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Yeast Tdh3 (Glyceraldehyde 3-Phosphate
Dehydrogenase) Is a Sir2-Interacting Factor That
Regulates Transcriptional Silencing and rDNA
Recombination
Alison E. Ringel.¤a, Rebecca Ryznar., Hannah Picariello¤b, Kuan-lin Huang¤c, Asmitha G. Lazarus¤d,

Scott G. Holmes*

Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America

Abstract

Sir2 is an NAD+-dependent histone deacetylase required to mediate transcriptional silencing and suppress rDNA
recombination in budding yeast. We previously identified Tdh3, a glyceraldehyde 3-phosphate dehydrogenase (GAPDH), as
a high expression suppressor of the lethality caused by Sir2 overexpression in yeast cells. Here we show that Tdh3 interacts
with Sir2, localizes to silent chromatin in a Sir2-dependent manner, and promotes normal silencing at the telomere and
rDNA. Characterization of specific TDH3 alleles suggests that Tdh3’s influence on silencing requires nuclear localization but
does not correlate with its catalytic activity. Interestingly, a genetic assay suggests that Tdh3, an NAD+-binding protein,
influences nuclear NAD+ levels; we speculate that Tdh3 links nuclear Sir2 with NAD+ from the cytoplasm.
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Introduction

The yeast Sir2 protein is the founding member of a large family

of NAD+-dependent protein deacetylases (‘‘sirtuins’’) conserved

among all three domains of life [1,2]. Yeast Sir2 deacetylates

histones, particularly lysine 16 of histone H4, as part of a silencing

mechanism that suppresses the transcription of telomere-proximal

genes and the silent mating type loci. At these locations, Sir2 acts

in conjunction with the Sir3 and Sir4 proteins [3,4]. Sir2 also acts

to reduce recombination and silence expression of RNA polymer-

ase II transcribed genes at the rDNA repeats [5,6,7]. Sir2 family

members in yeast and other organisms have both histone and non-

histone substrates and regulate a variety of cellular processes.

Sir2 and other sirtuins link cleavage of NAD+ to their

deacetylation reaction. Sir2’s NAD+-dependence led to the

suggestion that it might be regulated by changes in metabolism

that affect NAD+ concentrations [2,8,9]. In support of this

proposal, Sir2-related functions can be affected by manipulating

the levels of enzymes in the NAD+ biosynthetic pathway, or by

varying the concentrations of NAD+ precursors in the growth

media. For example, NAD+ levels are reduced in yeast cells lacking

the NPT1 gene, which codes for a key enzyme in the salvage

pathway, reforming NAD+ from nicotinic acid [10]. This drop in

NAD+ is accompanied by a decrease in rDNA and telomeric

silencing and an increase in rDNA recombination [10]. Addition

of the NAD+ precursor nicotinamide riboside restores NAD+ levels

in npt1 mutants and also suppresses their rDNA silencing and

recombination defects in a Sir2-dependent manner [11].

In a prior genetic screen for candidate Sir2 regulators we

identified Tdh3, a yeast glyceraldehyde 3-phosphate dehydroge-

nase (GAPDH), which converts NAD+ to NADH while executing

a key step in glycolysis [12]. Given the links between metabolism,

NAD+, and Sir2 activity, we investigated possible influences of this

protein on Sir2. We found that yeast Tdh3 is a Sir2-interacting

protein that regulates silencing, influences Sir2’s association with

chromatin, and modulates nuclear NAD+ levels.

Results

Tdh3 regulates transcriptional silencing at the telomere
and HMR loci

There are three GAPDH enzymes in yeast, coded for by the

TDH1, TDH2, and TDH3 genes [13,14]. Deletion of any one of

the three TDH genes is not lethal, but elimination of both TDH2

and TDH3 causes inviability, indicating these genes have a

redundant, essential function [14]; the Tdh1 protein appears to be
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exclusively expressed in stationary phase [15,16], and can be

deleted in combination with either Tdh2 or Tdh3 without

compromising viability. To examine whether GAPDH enzymes

influence silencing in yeast we deleted TDH1, TDH2, or TDH3 in

a strain bearing a URA3 reporter gene at the telomere [17]. We

observed that deletion of TDH3 caused a decrease in telomeric

silencing (Figure 1A). Loss of Tdh1 or Tdh2 did not lead to strong

phenotypes in this assay. Since we initially identified TDH3 by its

overexpression phenotype we also determined its influence on

silencing when expressed at high levels. We transformed a plasmid

containing the TDH3 gene under the control of GAL1 promoter

into a strain containing the ADE2 gene integrated at the HMR

locus. In this assay we find that silencing of the ADE2 gene is

improved in strains overexpressing TDH3 (Figure 1B).

Since phenotypic assays based on the URA3 reporter gene may

in some cases be subject to influences independent of transcrip-

tional silencing [18,19], we also examined Tdh3’s influence on the

transcription of a naturally occurring telomere-linked gene,

YFR057W (Figure 1C) [20]. An increase in YFR057W’s mRNA

levels in strains lacking Sir2 indicates that this gene is subject to

Sir-dependent silencing (Figure 1C). We observed that loss of

Tdh3 caused a significant increase in the expression of this gene,

consistent with a role for Tdh3 in mediating telomere position

effect. Control experiments indicated that deletion or overexpres-

sion of Tdh3 did not alter Sir2 levels in the cell (Figure 1D).

Tdh3 regulates recombination at the rDNA repeats
Sir2 regulates recombination and RNA polymerase II tran-

scription at the rDNA. To examine the influence of Tdh3 on

silencing and recombination at the rDNA locus, we monitored the

expression of a URA3 reporter gene integrated into the rDNA [6].

Based on the pattern of growth on the FOA assay plates, which

counterselect for URA3 expression, loss of Tdh3 leads to a decrease

in rDNA silencing and/or increased loss of the URA3 marker

(Figure 2A). To determine if Tdh3 affects recombination at the

rDNA we used fluctuation analysis to measure the loss of the

URA3 marker from the rDNA repeats (Figure 2B). In agreement

with prior studies we find that deletion of Sir2 increases the rate of

loss of the rDNA marker [6]. We also observe a significant increase

in recombination in strains lacking Tdh3. Loss of Sir2 in a Dtdh3

strain does not cause an additive increase in the recombination

rate, suggesting that Sir2 and Tdh3 act in a common pathway to

suppress rDNA recombination.

Tdh3 catalytic activity does not correlate with silencing
Silencing may be influenced by flux through the glycolytic

pathway, controlled in part by Tdh3 in yeast. To examine the

relationship between Tdh3’s enzymatic activity and its effect on

silencing we assessed the effects of mutations in the TDH3 gene.

We replaced the endogenous TDH3 gene with alleles predicted to

code for proteins that reduce Tdh3’s catalytic activity (C150G)

[21] and/or to alter its multimeric state (T227A, T227K) [22].

These Tdh3 proteins were expressed at similar levels to wild type

(not shown).

We then measured the effects of these mutants on cellular

GAPDH activity and on silencing at the telomere (Figure 3). We

found that GAPDH activity in the strains does not correlate with

silencing efficiency. While the C150G amino acid substitution

showed diminished GAPDH activity and also exhibited a decrease

in silencing similar to cells lacking Tdh3, the T227A change

caused a silencing defect with no change in GAPDH activity.

Finally, the T227K strain exhibited no change in silencing in the

phenotypic assay (Figure 3A), and only a slight loss of silencing as

assessed by mRNA levels of a telomere proximal gene (Figure 3B),

despite a significant drop in GAPDH activity. Thus, Tdh3 likely

contributes to silencing in a manner that is at least partly

independent of its role in glycolysis. Interestingly, we observed that

expression of specific Tdh3 mutants (e.g., C150G and T227K)

caused GAPDH activity to drop below levels seen in the Dtdh3 null

strain (Figure 3C). The active form of the GAPDH enzyme is a

tetramer of GAPDH monomers. The existence of mixed Tdh2/

Tdh3 tetramers has been suggested [13]; we speculate that

expression of specific Tdh3 alleles could decrease overall GAPDH

activity by recruiting Tdh2 into inactive complexes.

Nuclear localization of Tdh3 is required to maintain
transcriptional silencing

We find that yeast GAPDH, which participates in glycolysis in

the cytoplasm, also influences silencing and recombination in the

nucleus. This influence could be indirect, reflecting in some way

the key role these enzymes play in basic cell metabolism. However,

GAPDH enzymes in other organisms have been shown to exist in

the nucleus and execute functions independent of their role in

glycolysis [21,23,24]. We examined the possibility that yeast Tdh3

protein is a nuclear factor in yeast with a direct role in silencing.

We first used a strain expressing a Tdh3-GFP fusion protein to

determine the cellular localization of Tdh3. Monitoring GFP by

fluorescence microscopy indicated that Tdh3 in present in both

the nucleus and cytoplasm (Figure 4A), consistent with reports

from large-scale localization efforts [25]. We observed a similar

pattern performing immunofluorescence of a strain expressing a

Tdh3-myc fusion protein (not shown). We next asked whether

nuclear localization was important for Tdh3’s function in silencing

by fusing a nuclear export sequence (NES) to the C-terminus of

Tdh3. We used a 12 amino acid NES derived from the HIV Rev1

protein, previously shown to be functional in yeast [26]. As a

control we fused Tdh3 to a non-functional sequence (‘‘nes’’) that

differs at two key amino acid positions [27]. We created strains

expressing this allele in otherwise wild-type strains, and in strains

lacking the TDH2 gene. In both TDH2 and Dtdh2 strains, addition

of NES or nes sequences to Tdh3 did not lead to noticeable

changes in cell growth, nor did they significantly alter overall

Author Summary

Cells respond to changing signals or environmental
conditions by altering the expression of their genes. For
instance, our cells respond to the presence of glucose or
insulin in the bloodstream by regulating the expression of
genes involved in basic cell metabolism. The sirtuin family
of proteins has been proposed to serve as a link between a
cell’s metabolic state and gene expression, although the
molecular mechanisms that connect metabolic status with
Sir2 activity remain unclear. The expression of genes is
controlled in part by the structural organization of the
local chromatin region within which they reside. The yeast
sirtuin protein, Sir2, mediates repression (‘‘silencing’’) of
sets of genes by modulating the structural organization of
specific chromatin regions. In this study we describe a
novel link between a key metabolic enzyme and Sir2
function. We show that a yeast GAPDH protein, which
plays a central role in glucose metabolism, also associates
with Sir2 in the nucleus and promotes Sir2-dependent
gene silencing. Sirtuin activity requires a small molecule,
NAD+, whose availability may fluctuate depending on the
metabolic state of the cell. Based on our data, we suggest
that Tdh3 may promote silencing by maintaining sufficient
levels of NAD+ available to Sir2 within the nucleus.

GAPDH Regulates Sir2-dependent Gene Silencing
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Figure 1. Tdh3 is a novel regulator of Sir2 dependent transcriptional silencing. (A) Tdh3 regulates silencing at the telomeres. Serial
dilutions of strains bearing URA3 reporter gene adjacent to a telomere [17] were made on complete medium (SDC), and on media containing 5-FOA,
which counterselects for URA3 expression. The URA3 promoter is approximately 1 kb from the telomere repeat sequences [67]. (B) Overexpression of

GAPDH Regulates Sir2-dependent Gene Silencing
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GAPDH levels in the cell (Figure 3C). We did not observe a

difference in silencing between the NES- and nes-tagged strains in

an otherwise wild-type strain, but observed a significant, specific

loss of silencing when the NES sequence is fused to Tdh3 in a

strain lacking the Tdh2 protein (Figure 4B). We used GFP-tagged

versions of these strains to show that addition of the NES sequence

in Dtdh2 strains, but not the nes sequence, led to a redistribution of

Tdh3 protein (Figure 4C). We did not observe a significant change

in the distribution of Sir2 in these strains (Supplementary Figure

S1C). Overall these experiments suggest that Tdh3 is present in

Tdh3 causes an increase in silencing at the HMR locus. A plasmid containing the TDH3 gene fused to the galactose-inducible GAL1 promoter was
introduced into a strain bearing the ADE2 gene at the HMR locus [68]. This strain lacks the Orc binding site at the HMR-E silencer (the ‘‘A site’’ of the
silencer). Serial dilutions of this stain were grown on the indicated media. (C) Tdh3 regulates expression of an endogenous telomere proximal gene.
Expression of the native telomere gene YFR057W, was examined by quantitative RT-PCR [60] in the indicated strains. (D) Sir2 protein levels are
unchanged in strains lacking or overexpressing Tdh3. Left panel: Sir2 expressed from its endogenous gene was detected via immunoblotting protein
extracts made from a wild-type strain, a strain lacking the TDH3 gene, or a strain expressing a Tdh3 protein with a single amino acid substitution.
Right panel: Strains overexpressing Sir2 and bearing either a control vector (pRS416) or a plasmid overexpressing Tdh3 are shown.
doi:10.1371/journal.pgen.1003871.g001

Figure 2. Tdh3 regulates silencing and recombination at the rDNA repeats. (A) Tdh3 regulates silencing at the rDNA locus. Serial dilutions
of strains bearing the mURA3 reporter gene embedded in the non-transcribed spacer (NTS) region of the rDNA repeats were made on the indicated
media. mURA3 has a compromised promoter, and was integrated at the rDNA via a transposable element [6]. (B) Tdh3 suppresses recombination at
the rDNA. The rate of URA3 marker loss at the rDNA repeats was determined by fluctuation analysis in the indicated strains. All pairwise comparisons
are significant (t-test; wild type versus Dsir2, p = 0.012; Dsir2 versus Dtdh3, p = 0.011; Dtdh3 versus Dsir2 Dtdh3, p = 0.030).
doi:10.1371/journal.pgen.1003871.g002

GAPDH Regulates Sir2-dependent Gene Silencing
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the nucleus, and that nuclear localization is important for its role

in silencing. They also suggest that Tdh2 affects Tdh3’s

localization in the cell. Finally, we note that the Dtdh2 TDH3-

NES strain that exhibits defective silencing has normal levels of

GAPDH activity (Figure 3C), further suggesting that Tdh3’s

contribution to silencing is independent of its ability to perform

catalysis.

Tdh3 and Sir2 physically interact in vivo
To examine the possibility that Sir2 and Tdh3 physically

interact, we fused Sir2 and Tdh3 to the DNA binding domain

(BD) or transcriptional activation domain (AD) of the Gal4 protein

and expressed the fusion proteins in a strain bearing Gal4 binding

sites in the HIS3 promoter. In initial experiments we failed to see

evidence of a Tdh3-Sir2 interaction, but we noticed that the

Tdh3-BD protein significantly repressed basal expression of the

HIS3 reporter gene (Figure 5A). To determine if the repression

mediated by Tdh3 required DNA binding, we expressed Tdh3

lacking the DNA binding domain. Basal HIS3 expression is

restored in these conditions, suggesting that tethering Tdh3 caused

transcriptional repression (Figure 5A, lower panel).

When Sir2 was tethered to the HIS3 promoter via fusion with

the Gal4 DNA binding domain and Tdh3 was expressed as an

activation domain fusion, we again failed to observe evidence of a

Tdh3-Sir2 interaction. In these experiments tethered Sir2 alone

does not repress the reporter, consistent with previous reports.

However, expression of Tdh3 in conjunction with tethered Sir2

caused repression of HIS3. Thus, increased Tdh3 in the cell

appears to increase an intrinsic ability of Sir2 to mediate tethered

silencing (Figure 5B).

The presence of a positive interaction in two hybrid assays can

be masked by the ability of the query proteins to repress

transcription of the reporter gene. To reduce this possibility we

repeated the two-hybrid assay in a strain lacking the endogenous

SIR2, SIR3, and SIR4 genes [28]. In contrast to the Sir+ strain,

expression of the Tdh3-BD protein in the sir2 sir3 sir4 mutant

strain does not alter basal expression of HIS3 (Figure 5C). Finally,

when the Tdh3-BD fusion is expressed along with Sir2-AD, we

observed increased growth on –HIS media, indicating an

interaction between the two proteins (Figure 5C).

As an independent approach to assess a possible Tdh3-Sir2

interaction we carried out a co-immunoprecipitation experiment.

For this experiment we made a strain expressing a Tdh3-myc

fusion protein, transribed from the endogenous TDH3 locus.

Extracts were made from this strain, and from a control strain

lacking the myc tag. Tdh3-myc and associated proteins were

separated from crude cellular extracts using antibodies to myc

conjugated to agarose beads. Western blotting demonstrated that

Tdh3-myc was specifically detected in the cell lysate and in

immunopurified fractions (Figure 6, left panel). We then ran the

immunopurified material and conducted a western blot using an

antibody to Sir2. The right panel of Figure 6 demonstrates that we

readily detected Sir2 in immunoprecipitations from strains with

tagged Tdh3, but not from control lysates treated identically but

from strains lacking the myc tag on Tdh3. Our results are

consistent with the results of a systematic mass spectrometry study

that also suggested the existence of a complex containing Tdh3

and Sir2 [29]. Interestingly, we have failed to observe a Sir2-Tdh2

interaction under the same conditions (R. Ryznar, unpublished).

Thus, our two hybrid and co-immunoprecipitation results indicate

that Tdh3 specifically associates with Sir2 in yeast.

Tdh3 is a chromatin-associated protein that regulates
Sir2 association with DNA

To examine the possibility that Tdh3 is a chromatin protein, we

conducted chromatin immunoprecipitation (ChIP) experiments

using a strain expressing a Tdh3-myc fusion protein. Using probes

to the non-transcribed spacer (NTS) regions of the rDNA and a

telomere proximal sequence, we found that Tdh3 is specifically

associated with these regions of the chromosome (Figure 7A). We

next determined whether Tdh3 association with chromatin

depended on the presence of Sir2 by repeating these measure-

ments in a Dsir2 strain. We find that association of Tdh3 is

eliminated at the telomere and strongly reduced at the rDNA in

strains lacking Sir2. We then conducted the reciprocal experiment,

examining the association of Sir2 with the rDNA and telomeres in

strains lacking the TDH3 gene (Figure 7B). In these experiments

we observe a reduction of Sir2 association with telomeres, but

don’t observe a significant decrease at the rDNA (Figure 7B).

Therefore, Tdh3 is a chromatin protein that regulates the ability of

Sir2 to associate with some silent loci.

Tdh3 regulates nuclear NAD+ levels
Sir2 requires NAD for its enzymatic activity, and mutations in

genes that affect NAD+ biosynthesis are known to influence

silencing [10,11]. GAPDH enzymes bind NAD+ to catalyze a key

step in glycolysis in which NAD+ is reduced to NADH. Tdh3

could be affecting Sir2 activity by influencing NAD+ levels in the

cell. To examine whether Tdh3 gene dosage affects overall cellular

NAD+ levels, we measured cellular NAD+ in strains lacking or

overexpressing Tdh3 (Figure 8A). As a control for these

experiments, we also determined the relative levels of NAD+ in

a strain lacking the NPT1 gene, a mutation reported to decrease

cellular NAD+ [10]. We readily detected a decrease in NAD+

levels in the Dnpt1 strain relative to its wild-type control, but failed

to detect a significant change in strains lacking Tdh3 (Figure 8A,

left panel) or overexpressing Tdh3 (Figure 8A, right panel).

Several studies suggest that NAD+ concentration may vary

depending on cellular compartment [30]. To examine the

possibility that Tdh3 specifically affects levels of NAD+ within

the nucleus, we used the NAD+-sensitive transcriptional reporter

described by Anderson et al [31]. In this strain the bacterial NadR

protein is fused to the Gal4 activation domain, while binding sites

for NadR are present in the HIS3 gene promoter. NadR’s binding

to DNA depends on the presence of NAD+; thus, transcription of

HIS3 is tightly linked to nuclear NAD+ availability (Figure 8B). We

used this assay to measure the effects of eliminating Tdh1, Tdh2,

Tdh3, Sir2, or Bna6, an enzyme known to influence nuclear

NAD+ levels [31]. We observed a significant and specific decrease

in reporter expression in a strain lacking the TDH3 gene,

suggesting that the Tdh3 protein helps maintain normal nuclear

NAD+ levels (Figure 8B). HIS3 expression is also reduced in this

assay in Dtdh2 TDH3-NES and Dtdh2 TDH3-nes strains (Supple-

mentary Figure S4).

Figure 3. Separation of silencing and GAPDH activity in TDH3 alleles. (A) TDH3 mutants influence transcriptional silencing at yeast telomeres.
For each allele the wild-type amino acid and position is noted, followed by the amino acid replacing it in the mutated allele. A phenotypic assay
measuring silencing of a URA3 reporter gene was conducted as described in the Figure 1 legend. (B) mRNA levels of YFR057W, a naturally occurring
telomere proximal gene, were determined as described in the Figure 1 legend. (C) GAPDH levels of strains bearing TDH3 alleles. Levels of
glyceraldehyde phosphate dehydrogenase activity were measured in extracts made from the indicated strains, as previously described [64].
doi:10.1371/journal.pgen.1003871.g003

GAPDH Regulates Sir2-dependent Gene Silencing
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Figure 4. Nuclear localization of Tdh3 influences transcriptional silencing at the telomere. (A) Tdh3 is localized to both the cytoplasm
and nucleus. Cells expressing Tdh3-GFP from the native TDH3 locus were visualized by fluorescence microscopy. Size bar: 5 mm. (B) Addition of a
nuclear export sequence to Tdh3 reduces silencing at the telomere. The indicated alleles of TDH3 were introduced at its endogenous loci in a strain
bearing the URA3 gene adjacent to a telomere. NES denotes a functional nuclear export sequence; nes denotes a non-functional sequence that differs
by two amino acid substitutions [27]. Expression of URA3 was assessed by plating serial dilutions of these strains on the indicated media. (C)
Localization of Tdh3-NES-GFP and Tdh3-nes-GFP was examined by cellular fractionation and immunoblotting. Fractions of the indicated strains were
probed using an antibody to GFP. Detection of histone H3 was used to monitor the success of fractionation. Fractions included whole cell (WC),
nuclear (N), and cytoplasmic (C). Localization of Tdh3-GFP was also examined by fluorescent microscopy (Supplemental Figure S1A). Addition of the
GFP tag to Tdh3 in NES/nes strains did not alter their silencing phenotypes (Supplementary Figure S1B).
doi:10.1371/journal.pgen.1003871.g004

GAPDH Regulates Sir2-dependent Gene Silencing
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Figure 5. Physical and functional interaction between Tdh3 and Sir2 in a two-hybrid assay. (A) TDH3 fused to the DNA-binding domain
results in the repression of the HIS3 reporter gene. Two-hybrid assays were performed as previously described [69,70] using the complete Sir2 and
Tdh3 open reading frames. Rows are labeled with the activation-domain fusions used; pOAD is the vector control. Each column lists the binding-
domain fusion used; pOBD is the vector control. Tdh3DBD indicates strains that overexpress TDH3 from the pOBD vector lacking the Gal4 binding
domain. (B) Elevated Tdh3 increases Sir2-dependent repression of a reporter gene. Labels are as described in (A). Sir4D730N-AD was included as a
positive control for Sir2 interaction. (C) Tdh3 and Sir2 interact in vivo. The activation domain and binding domain fusions from (A) and (B) were
assessed in a strain lacking the SIR2, SIR3, and SIR4 genes (YSH625).
doi:10.1371/journal.pgen.1003871.g005

GAPDH Regulates Sir2-dependent Gene Silencing
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Proteins contributing to common pathways in the cell can often

be identified by defining synthetic phenotypes caused by

combining mutations in the genes for these proteins [32]. To

further examine Tdh3’s possible role in maintaining cellular

NAD+ levels we created strains combining TDH3 deletions with

the loss of genes involved in the synthesis of NAD+, and then

compared the doubling times of strains containing the single and

double mutations. Interestingly, we observed a significant slow-

growth phenotype in a strain lacking both the TDH3 and NPT1

genes (Figure 8C), consistent with an observation made in a large-

scale assay [33]. We detected a similar growth defect in a Dtdh2

Dnpt1 strain (Figure 8C). Npt1 is largely found in the nucleus

[10,34], where it participates in the salvage pathway of NAD+

synthesis. Consistent with prior studies [10,35], we observed that

Dnpt1 strains exhibited silencing defects; we also found that cells

lacking both TDH3 and NPT1 have silencing defects similar to

those seen in Dnpt1 or Dtdh3 strains (Figures 1C and 8D).

Discussion

Tdh3 is a chromatin protein that promotes
Sir2-dependent silencing

GAPDH is a well-described ‘‘moonlighting’’ protein, shown to

have diverse functions independent of its role in glycolysis [23,36].

These functions may include a conserved interaction with Sir2

family members, as GAPDH enzymes have been shown to interact

with sirtuins in other organisms. In Drosophila, a large-scale two-

hybrid interaction study indicated an interaction between

GAPDH and dSir2 [37], while in human cells the nitrosylated

form of GAPDH was shown to bind to SIRT1, the closest human

homologue to yeast Sir2, and lead to SIRT1 nitrosylation [38].

GAPDH translocation to the nucleus promotes apoptosis in

mammalian cells; an independent study found that SIRT1

depletion led to nuclear translocation of GAPDH in the absence

of apoptotic stress [39]. Sir2-GAPDH links have also been

observed in yeast cells. A recent report found that Sir2 and the

Sir2 homolog Hst1 associate with the open reading frame of

TDH3 and several other glycolysis genes, and may mediate

repression of these genes following the diauxic shift [40].

Overexpressing Sir2 in GAPDH-deficient yeast cells caused

elevated plasmid recombination [41], prompting a proposal that

GAPDH enzymes influence Sir2 activity, possibly by affecting

availability of its cofactor, NAD+ [41,42].

We previously identified Tdh3 in a screen for possible regulators

or substrates of Sir2 [12]. Here we report that strains lacking Tdh3

have defects in telomere position effect and rDNA silencing. We

also found that Tdh3 physically interacts with Sir2, and specifically

binds to both telomeres and rDNA sequences in a Sir2-dependent

manner. Finally, Sir2’s association with telomeres was reduced in

strains lacking Tdh3. Taken together, these observations suggest

that Tdh3 acts directly at the sites of Sir2 action to influence

silencing. Our experiments suggest that Tdh3 promotes silencing

in yeast cells independently of its role in glycolysis. First, Tdh3’s

silencing activity was decreased by the addition of sequences that

promoted its export from the nucleus. Thus, unlike its function in

glycolysis, Tdh3’s role in silencing likely occurs in the nucleus.

Second, our analysis of a small set of Tdh3 mutants indicated that

its ability to promote silencing did not correlate with catalytic

activity. Given its association with Sir2 at its chromatin targets,

Tdh3 may affect silencing directly by influencing Sir2’s catalytic

activity or its interaction with other silencing factors. Since Tdh3 is

an NAD+-binding protein that reduces NAD+ to NADH during

glycolysis, we also investigated this possible link to Sir2. While we

observed that overall NAD+ levels are unchanged in cells lacking

Tdh3, using an NAD+-sensitive reporter assay we found that Tdh3

is specifically required to maintain normal levels of NAD+ in the

nucleus. This result is consistent with the proposal that NAD+ is

non-uniformly distributed within the cell, in part due to

compartmentalization of enzymes responsible for NAD+ synthesis

or consumption [30]. For instance, the yeast Npt1 enzyme

involved in the NAD+ salvage pathway in yeast is preferentially

found in the nucleus [10,34].

Figure 6. Co-immunoprecipitation of Tdh3 and Sir2. A Tdh3-myc fusion protein was immunoprecipitated from yeast cell lysates. The panel on
the left shows a western blot probed with anti-myc antibody. Lanes include crude lysate and immunoprecipitated material (IP). Control lysates were
made from strains lacking the myc tag on Tdh3. The right panel shows a western blot of the same immunoprecipitated material, probed with an
antibody to Sir2. This antibody specifically recognizes Sir2 (Figure 1D).
doi:10.1371/journal.pgen.1003871.g006
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The effect of Tdh3 on nuclear NAD+ levels suggests that this

GAPDH protein may influence Sir2-dependent silencing by

affecting the level of NAD+ available to Sir2. The Km for

NAD+ in Sir2’s deacetylase reaction is approximately 30 mm [43]

while the concentration of NAD+ in yeast is between 1 and 2 mM

[11]. However, genetic alterations in NAD+ biosynthetic enzymes

that cause silencing defects do not reduce NAD+ concentrations

below 1 mM; this suggests that most of the NAD+ in the cell is not

freely available, and is likely protein bound [11,44]. Perhaps the

NAD+ bound to Tdh3, one of the most abundant proteins in the

cell, is specifically accessible to Sir2 within the nucleus. We

observed that both the Dtdh2 TDH3-NES and Dtdh2 TDH3-nes

Figure 7. Tdh3 is present at Sir2-silenced loci. (A) The association of a Tdh3-myc fusion protein at Sir2-silenced loci was measured using
chromatin immunoprecipitation, as described in Materials and Methods. Enrichment at two positions adjacent to telomere V (immediately adjacent
to telomere repeats and 1 kb from telomere repeats) and two positions within the rDNA locus (NTS1 and NTS2; see Figure 2A) were assessed.
Enrichment values were normalized to input DNA, and then expressed as a ratio to the normalized ACT1 enrichment. Supplementary Figure S2 shows
the same data expressed as % of input DNA precipitated. Addition of the myc tag to Tdh3 does not affect transcriptional silencing (Supplementary
Figure S2A). (B) The association of a Sir2-myc fusion protein at the rDNA repeats and telomeres was assessed in TDH3 and Dtdh3 strains.
doi:10.1371/journal.pgen.1003871.g007
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Figure 8. Tdh3 affects nuclear NAD+ levels in yeast. (A) TDH3 deletion or overexpression does not affect overall cellular NAD+ levels. Left panel:
relative NAD+ levels are shown for strains lacking the TDH3 or NPT1 genes, and their matched wild-type strains. Right panel: relative NAD+ levels are
shown in a strain overexpressing the TDH3 gene and in a vector control strain. (B) Tdh3 maintains nuclear NAD+ levels. Nuclear NAD+ was measured
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strains exhibited nuclear NAD deficits, as assessed by the NadR

reporter system, yet a silencing phenotype was specifically

observed in the TDH3-NES strain, in which Tdh3’s nuclear

localization is reduced. Thus, silencing may be sensitive to the

presence of NAD+-bound Tdh3 at silenced locations, rather than

overall nuclear NAD levels. Finally, we note that the C150G

amino acid substitution in Tdh3 that eliminates catalytic activity

and which is defective in silencing is also predicted to be deficient

in NAD+ binding [44,45].

Due to its role in regulating aging in yeast and in other

organisms, particularly for its proposed role in mediating the

effects of calorie restriction in the aging pathway, potential links

between metabolism and Sir2 function have been actively sought

[2,8,9,42]. The effects of calorie restriction (CR) on yeast lifespan

act through Sir2-dependent and Sir2 independent mechanisms

[45,46], and it is not clear if CR influences Sir2 activity by

modulating NAD+ levels [45,47,48,49]. We have found that Tdh3

has functions in basic cell metabolism and control of Sir2-induced

transcriptional silencing. Tdh3 thus exhibits the hallmarks of a

factor that could link cellular metabolism with Sir2-dependent

silencing.

Materials and Methods

Strains and plasmids
Strains used in this study are listed in Table 1. Genes were

eliminated by PCR-mediated gene deletion [50], using MX-series

plasmids as templates [51]. Epitope tags were fused to the 39 end

of targeted via PCR-mediated insertion using plasmid pYM5 as

template [52].

To introduce mutated alleles of the TDH3 gene a strain was

made in which TDH3 was replaced by the pCORE construct [53].

DNA fragments containing specific point mutations in TDH3 were

made by hybrid PCR [54] and used to transplace the pCORE

sequences. Alleles were confirmed by sequencing.

Nuclear export sequences were fused to the 39 end of TDH3 by

transforming a DNA fragment with 39 homology to the TDH3

ORF, the nuclear export sequence, and an hphMX4 sequence into

the appropriate yeast strain. Strains lacking both TDH3 and

specific NAD+ biosynthetic genes were generated by crossing

Dtdh3 strain YSH969 with selected strains from the yeast deletion

collection [55]; following sporulation haploid strains were identi-

fied by selecting for histidine auxotrophs [56].

Immunostaining and microscopy
Semisquash preparations were adapted from published proto-

cols [57,58] with minor modifications [59]. Immunostaining was

performed using a mouse monoclonal antibody against Nsp1p

(ab4641; Abcam) at a 1:100 dilution to mark the nuclear periphery

and Alexa Fluor 568–goat anti-mouse IgG (H+L) (A11004;

Molecular Probes) at a 1:200 dilution as the secondary antibody.

A chicken monoclonal antibody against GFP (ab13970; Abcam) at

a 1:100 dilution was used to recognize the Tdh3-nes-GFP or

Tdh3-NES-GFP fusion constructs and FITC conjugate from

Jackson Immuno Research at 1:200 dilution was used as the

secondary antibody. Nuclear to cytoplasmic ratio of GFP

fluorescence was determined using the arbitrary line tool of

Softworx software, in conjunction with the Deltavision RT

imaging system (Applied Precision) adapted to an Olympus

(IX70) microscope. Image stacks at 0.2-mm spacing were acquired

along the z axis. The line tool was used to generate GFP

fluorescence histogram profiles reflecting relative fluorescence

units of the nucleus as compared to the cytoplasm.

Chromatin immunoprecipitation
ChIP was performed as previously described [60]. Yeast cell

growth and chromatin preparation were performed as described

[61]. Prior to the addition of antibody for precipitation, 50 ml of

lysate was precleared with 7 ml of Protein A magnetic beads (New

England Biolabs) by incubating at 4uC for 30–60 minutes on a

Labquake tube rotator. The samples were applied to a magnet to

separate the beads from the supernatant; the supernatant was

transferred to a new eppendorf tube and 1 ml myc-epitope

antibody (9B11; Cell Signaling Technology) was added for an

overnight incubation at 4uC). 15 ml of Protein A magnetic beads

were added to precipitate the chromatin. Control (mock)

immunoprecipitations were conducted in an identical manner,

but without the addition of antibody.

Immunoprecipitated, control, and input DNAs were analyzed

by quantitative PCR analysis. Serial dilutions of the whole cell

lysate (from 1:5 to 1:1250) and immunoprecipitates (from 1:2 to

1:625) were used in a standard Taq PCR to determine a linear

range for the samples, using the following cycling parameters:

94uC for 4 min; 30 cycles of 94uC for 30 s, 50uC for 30 s, and

72uC for 1.5 min; and 72uC for 5 min. For control detection of

ACT1 DNA 25 cycles of PCR was used. Data was derived only

from amplifications performed within the linear range. Primers

flanking non-transcribed rDNA spacers NTS1 and NTS2 were

used to determine enrichment at the rDNA repeats; primers

located 1.0 kb and immediately adjacent to Tel V were used to

determine telomeric enrichment. Primer sequences are shown in

Supplementary Table S1.

PCR products were run on 5% native polyacrylamide gel

electrophoresis and stained with SYBR Gold (Invitrogen). Gels

were scanned on a Storm 860 phosphorimager and quantitated

using ImageQuant software (Molecular Dynamics, Inc.; Sunny-

vale, CA). A sequence within the ACT1 open reading frame was

used was an internal control in all experiments. Each reported

value represents the average of at least three independent ChIP

experiments. For the data shown in Figure 2 the signal from each

mock immunoprecipitation experiment was subtracted from the

value derived from the experimental immunoprecipitation; values

were then normalized to the signal observed from input DNA for

each individual experiment, and then expressed as a ratio to the

normalized ACT1 value from the same experiment. The data is

alternatively presented in Supplementary Figure S2 as the

percentage of input chromatin precipitated, in which the signal

observed from mock immunoprecipitations is reported separately.

Co-immunoprecipitation and western blotting
For western blots protein was isolated from yeast cells as

described [62]. 5 mg (for TDH3-myc probe) or 10 mg (for SIR2-

using an NAD+-sensitive transcriptional reporter gene [31]. Strains expressed the NAD+-dependent transcriptional activator from a LEU2-marked
plasmid. Control strains lacked the binding site for the transcriptional activator (no NAD box) or lacked the activator (no NadR-Gal4AD). Serial
dilutions of the listed strains were plated on the indicated media. Levels of the NadR-Gal4AD protein were similar in wild type and Dtdh3 cells
(Supplementary Figure S3). (C) Tdh3 and Npt1 have a redundant role in promoting cell growth. Doubling times of the indicated single and double
mutant strains is shown. (D) Silencing at the telomere in Dnpt1 Dtdh3 strains. Expression of the native telomere gene YFR057W, was examined by
quantitative RT-PCR in the indicated strains.
doi:10.1371/journal.pgen.1003871.g008
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myc probe) of protein was loaded onto a 5% resolving gel and

10% running gel. Protein was transferred to a nitrocellulose

membrane and primary antibody applied for one hour at room

temperature in 5% non-fat dry milk plus 0.1%Tween TBS

solution. Anti-c-Myc (clone 9E11 from Chemicon International)

was used at 1:250 dilution. Secondary antibody (goat anti-mouse

from Santa Cruz Biotechnology at 1:3000 dilution) was applied for

one hour at room temperature in the same solution. Detection was

performed using the ECL Western Blotting Reagents from

Amersham according to the manufacturer’s specifications. Chemi-

luminescence was measured on a Storm PhosphorImager using

the blue channel at 200 micron resolution.

For co-immunoprecipitation experiments a yeast extract was

made from cells as previously described [62]), except that the

triton X-100 was added to the lysis buffer to 1.5%. For

immunoprecipitations 40 to 100 ml of the 1:1 suspension of the

Table 1. Strains.

Strain Genotype Source

YSH503 (CCFY100) MATa W303-1A ade2-1 ura3-1 trp1-289 leu2-3,112 his3-11,15 can1-100 hmr
D E::TRP1 rDNA::ADE2-CAN1 TELVR::URA3

[17]

YSH529 YSH503; Dsir2::KAN [17]

YSH878 YSH503; Dtdh1::NAT

YSH879 YSH503; Dtdh2::NAT

YSH880 YSH503; Dtdh3::KAN

YSH387 (YLS404) MATA hmrDA::ADE2 ade2-1 can1-100 his3-11, 15 leu2-3, 112 trp1-1 ura3-1 GAL+hmrDA::ADE2 [71]

YSH1041 YSH503; tdh3-C150G

YSH1093 YSH503; tdh3-T227A

YSH1094 YSH503; tdh3-T227K

YSH615 (DMY480) MATa his3 D200 leu2 D1 ura3-167 RDN::Ty1-mURA3

YSH614 (DMY1097) YSH615; Dsir2::HIS3

YSH883 YSH615; Dtdh3::KAN

YSH882 YSH615; Dtdh3::NAT

YSH913 YSH883; Dsir2::NAT

YSH961 YSH474; TDH3-(3xMyc)-HIS3

YSH905 YSH474; TDH3-GFP(S65T)–HIS3MX [25]

YSH964 YSH503; Dtdh2::NAT TDH3-nes-HYG

YSH965 YSH503; Dtdh2::NAT TDH3-NES-HYG

YSH962 YSH503; TDH3-nes-HYG

YSH963 YSH503; TDH3-NES-HYG

YSH513 (YMM400) MATa trp1-901 leu2-3, 112 ura3-52 his3-200 gal4D gal80D LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ [69]

YSH514 (YMM401) MAT a trp1-901 leu2-3, 112 ura3-52 his3-200 gal4D gal80D LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ [69]

YSH625 trp1-901 leu2-3,112 ura3-52 his3-200 gal4D gal 80D LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ Dsir3::nat1
Dsir4::URA3 Dsir2::HYG

[72]

YSH474 (BY4741) MAT a his3D1 leu2D0 met15D0 ura3D0 Open
Biosystems

YSH961 YSH474; TDH3-(3xMyc)-HIS3

YSH974 YSH961; Dsir2::NAT

YSH621 his3D200 leu2D0 met15D0 trp1D63 ura3D0 SIR2-3Xmyc-HIS3 MX

YSH984 YSH621; Dtdh3::HYG

YSH506 (JS237) MATa his3D200 leu2D1 met15D0 trp1D63 ura3-167 RDN1::Ty1-MET15 [6]

YSH507 (JS596) MAT a his3D300 leu2D1 met15D0 trp1D63 ura3D167 RDN1::Ty1-MET15 npt1::kanMX [35]

YSH695 YSH474; Dtdh3::KAN

YSH896 (NS464) leu2 his3 (46Nad boxes)-HIS3 [31]

YSH897 leu2 his3 (46mutated Nad boxes)-HIS3 [31]

YSH898 YSH896; Dbna6 [31]

YSH901 YSH896; Dsir2::NAT

YSH902 YSH896; Dtdh1::NAT

YSH903 YSH896; Dtdh2::NAT

YSH904 YSH896; Dtdh3::KAN

doi:10.1371/journal.pgen.1003871.t001
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anti-Myc agarose conjugate (Sigma) was added to a microcen-

trifuge tube. The resin was allowed to settle by a short microfuge

spin. Liquid was discarded and washed 5 times with 1 ml ice cold

PBS. Yeast cell lysate was added to the settled resin. Volume was

brought to at least 200 ml (60–80 mg total protein). Tubes were

incubated overnight on an orbital shaker at 4uC. The resin was

washed 4 times with 1 ml of PBS. After the final wash, the

supernatant was aspirated and ,10 ml was left above the beads. 20

to 50 ml of 26SDS sample buffer was added to the tube. The tube

was incubated for 10 minutes at 92uC with frequent agitation,

vortexed, and then centrifuged for 5 seconds. Carefully avoiding

the agarose, the supernatant was transferred to a new tube and

boiled for 5 minutes. Protein concentration was determined by

Bradford assay; 20–40 mg was loaded into an SDS-PAGE gel and

ran at 110 volts for 1.5 hours. Detection of the c-Myc-tagged

fusion protein was determined by immunoblotting, using mono-

clonal anti-c-Myc for cell lysate and IP at the recommended

concentration. For detection of Sir2 bound to myc tagged protein,

Santa Cruz sc 2020 Sir2 antibody was used at a concentration of

1:20. Blots were scanned using a SynGene apparatus.

GAPDH activity assay
Assays for GAPDH activity were performed as previously

described [63] with the modifications described by Ralser et al.

[64].

Cell fractionation
Cell fractionation was carried out as described [65]; western

blotting of cell fractions was performed using antibodies to GFP

(Abcam ab13970) and histone H3 (Abcam ab17911).

mRNA measurements
RNA was extracted using the hot acidic phenol extraction

method (Ausubel et al 1993). DNAse treatment was carried out

using Ambion’s RNAse-free DNAse I and reaction buffer for

degrading DNA (Catalog #1906). 1 mg of RNA was used in a total

of 16 ml of DEPC deionized water in a microcentrifuge tube. The

sample was heated for 3 minutes at 95uC and then placed on ice

for 3–5 minutes. 2 ml of 106 DNAse I buffer and 2 ml DNAse I

was added and the tubes incubated at 37uC for one hour. To

remove the DNAse and divalent cations that can catalyze heat-

mediated degradation of RNA, 5 ml of DNAse inactivation reagent

was added to the tubes and the samples were mixed well. The

tubes were incubated at room temperature for two minutes during

which the tubes were flicked once to re-disperse the slurry. The

tubes were then microcentrifuged at room temperature for two

minutes to pellet the DNAse inactivation reagent. The DNAse

treated RNA was transferred to a new tube and stored at 220uC.

cDNA synthesis was carried out using Ambion’s Retroscript kit

(Catalog #1710). To prepare cDNA from RNA, 5 ml of the

DNAse treated RNA was transferred to a new microcentrifuge

tube. 1 ml of oligo(dT) primer (50 mM) was added to each tube and

the samples then incubated at 85uC for 3 minutes. The tubes were

then placed on ice for 3 minutes and microcentrifuged briefly at

4uC. 1 ml of RT buffer, 2 ml of dNTP mix, 0.5 ml reverse

transcriptase and 0.5 ml RNAse inhibitor were added to each tube.

After vortexing the tubes well, the tubes were then incubated for

60–90 minutes at 42uC and then heated at 92uC for 10 minutes.

The cDNA was then spun down in a microcentrifuge at 4uC to

collect the condensate. 0.6 ml was used for PCR; cycling conditions

were 94uC for 4 minutes and then 25 cycles (for ACT1) or 35

cycles (YFR057W) of 94uC for 30 seconds, 50uC for 30 seconds

and 72uC for 90 seconds, followed by a final cycle for 72u for

5 minutes. Primer sequences are shown in Supplementary Figure

S1; primer sequences useful for detecting YFR057W were

previously described [66].

Supporting Information

Figure S1 Tdh3-NES-GFP nuclear levels are reduced in cells

lacking Tdh2. (A) Immunofluorescence microscopy was performed

on cells expressing Tdh3-NES-GFP or Tdh3-nes-GFP. The ratio

of nuclear to cytoplasmic Tdh3 is indicated; at least 40 cells were

assessed for each strain. (B) Addition of a GFP epitope tag to the

C-terminus of Tdh3 does not influence telomeric silencing

phenotypes. The experiment shown in Figure 4B was repeated

using GFP tagged strains. Serial dilutions of strains bearing a

URA3 reporter gene adjacent to a telomere were made on

complete medium (SDC), and on media containing 5-FOA, which

counterselects for URA3 expression. (C) Addition of NES

sequences to Tdh3 does not significantly alter Sir2’s nuclear to

cytoplasmic ratio. The extracts used for the experiment shown in

Figure 4C were probed with an antibody to Sir2. The ratio of

nuclear to cytoplasmic Tdh3 is indicated, based on the signal from

Sir2 immunoblots. A representative blot is shown.

(PDF)

Figure S2 Tdh3 binds to telomeres and rDNA in a Sir2-

dependent manner. (A) Cells expressing Tdh3-myc exhibit normal

silencing. Expression of the native telomere-proximal gene

YFR057W was examined by quantitative RT-PCR in matched

strains expressing endogenous Tdh3 or Tdh3-myc. A strain

lacking Sir2 was used as an unsilenced control. (B) The chromatin

immunoprecipitation data presented in Figure 7 is shown,

indicating the % of input DNA that was recovered for each locus.

‘‘IP’’ refers to the signal achieved in ChIP experiments performed

with an antibody to the myc tag; ‘‘mock’’ indicates the signal seen

in control immunoprecipitations with no antibody. Tdh3-myc

association at two positions adjacent to telomere V and two

positions within the rDNA repeats (NTS1 and NTS2) were

assessed in SIR2 and Dsir2 strains. Enrichment of a sequence

within the ACT1 open reading frame was used as a negative

control. (C) The association of a Sir2-myc fusion protein at the

rDNA repeats, telomere VR, and the ACT1 gene was assessed in

TDH3 and Dtdh3 strains. (D) Representative experiments con-

ducted to generate the data shown in Figures 7, S2B, and S2C are

shown. Strains queried are listed on the left. Gels depict the signal

after PCR from input chromatin, chromatin immunoprecipitated

with an antibody to the myc tag (‘‘+AB’’) and from mock

immunoprecipitations in which no antibody was used (‘‘2AB’’).

(E) Representative control experiments to ensure linearity of the

qPCR used for ChIP experiments are shown. PCR was performed

as described in Materials and Methods using primers to the

indicated loci. PCR was conducted on a dilution series of input

chromatin DNA; a range of the dilution series is labeled in each

panel.

(PDF)

Figure S3 Tdh3 does not influence levels of NadR-AD. To

determine relative levels of the NadR-Gal4AD fusion protein,

western blots were performed using an antibody to the Gal4

activation domain on cell lysates from wild type and Dtdh3 strains.

Protein from a strain that does not express NadR-Gal4AD was

loaded in the ‘‘vector’’ lane. Tubulin was detected in the same

protein samples to provide a loading control.

(PDF)

Figure S4 Addition of NES or nes sequences to Tdh3 in

strains lacking Tdh2 results in a decrease of nuclear NAD+
levels. The nuclear NAD+ assay described for the experiment
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shown in Figure 8B was performed on the indicated strains.

NES denotes a functional nuclear export sequence; nes denotes

a non-functional sequence that differs by two amino acid

substitutions [27]. Nuclear NAD+ was measured using an

NAD+-sensitive transcriptional reporter gene [31]. Strains

expressed the NAD+-dependent transcriptional activator from

a LEU2-marked plasmid. Control strains lacked the activator

(no NadR-Gal4AD). Serial dilutions of the listed strains were

plated on the indicated media. The observation that the Dtdh2

TDH3-nes strain manifests a stronger phenotype in this assay

than the comparable Dtdh2 TDH3 strain suggests that the nes

sequences affect Tdh3 function or location, perhaps in a manner

that is sensitized by the absence of Tdh2.

(PDF)

Table S1 Sequences of primers used for mRNA measurements

and chromatin immunoprecipitations are shown in Supplementa-

ry Table 1.

(PDF)
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