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Transcriptional regulation is a com-
plex process that requires the inte-

grated action of many multi-protein 
complexes. The way in which a living 
cell coordinates the action of these com-
plexes in time and space is still poorly 
understood. Recent work has shown 
that nuclear pores, well known for their 
role in 3' processing and export of tran-
scripts, also participate in the control 
of transcriptional initiation. We have 
recently begun to explore how nuclear 
pores interface with the well-described 
machinery that regulates initiation. This 
work led to the discovery that specific 
nucleoporins are required for binding 
of the repressor protein Mig1 to its site 
in target promoters. Nuclear pores are 
therefore involved in repressing, as well 
as activating, transcription. Here we dis-
cuss in detail the main models explain-
ing our result and consider what each 
implies about the roles that nuclear pores 
play in the regulation of gene expression.

Introduction

Cells respond to environmental cues to 
grow and differentiate by turning dis-
crete sets of genes on and off. Although 
no one model appears to apply to all 
genes,1,2 work done over the past 40 y has 
given us a general understanding of how 
a eukaryotic cell accomplishes this on/off 
switch.2-9 The process is complex, requir-
ing the interaction of nucleosomes, chro-
matin remodelers, chromatin modifiers, 
sequence-specific repressors and activa-
tors, co-activators, basal transcription 
factors, positive and negative regulators 
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of elongation, termination factors and of 
course the DNA itself. Control of tran-
scriptional initiation, though historically 
appreciated as important, is only one way 
in which information in the genome is 
managed. Once the signal to express a 
certain gene has been received and the 
necessary factors are all associated with 
the DNA, the polymerase must escape 
from the promoter and transition to pro-
ductive elongation, travel down the body 
of the gene and stop correctly once the 
termination signal has been reached. 
At the same time, the mRNA must be 
capped, spliced and polyadenylated, then 
exported to the cytoplasm for transla-
tion when finished. Each step in this 
process is highly interdependent and sub-
ject to multiple levels of regulation.2,10-12 
Developing a precise understanding of 
the mechanisms that enforce these mul-
tiple levels of regulation and the ways in 
which they interact with each other is 
now the central challenge in the field of 
gene expression.

Recently, it has been shown that sev-
eral different subunits of the nuclear pore, 
a 60 MDa complex best known for its role 
in nucleocytoplasmic transport, also play 
a role in upstream transcriptional regula-
tion. Nuclear pore proteins (nucleoporins) 
have been found in physical association 
with both active and repressed regions 
of the budding yeast, fruit fly, rat and 
human genomes.13-21 Importantly, a sub-
set of nucleoporins interact with DNA in 
the nuclear interior, independently of the 
presence of RNA polymerase II. This find-
ing strongly suggests that proteins of the 
nuclear pore play a role in transcription 
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microscopic analyses of the nuclear mem-
brane performed during the 1950s.23-28 
Over the next 25 y, their universality in 
eukaryotic cells, as well as a consensus 
regarding their overall shape and size, 
became well established. By 1975 two 
distinct but mutually compatible func-
tions of nuclear pores had been proposed: 
nucleocytoplasmic transport and chroma-
tin organization.29 NPCs are now known 
to be the sole conduit through which 
macromolecules are exchanged between 
the nucleus and cytoplasm (reviewed 
in refs. 30 and 31). The second postu-
lated function, which was predicated on 
numerous observations of the physical 
proximity of chromatin to nuclear pores,32-

39 has received less attention. Recent work, 
though, has reintroduced the idea that 
this physical juxtaposition may indicate a 
functional link.

ChIP,13-15,40 ChIP-chip16-19 and chroma-
tin cleavage20,41 analyses have shown that 
subunits of the nuclear pore, or nucleopo-
rins, interact with both active and inac-
tive regions of the genomes of budding 
yeast, fruit flies, rats and humans (Table 
1). Several lines of evidence suggest that 
these interactions serve a purpose other 
than facilitating the export of newly syn-
thesized transcripts. First and simplest, 
some nucleoporins preferentially associate 
with regions of the genome that are not 
transcribed.14,18 The next argument for 
a transport-independent function stems 
from the observation that some nucleopo-
rins localize to both the nuclear periphery 
and the nuclear interior,42-46 also called the 
nucleoplasm; nucleoplasmic pools of these 
nucleoporins have been shown to interact 
with loci that are also found in the nuclear 
interior and to influence steady-state lev-
els of mRNA transcribed from these 
genes.14,19,20 Finally, work done in fruit flies 
has directly demonstrated that the asso-
ciation between nucleoporins and active 
genes is stable to treatment with RNase A 
and thus not tethered by RNA molecules 
in the process of being exported.14

Since RNA-only models are ruled out, 
the way in which nucleoporins interact 
with the genome is unclear. With one 
possible exception,47 nucleoporins do not 
contain recognizable domains for bind-
ing DNA or chromatin directly. It there-
fore seems likely that they recognize 

nucleocytoplasmic shuttling of Mig1, the 
DNA-binding factor primarily responsi-
ble for inhibition of SUC2 transcription. 
Instead, nuclear Mig1 must physically 
associate with intact nuclear pore com-
plexes (NPCs) in order to bind DNA and 
repress transcription. In other words, the 
ability of the repressor to find its site in the 
DNA is dependent on its interaction with 
NPCs; both interaction with NPCs and 
DNA binding are lost if either NUP120 
or NUP133 is deleted. Viewed in the 
context of earlier work, this result sug-
gests that nuclear pore proteins function 
as transcriptional regulators by exerting 
a global influence on chromatin biology, 
nuclear organization, or both.

Different Biological Functions for 
Nuclear Pores

Nuclear pores were first identified as 
electron-dense structures visible in 

that is independent of mRNA trans-
port.19,20 Consistent with such a role, 
experiments in both flies and rats have 
shown that knock-down or overexpression 
of nucleoporins reciprocally alters mRNA 
levels of the genes with which they inter-
act.14,15,19,20,22 However, almost nothing is 
known about the nature of the nuclear 
pore-genome interaction, or the mechan-
ics of how nucleoporins contribute to 
transcriptional regulation.

Recently, though, we have identified 
a specific mechanism through which 
nuclear pore proteins can influence 
transcription. Deletion of either of two 
particular subunits of the nuclear pore, 
NUP120 or NUP133, results in a loss of 
repression of SUC2, one of the canoni-
cal model genes in the Saccharomyces 
cerevisiae system on which our current 
understanding of transcriptional regula-
tion has been built. This loss of repres-
sion is not attributable to defects in the 

Table 1. Nuclear pore proteins in physical interaction with genomic loci

nucleoporin yeast homolog references

Saccharomyces cerevisiae

active

Nup60 16

Nup116 16

Nic96 16

Mlp1 16

Mlp2 16

active and 
repressed

Nup2 16, 17, 41

Nup145C 13, 16

Nup53 13

Nup133 13

Pom152 13

Drosophila melanogaster

active

mTOR Mlp1 19, 22

Nup153 Nup60 19

Nup50 none 20

Nup62 Nsp1 20

Nup98 Nup145N 14, 20

Sec13 Sec13 14

repressed Nup88 Nup82 14

Rattus norvegicus

active and 
repressed

Nup155 Nup170 15

Homo sapiens

active and 
repressed

Nup93 Nic96 18
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nucleocytoplasmic transport in response 
to changes in the availability of glucose 
and must associate with the nuclear pores 
for this purpose. Both proteins cross the 
pore when glucose appears as well as when 
it disappears; therefore it is not straight-
forward to explain the differential physi-
cal association we observe by invoking a 

when SUC2, HXK1 and GAL1,10 are 
actively transcribed and stably associated 
with nuclear pores. In contrast, Mig1 
co-fractionates with NPCs only in the 
presence of glucose, when these three 
target genes are repressed and appear to 
interact with nuclear pores transiently.13 
However, Snf1 and Mig1 undergo 

specific loci through another protein or 
proteins, but the identity of these is cur-
rently unknown. However, examining 
the function of nucleoporin-DNA inter-
actions may provide a hint about mecha-
nism of interaction. In budding yeast, 
nucleoporins interact specifically with 
intergenic regions, places where the tran-
scriptional machinery and the DNA first 
come into contact; this contact occurs 
independently of active transcription.13,41 
Two Drosophila nucleoporins, Nup98 and 
Sec13, have been shown to make contact 
with their target loci prior to RNA poly-
merase.14 Consistent with these data, the 
yeast nucleoporin Nup2 has been shown to 
contact the promoter of the GAL1,10 locus 
prior to TBP.41 Sequence specific transcrip-
tion factors, chromatin remodelers and 
chromatin modifying complexes are there-
fore the most logical candidates for pro-
teins that serve as intermediates between 
nucleoporins and DNA, since only they 
arrive at the promoter prior to TBP.

Regulation of SUC2 Transcription 
is Linked to Nuclear Pores

Our understanding of glucose-regulated 
gene expression in the model eukaryote 
Saccharomyces cerevisiae has been estab-
lished largely through study of the SUC2 
promoter. Work completed over the past 
25 y has thoroughly identified the set of 
proteins that control its activity (Fig. 1), 
although the way in which they work 
together is still not fully understood. Two 
factors central to this regulatory system 
are the Snf1 kinase and the DNA-binding 
repressor protein Mig1. Together they 
control transcription of not only SUC2, 
but approximately 300 other genes.48

Recent work has shown that the pro-
moters of three Mig1 targets—SUC2, 
HXK1 and GAL1, 1013,41—are also bound 
by nuclear pore proteins; furthermore, 
these genes very likely spend some time 
interacting with intact NPCs, since GFP 
tagging shows they periodically visit the 
nuclear periphery when repressed and 
localize there for prolonged intervals 
when active.13,49,50 We therefore wondered 
if the Snf1 and Mig1 proteins themselves 
might also interact with NPCs. We found 
that Snf1 co-fractionates with intact 
NPCs only in the absence of glucose, 

Figure 1. Regulation of glucose-repressed gene expression in Saccharomyces cerevisiae. Regula-
tion of SUC2 expression is well characterized, and the proteins that carry out this regulation have 
been studied extensively. The SUC2 system therefore provides a good model for understand-
ing how other genes controlled by the same factors are regulated. (A) A kinase-transcription 
factor pair work together to control expression of SUC2. Left panel. In the presence of glucose 
(repressed), the C2H2 zinc finger protein Mig1 binds DNA and inhibits transcription of SUC2, plus 
approximately 300 other genes. Complete inhibition also requires the hexokinase Hxk2. Snf1 
kinase, a structural and functional homolog of mammalian AMPK, is found in the cytoplasm. Right 
panel. When glucose is depleted or withdrawn (derepressed), Snf1 is phosphorylated by upstream 
kinases, enters the nucleus and phosphorylates Mig1, which is then exported together with Hxk2. 
For detailed review, see reference 48. (B) Chromatin structure of the SUC2 promoter. Left panel. 
In the presence of glucose (repressed), four nucleosomes (numbered 1 through 4) cover the SUC2 
promoter; a gradient of histone H3 acetylation decreases from 5' to 3'.55 Two GC-rich sequences 
are required for repression of transcription (red t-bars) from the TSS (dashed black arrow).88 These 
sites are interchangeably bound in vivo by Mig1 and its homolog Mig2; function of the former, 
but not the latter, is regulated by the Snf1 kinase.48 The average location of the first Mig1/2 site 
(left-most red rectangle) is between nucleosomes 1 and 2. The second Mig1/2 site (right-most red 
rectangle) is close to the end of the DNA covered by nucleosome 2;89-91 nucleosome and repressor 
may compete for occupancy of this site. The TATA box (green rectangle) is covered by nucleo-
some 4.89-93 Right panel. Full induction of transcription requires the Swi/Snf chromatin remodeling 
complex.57,90,91,94-98 Swi/Snf associates more stably with promoter nucleosomes that have been 
acetylated by SAGA and NuA4 complexes;57 in the absence of glucose, acetylation of H3 and 
H4 tails increases for all nucleosomes. The DNA formerly covered by two nucleosomes (nucleo-
somes 2 and 3) is more frequently covered by only one. Nucleosome 4, covering the TATA box, is 
hyperacetlyated and becomes unstable.55 Initiation occurs at the TSS (black arrow). Additionally 
required for full induction of SUC2 transcription are the nucleosome remodeling protein Spt699,100 
and the transcriptional activator Gcr1 (blue oval, Gcr1 binding site).90,101-104 Nuclear pore proteins 
also interact with the SUC2 promoter;13 it is important to learn how they collaborate with the well-
characterized transcription factors described here.
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nucleoporin(s) or intact nuclear pores to 
in vitro DNA-binding reactions should 
increase the affinity of Mig1 for its site. 
However, if in vivo nuclear context is 
important—perhaps for reducing search 
time by compressing three dimensions 
into two – then in vitro analyses such as 
this may not be informative. In which 
case, quantitative measurement of in vivo 
DNA binding at different nuclear loca-
tions, either by fluorescent resonance 
energy transfer (FRET) or bimolecular 
fluorescence complementation (BiFC), 
may provide the best test of this model. It 
will also be critical to definitively address 
the question of where in the yeast nucleus 
promoter-nucleoporin interactions truly 
occur. Circumstantial evidence—the 
periodic localization of the DNA to the 
nuclear periphery, together with the rela-
tive immobility of the nucleoporins we 
observe to interact with it—strongly sug-
gests that intact, membrane-embedded 
NPCs influence Mig1 DNA binding. 
However, at this time, we cannot rule out 
a role for soluble nucleoplasmic pools of 
nucleoporins. Determining whether an 
interaction occurs in one or the other 
of two specific locations—the nuclear 
periphery or the nucleoplasm—may seem 
straightforward at first. In reality, the 
need for precise localization in a small 
nucleus, together with the likelihood that 
no more than a very few molecules of 
nucleoporin are localized to the nuclear 
interior, means that a combination of 
super-resolution microscopy and single 
molecule detection techniques will be 
necessary to answer this question in a sat-
isfactory way.

A second model, not mutually exclu-
sive with the one described above, is that 
NPCs collaborate with chromatin modi-
fying complexes and chromatin remod-
elers to fine-tune the post-translational 
modification and/or position of nucleo-
somes over many Mig1 target promot-
ers (Fig. 2C). In repressed wild type 
cells, nucleosomes 1 and 2 of the SUC2 
promoter are at least 2- to 5-fold more 
acetylated than nucleosome 4;55 1 and 2 
flank the first Mig1 binding site, 2 covers 
the second Mig1 binding site and 4 cov-
ers the TATA box (Fig. 1B). The effect of 
histone acetylation on Mig1 binding has 
not been studied directly, but modeling of 

How Nuclear Pores Might  
Influence Gene Expression:  

Models and Possible Mechanisms

Why does MIg1 require Nup120 and 
Nup133 to bind DNA? We have shown 
that Mig1 co-purifies with intact NPCs in 
glucose-grown cells, in which the repres-
sor binds its target loci.13,54 We have also 
shown that both Nup133 and Pom152 
interact with the SUC2 promoter in glu-
cose-grown cells.54 Nup133 is a structural 
component of the NPC, and Pom152 is an 
integral nuclear membrane protein. We 
therefore interpret this result to mean that 
in the presence of glucose, the repressed 
SUC2 promoter makes transient con-
tact with intact NPCs embedded in the 
nuclear membrane. This interpretation 
is consistent with the observation that 
the SUC2 locus can be seen to periodi-
cally “visit” the nuclear periphery in glu-
cose grown cells.13 An obvious possibility, 
therefore, is that during these visits, the 
NPC facilitates binding of the repressor 
protein to the DNA by simultaneously 
interacting with both. Bringing together a 
gene and its transcriptional regulator in a 
particular location, at the nuclear periph-
ery, might not only facilitate DNA bind-
ing, but also reduce the time it takes that 
transcription factor to search the genome 
for its site.

Drawing the simplest possible analogy 
to cooperative DNA binding by two tran-
scription factors (Fig. 2A), we can infer 
two significant corollaries to this model. 
First, SUC2 is required to contact the NPC 
independently of Mig1. As noted above, 
this second, Mig1-independent contact 
may be direct, but more likely occurs 
through some other, currently unidenti-
fied factor. Second, deletion of any one of 
the components shown in Figure 2A has 
the potential to reduce the affinity with 
which the others interact. Consistent with 
these requirements, we observe that in 
glucose-grown mig1Δ cells, Nup133 still 
binds the SUC2 promoter, although the 
strength of the interaction appears to be 
reduced (Fig. 2B).

Although interesting, this finding is far 
from conclusive, and further work must 
be done to test the accuracy of the idea. If 
it is correct, classical biochemical theory 
predicts that adding either individual 

transport-only function, but we still con-
sidered it a possibility. Accordingly, we 
looked for a way to test whether the asso-
ciation of these regulators with nuclear 
pores was only a reflection of their trans-
port. It has long been known that deletion 
of HXK2, which encodes the predomi-
nant form of hexokinase in budding yeast, 
causes defects in Mig1-dependent glucose 
repression.51-53 We found that in an hxk2Δ 
mutant, Mig1 is properly localized to the 
nucleus in response to the appearance 
of glucose; however, despite being local-
ized to the nucleus in this mutant, Mig1 
no longer co-fractionates with nuclear 
pores.13 In other words, our analysis of 
an hxk2Δ mutant shows that repressor 
function of Mig1 requires its physical 
association with NPCs in a way that is 
independent of the protein’s nucleocyto-
plasmic transport.

Specific subunits of the NPC  
Mediate Binding of the Mig1  

Repressor to Target Promoters

We next asked whether mutation of 
nuclear pores themselves might cause 
defects in the transcriptional regulation 
of SUC2. Of particular interest were cells 
deleted for either NUP120 or NUP133, 
in which we observed a loss of repression 
of SUC2 approximately equal to that seen 
on deleting MIG1 itself.54 Since a reduc-
tion in export of SUC2 mRNA would not 
be expected to lead to an increase in lev-
els of the translated protein product, we 
reasoned that these nucleoporins likely 
impact regulation of SUC2 expression at 
the level of transcription. Visualization 
of Mig1-GFP shows that import of Mig1 
into the nucleus does not require Nup120 
or Nup133.54 Given our above-described 
data on Hxk2, though, we wondered if 
Nup120 and Nup133 might be required 
for the interaction of Mig1 with NPCs. 
We found that this is true; although 
Mig1 is correctly transported into and 
out of the nucleus in the absence of these 
nucleoporins, it is no longer able to co-
fractionate with nuclear pores. In the 
absence of Nup120 or Nup133, nuclear 
Mig1 is also unable to bind its site in 
DNA.54 This striking result provides a 
clear explanation of how these nucleopo-
rins influence SUC2 repression.
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Relevance to Leukemia:  
Nucleoporins as Transcription 

Factors in Human Cells

Genes encoding components of the NPC 
are the target of chromosomal translo-
cations in several different types of can-
cer;62-66 possibly the best studied of these 

including HXK1 and FBP1, are bound 
at a low level by RSC in glucose-grown 
cells.61 Again, further work must be done 
to determine whether changes in the 
position or acetylation state of promoter 
nucleosomes are responsible for the fail-
ure of Mig1 to bind DNA in nup120Δ 
and nup133Δ cells.

nucleosome positioning data suggests that 
these are less stably associated with the 
DNA in the absence of glucose.56 A change 
in the targeting or activity of histone 
acetyltransferases and/or in acetylation-
dependent Swi/Snf remodeling, might 
occur in nup120Δ and nup133Δ mutants, 
thus altering the position or occupancy 
of promoter nucleosomes so that binding 
sites for Mig1 become obscured. In this 
model, Mig1 cannot repress transcription 
because it is unable to outcompete these 
nucleosomes.

Some data exist to support a model in 
which nucleoporins influence transcrip-
tional regulation by co-operating with 
chromatin modifying complexes, particu-
larly those that control histone acetylation. 
This is significant, since acetylation state 
is believed to be an important determi-
nant of the affinity between nucleosomes 
and DNA. In Drosophila, the histone 
acetyltransferase MOF has been found in 
complex with both Nup153 and the NPC 
associated protein mTOR.22 Nup153 has 
also been found to preferentially inter-
act with genomic loci where H4K16Ac-
containing nucleosomes are enriched.19 In 
Saccharomyces, the MOF homolog Esa1, 
catalytic subunit of NuA4, constitutively 
associates with the SUC2 promoter.57 
Deletion of ESA1 is synthetically defective 
with deletion of NUP120, suggesting the 
products of these genes share some com-
mon function;58 this interesting possibil-
ity has not yet been explored. Yeast Gcn5, 
the catalytic subunit of SAGA, has been 
shown to associate directly with Mlp1 and 
2, homologs of Drosophila mTOR.59 Most 
recently, the Rattus norvegicus nucleopo-
rin Nup155 has been shown to interact 
with the histone deacetylase HDAC4 
and to regulate the association of specific 
genomic loci with that nucleoporin.15

An intriguing but currently even less-
well elaborated connection may exist 
between nuclear pores and chromatin 
remodeling complexes. The RSC com-
plex is essential both for the localization 
of NPCs to the nuclear envelope and 
for normal nuclear morphology, lead-
ing to the suggestion that RSC might be 
required for establishing contacts between 
chromatin and the NPC.60 SUC2 is not 
known to be a target of RSC, but the 
promoters of other Mig1-regulated genes, 

Figure 2. How nucleoporins might influence access to a specific site in DNA. (A) Model for NPC 
facilitated Mig1 binding to DNA. (a) In the presence of glucose, Mig1 associates with NPCs; the 
SUC2 locus contacts NPCs transiently. (b) Increased local concentration of both Mig1 and its 
consensus site facilitates DNA binding by the repressor. (c) The repressor-bound promoter can 
dissociate from the NPC. (B) Interaction of Nup133 with the SUC2 promoter is reduced in mig1Δ 
cells. TAP-tagged Nup133 was immunoprecipitated from mig1Δ or wild type cells grown in media 
containing glucose as the carbon source, then fixed with formaldehyde as described previously.13 
Crosslinks were reversed and PCR was used to amplify the promoters of SUC2 and ACT1 (negative 
control) from recovered material. Amplified target is expressed as a ratio of SUC2/ACT1, normal-
ized to the amount of product amplified whole cell extracts (input). Adding increasing amounts of 
input DNA shows that amplification of the product is linear. A representative experiment is shown; 
similar results were obtained for Nup145C (not shown). (C) A model for collaborative nucleosome 
positioning. Top panel. Mig1 associates with nuclear pores as in (A) above. SUC2 is not associated 
with nuclear pores, and the nucleosomes across its promoter are poorly positioned (three yellow 
circles, one distinct and two indistinct, represent the average position of one nucleosome, over 
time and across a population). Bottom panel. One or more subunits of the nuclear pore associate 
with the SUC2 locus, serving as a marker or barrier against which chromatin remodelers can posi-
tion a single nucleosome, thus seeding an ordered array. Alternatively, nuclear pore proteins may 
direct the activity of chromatin modifiers such as SAGA and NuA4, which in turn direct the activity 
of remodelers such as Swi/Snf. Models shown in A and C are not mutually exclusive; for example, 
nuclear pores contribute to nucleosome positioning at step (b) of model A.
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comments on the manuscript, as well as 
for a generous amount of time spent in 
helpful discussions of the text. This work 
was supported by National Institutes of 
Health grant GM083309 to K.A.W.

References
1.	 Cosma MP. Ordered recruitment: gene-specific 

mechanism of transcription activation. Mol Cell 
2002; 10:227-36; PMID:12191469; http://dx.doi.
org/10.1016/S1097-2765(02)00604-4.

2.	 Orphanides G, Reinberg D. A unified theory of gene 
expression. Cell 2002; 108:439-51; PMID:11909516; 
http://dx.doi.org/10.1016/S0092-8674(02)00655-4.

3.	 Krishnamurthy S, Hampsey M. Eukaryotic tran-
scription initiation. Curr Biol 2009; 19:R153-6; 
PMID:19243687; http://dx.doi.org/10.1016/j.
cub.2008.11.052.

4.	 Weake VM, Workman JL. Inducible gene expres-
sion: diverse regulatory mechanisms. Nat Rev Genet 
2010; 11:426-37; PMID:20421872; http://dx.doi.
org/10.1038/nrg2781.

5.	 Hahn S, Young ET. Transcriptional regulation in 
Saccharomyces cerevisiae: transcription factor reg-
ulation and function, mechanisms of initiation, 
and roles of activators and coactivators. Genetics 
2011; 189:705-36; PMID:22084422; http://dx.doi.
org/10.1534/genetics.111.127019.

6.	 Malik S, Roeder RG. The metazoan Mediator co-
activator complex as an integrative hub for tran-
scriptional regulation. Nat Rev Genet 2010; 11:761-
72; PMID:20940737; http://dx.doi.org/10.1038/
nrg2901.

7.	 Saunders A, Core LJ, Lis JT. Breaking barriers to 
transcription elongation. Nat Rev Mol Cell Biol 
2006; 7:557-67; PMID:16936696; http://dx.doi.
org/10.1038/nrm1981.

8.	 Bryant GO, Ptashne M. Independent recruitment in 
vivo by Gal4 of two complexes required for transcrip-
tion. Mol Cell 2003; 11:1301-9; PMID:12769853; 
http://dx.doi.org/10.1016/S1097-2765(03)00144-8.

9.	 Carey MF, Peterson CL, Smale ST. Transcriptional 
Regulation in Eukaryotes: Concepts, Strategies, & 
Techniques. Cold Spring Harbor, NY: Cold Spring 
Harbor Laboratory Press, 2009.

10.	 Maniatis T, Reed R. An extensive network of cou-
pling among gene expression machines. Nature 
2002; 416:499-506; PMID:11932736; http://dx.doi.
org/10.1038/416499a.

11.	 Pandit S, Wang D, Fu XD. Functional integra-
tion of transcriptional and RNA processing 
machineries. Curr Opin Cell Biol 2008; 20:260-
5; PMID:18436438; http://dx.doi.org/10.1016/j.
ceb.2008.03.001.

12.	 Proudfoot NJ, Furger A, Dye MJ. Integrating mRNA 
processing with transcription. Cell 2002; 108:501-
12; PMID:11909521; http://dx.doi.org/10.1016/
S0092-8674(02)00617-7.

13.	 Sarma NJ, Haley TM, Barbara KE, Buford TD, 
Willis KA, Santangelo GM. Glucose-responsive 
regulators of gene expression in Saccharomyces cere-
visiae function at the nuclear periphery via a reverse 
recruitment mechanism. Genetics 2007; 175:1127-
35; PMID:17237508; http://dx.doi.org/10.1534/
genetics.106.068932.

14.	 Capelson M, Liang Y, Schulte R, Mair W, Wagner U, 
Hetzer MW. Chromatin-bound nuclear pore compo-
nents regulate gene expression in higher eukaryotes. 
Cell 2010; 140:372-83; PMID:20144761; http://
dx.doi.org/10.1016/j.cell.2009.12.054.

15.	 Kehat I, Accornero F, Aronow BJ, Molkentin JD. 
Modulation of chromatin position and gene expres-
sion by HDAC4 interaction with nucleoporins. J 
Cell Biol 2011; 193:21-9; PMID:21464227; http://
dx.doi.org/10.1083/jcb.201101046.

(CBP)/p300; transcriptional activation 
of a reporter gene by NUP98-HOXA9 
is dependent on the histone acetyl-
transferase activity of CBP/p300.81 
Chromosomal translocations also fuse 
NUP98 to the lysine methyltransferases 
NSD1 and MLL, to the lysine demethyl-
ase JARID1A and to the poorly-charac-
terized protein PHF23, which recognizes 
methylated H3K4.69 NUP98-NSD1 
promotes the methylation of histone 
H3-Lys36 (H3K36) at loci encoding sev-
eral proto-oncogenes, including HoxA7, 
HoxA9, HoxA10, Meis1; enforced acti-
vation of these transcription factors 
then blocks differentiation.83 NUP98-
JARID1A and NUP98-PHF23 fusion 
proteins inhibit demethylation of histone 
H3-Lys 4 (H3K4me3) at loci encoding 
lineage-specific transcription factors, 
again blocking differentiation.84,85 It is 
not clear how the deregulation of lysine 
methylation by these NUP98 chimeras 
relates to nucleoporin-mediated regula-
tion of gene expression described above. 
However, in Drosophila cells, the meth-
ylation state of H3K36 is linked to levels 
of H4K16 acetylation,86,87 and nucleopo-
rins preferentially bind loci enriched for 
H4K16Ac.19,20

Conclusions and Future  
Directions

These observations bring up an important 
question: to what extent is transcriptional 
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summarized above suggests that it is, to at 
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tribution be integrated into existing mod-
els of gene regulation? Addressing these 
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regulated in a nuclear context.
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