behavior of Synchronizer and

Arbiter Circuits", IEEE Transactions on Computers , C-22:421-422,
April 1973.

12. R. Srinivasan and T.J. Chaney, "On the Hysteresis of the TTL Circuit

With Totem-Pole Output", Proceedings of the Eleventh Annual Allerton

Conference on Circuit and System Theory, pp. 96-105, Oct. 1973.

13. P. Mars, "Study of the Probabilistic Behavior of Regenerative Switching

_ Circuits", Proceedings of the IEEE, 115:642-668, May 1968.



-53-

14. D.J. Wheeler, "System Design for Non-Engineering Students and the

Synchronization Problem", Proceedings of the Conference on Teaching of
Computer Design, University of Newcastle upon Tyne, England, pp. 88-94,
Sept. 1971.

15. C.L. Seitz, Personal Communication, Computer Science Department, The
University of Utah, Salt Lake City, Utah, June 1972.

16. M. Hurtado, "Mathematical Study on the Effect of Noise in a Negative-

Resistance Bistable Device", Computer Systems Laboratory Technical
Memorandum No. 189, Washington University, St. Louis, Mo., April 1973.

17. Staff, New TTL MSI for Design Engineers, Texas Instruments Inc.,
Houston, pp. 15-19, 1972.

18. J. Raffel, R. Berger, and S. Pezaris, Personal Communications, M.I.T.
Lincoln Laboratory, Lexington, Mass., Feb. 1973, Oct. 1973.

19. W.W. Plummet, "Asynchronous Arbiters", IEEE Transactions on Computers ,
C-21:37-42, Jan. 1972.

20. M. Pepper, "A Macromodular Interlock", presented at the Workshop on
Synchronizer Failures, Washington University, St. Louis, Mo.,

April 27-28,1972.

21. C.L. Seitz, Personal Communication, Computer Science Department, The

University of Utah, Salt Lake City, Utah, Jan. 1972.

22. C.G. Bell, J. Grason, and A. Newell, Designing Computers and Digital
Systems Usin_ PDP-16 Re_ister Transfer Modules, Digital Press, Digital
Equipment Corp., Maynard, Mass., pp. 256-258, 1972.

I

23. D.J. Kinniment and D.B.G. Edwards, "Circuit Technology in a Large

Computer System", The Radio and Electronic Engineer,
43:435-441, July 1973.

24. "Decisions, Decisions", Scientific American, 22:43-44, April 1973.

25. R. Keller, "Towards a Theory of Universal Speed-Independent Modules",

IEEE Transactions on Computers, C-23:21-33, Jan. 1974.

26. George B. Thomas, Jr., Calculus and Analytic Geometry, Addison-Wesley
Publishing Co., Reading, Mass., 1960.

27. G.E. Uhlenbeck and S. Ornstein, "On the Theory of Brownian Motion",

j Physical Review, Vol. 36, Sept. 1, 1930, from Selected Papers on Noise
and Stochastic Processes, Dover Publications, New York, 1954.

28. W.J. Cunningham, Introduction to Nonlinear Analysis , McGraw-Hill,
0 New York,1938.



-54-

29. L.N. Milne-Thomson, Jacobian Elliptic Function Tables, Dover
Publications, New York, 1950.

30. D. Mayne and R. Moore, "Minimize Computer 'Crashes'", Electronic

Design , 22:168-172, April 26, 1974.

31. G.R. Couranz and D.F. Wann, "Theoretical and Experimental Behavior

of Synchronizer Operating in the Metastable Region", submitted to IEEE

Transactions on Compute rsp July 1973.

BIBLIOGRAPHY (for Appendix A)

Wilbur B. Davenport and W.L. Root; Rando M Signals and Ngise , McGraw-Hill,
New York, 1958.

Anthanasios Papoulis, Prpbability_ Random Variables_ and Stochastic Processes,
McGraw-Hill, New York, 1965.

BIBLIOGRAPHY (related work in progress)

Marco Hurtado, "Dynamic Structure and Performance of Asymptotically Bistable

Systems", Doctor of Science dissertation, Department of Electrical Engineering,

Washington University, St. Louis, Missouri, 1974.

Ramaswamy Srinivasan, "Anomalous Behavior of Transistor-Transistor Logic

Circuits With Totem-Pole Output", Doctor of Science dissertation, Department

of Electrical Engineering, Washington University, St. Louis, Missouri_1974.



Unclassified
Security/ ClassLfxcatxon

DOCUMENT CONTROL DATA - R & D
(Security classificatzon of trtle, body of abstract and mdexm_ annotation mu_t be entered when the overall report ts cfassihed)

I_ ORIGINATING ACTIVITY (Cofloorate author) 2a. REPORT SECURITY CLASSIFICATION

" Unclassifled
Computer Systems Laboratory 2b.GROUP
Washington University

'_' St, Louis. Missouri
REPORT TITLE

THE SYNCHRONIZER "GLITCH" PROBLEM

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Final Report 4/1/65 through 12/1/73
5 AU THOR(S) (Fl,st name, mrddle mttsal, last name)

Thomas J. Chaney

REPORT DATE 7a. TOTAL NO OF PAGES 17b. NO OF REFS

February,1974 54 I 31
Da. CONTRACT OR GRANT NO ga. ORIGINATOR'S REPORT NUMBER(S) L_

DOD (ARPA) Contract SD-302
b. PROJECTNO Volume IV of Part 1

ARPA Project Code No. 655
C. 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned

thin report)

do TechnicalReportNo.47

10 OlSTRIIRUTION STATEMENT

Distribution of this document in unlimited.

/i
11- SUPPLEMENTARY NOTES 112 SPONSORING MILITARY ACTIVITY

I ARPA - Information Processing
}- Techniques, Washington, D.C.

13 ABSTRACT

There is a fundamental problem in synchronizing communication between

any two concurrently operating digital systems that lack a common time

reference. This problem involves the inability to build a completely re-
liable synchronizer or arbiter that will work in a prescribed amount of

time. Stimulated by the need for an interlock macromodule design of pre-
dictable reliability, the inability to find evidence of previous studies,

and indications that this problem has been responsible for significant
reduction in the reliability of several commercial machines, we undertook

theoretical and experimental studies of this problem. The results to date
of these studies are documented in this volume.

DD F0.. 1473 <PAGE,),NOVss. Unclassified
S/N 010 I. 807- 6801 Secumtv Classtficatton



Unclassified
Security Classification

14. LINK A LINK B LINK CKEY WORDS

ROLE WT ROLE WT ROLE WT _N

Asynchronous Computer Systems

Arbiter Circuits

Synchronizers

Glitch Phenomenon

Interlock

Interrupt Systems

Switching Circuits

Priority Control Schemes

Decision Theory

DD ,F.°oV,51473(BACK)
Unclassified

(P AGE 2) Security Classification




	Washington University School of Medicine
	Digital Commons@Becker
	2-1974

	Macromodular Computer Design, Part 1, Volume 4, The Synchronizer "Glitch" Problem
	Computer Systems Laboratory, Washington University
	Recommended Citation


	Introduction
	Observations of Flip-Flop Responses to Marginal Inputs
	Theoretical Studies
	Analysis of a Synchronizer Design
	Experimental Determination of Settling Time Probability
	Reliability of Synchronizers
	Arbiter Solutions for Asynchronous Systems
	Conclusion
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Acknowledgements and References

