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INTRODUCTION AND REVIEW OF THE LITERATURE 

 Cochlear implants (CIs) deliver sound to the auditory nerve through electrical 

stimulation.  Sounds occurring in the CI user’s environment are processed in the external speech 

processor, which is programmed for each individual user (Wilson & Dorman, 2009).  Once the 

sound is processed through the programmed settings, the stimulus is sent to the internal 

receiver/stimulator that resides under the temporalis muscle via a transcutaneous coil.  The 

receiver/stimulator obtains the stimulus from the coil, decodes it, and then produces the current 

that is sent down the internal electrical array, which resides in the cochlea.  At this point, the 

stimulus is delivered as electrical current to the auditory nerve through the electrodes of the 

internal array (Wilson & Dorman, 2009). 

 CIs have been shown to improve users’ speech recognition over traditional amplification 

for adults and children with severe to profound sensorineural hearing loss (Skinner, Holden, 

Holden, Demorest, Fourakis, 1997; Fetterman & Domico, 2002; Firszt et al., 2004; Spahr & 

Dorman, 2004).  Despite these improvements, understanding speech, particularly at lower 

intensities and/or in the presence of background noise, is still difficult for CI users (Fetterman & 

Domico, 2002; Nelson, Jin, Carney, & Nelson, 2003; Firszt et al., 2004; Spahr & Dorman, 2004).  

The audiologist can apply a variety of programming options in an effort to enhance a CI user’s 

speech recognition in challenging situations.  

 When programming a CI, goals include providing audibility of speech sounds, providing 

comfort for louder sounds, optimizing clarity and quality of sound, and optimizing performance 

in challenging listening environments.  The programming, or mapping, of a Cochlear 

Corporation device allows the audiologist to determine the level of current that will be delivered 

to each electrode for soft and loud inputs (threshold levels, comfort levels, and gains) to optimize 
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audibility and comfort.  Other programming parameters can be manipulated to optimize overall 

clarity and quality such as ensuring a useable electrical dynamic range at each electrode and 

setting the number of maxima and rate of stimulation.  The Cochlear Corporation device also 

offers pre-processing strategies that allow the audiologist to customize a program in an effort to 

improve performance in challenging listening environments.  These pre-processing strategies 

include Automatic Dynamic Range Optimization (ADRO), Autosensitivity Control (ASC), 

Whisper, Beam, and Zoom, which apply various types and combinations of microphone gain, 

sensitivity control, and noise reduction.  ADRO maintains speech input for soft and moderate 

intensities within the upper 50% of the CI user’s electrical dynamic range utilizing statistical 

rules, in an attempt to highlight the speech signal by keeping it audible for the user (James et al., 

2002).  ASC attempts to improve comfort and speech recognition in the presence of background 

noise by automatically adjusting the microphone sensitivity in an effort to capture less of the 

environmental noise and more of the speech, assuming the person the CI user wants to hear is 

nearby (Cochlear Limited, 2010).  Whisper attempts to capture softer inputs by increasing the 

input dynamic range (IDR) from 40 to 50 decibels (dB) bringing in more soft sounds (Cochlear 

Limited, 2002).  Beam and Zoom attempt to increase speech intelligibility in background noise 

by applying microphone polar plots and noise cancellation algorithms.  Beam utilizes adaptive 

polar plots in response to the location of the highest intensity noise detected (Cochlear Limited, 

2010).  Zoom utilizes a fixed hypercardiod polar plot with maximum detection at 0 degrees (°) 

azimuth (Cochlear Limited, 2010).  Although several pre-processing strategies exist and can be 

used in combination, the current recommended default setting for pediatrics’ everyday listening 

include ASC+ADRO in unison (Wolfe, Schafer, John, & Hudson, 2011b; Gifford, Olund, & 

DeJong, 2011). 
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Automatic Dynamic Range Optimization (ADRO) 

 ADRO was developed to place the sound stimulus optimally into the user’s electrical 

dynamic range, the electrical current range existing between the user’s measured threshold levels 

(Ts) and comfort levels (Cs) (Dawson, Decker, & Psarros, 2004).  This is accomplished by 

utilizing four statistical rules: the comfort, audibility, hearing protection, and background noise 

rules.  These rules assess incoming stimuli based on overall input level, competing noise level, 

and the most intense input level (Wolfe, Hudson, John, & Schafer, 2011a).  The comfort rule 

applies if the channel output exceeds the C level greater than 10% of the time (Blamey, 2005).  

When this occurs, the gain is reduced in that channel to place the stimulus at a comfortable 

intensity within the dynamic range. The audibility rule is applied if the channel output is below 

the T level greater than 30% of the time.  When this occurs, the gain is increased in that channel 

to place the stimulus within the dynamic range.  The hearing protection rule limits output and is 

active to ensure that the maximum output of a channel is never surpassed.  The background noise 

rule reduces the level of background noise by capping the maximum allowable gain in a 

processing channel.  By utilizing these four rules, ADRO keeps the stimulus output within 

optimal limits on a channel-by-channel basis (Blamey, 2005).  When the incoming signal 

stimulus does not fall into the CI user’s dynamic range naturally, it is processed with ADRO to 

allow for comfort and audibility of soft and medium inputs while providing comfort and clear 

speech intelligibility of louder sound stimuli (James et al., 2002; Dawson et al., 2004; Blamey, 

Martin, & Fiket, 2004; Blamey, 2005).  ADRO has been documented to improve sound quality 

in quiet conditions, without degrading speech perception in noise (Dawson et al., 2004; James et 

al., 2002). 
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Autosensitivity Control (ASC) 

ASC adjusts microphone sensitivity prior to the stimulus being processed.  The input 

noise level and the signal-to-noise ratio (SNR) are assessed and used to automatically manipulate 

the speech processor’s microphone sensitivity (Cochlear Limited, 2010; Gifford et al., 2011).  

The sensitivity determines the amount of sound in the environment that the microphone will 

amplify and deliver to the CI user.  If the sensitivity is increased, the microphones will detect 

softer sound levels in the environment, allowing the user to hear things that are farther away.  If 

the sensitivity is decreased, the microphones will detect only louder sound levels in the 

environment, therefore capturing sounds that are closer to the user.  For example, when the 

sensitivity is increased, a CI user can hear a speaker who is far away in a quiet conference room.  

Inversely, when the sensitivity is decreased, a CI user hears only the desired speech of a close 

conversational partner in a noisy environment.  

Increasing or decreasing sensitivity will increase or decrease the automatic gain control 

(AGC) kneepoint, the input level above which compression occurs.  Without pre-processing, the 

microphones pick up acoustic sound and amplify the sound in a linear manner until it reaches 65 

dB Sound Pressure Level (SPL) (Dillon, 2001; Gifford et al., 2011).  At this intensity, the sound 

is compressed (i.e. amplification becomes non-linear) to allow louder sounds to be mapped in the 

CI user’s dynamic range without being amplified to an uncomfortable listening level.  The 

sensitivity and AGC kneepoint are inversely related (Patrick, Bugsby, & Gibson, 2006).  If the 

microphone sensitivity is decreased, the AGC kneepoint is increased.  This results in allowing a 

greater amount of the sound stimulus to be amplified linearly.  If the microphone sensitivity is 

increased, the AGC kneepoint is decreased.  This results in greater gain of soft sounds, therefore 

more access to sound (Patrick et al., 2006).   
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 Unlike ADRO, which adjusts the output on a channel-by-channel basis, ASC affects the 

entire frequency range captured by the microphones.  Therefore, ASC is expected to augment the 

incoming stimulus more so than other pre-processing strategies (Gifford et al., 2011).  As stated 

previously, without ASC turned on, Cochlear Corporation’s default programming infinitely 

compresses any incoming stimuli that exceeds 65 dB SPL.  When considering a speech signal: if 

peaks of the signal surpass 65 dB SPL, they will be compressed an unlimited amount which can 

cause distortion and lead to poor speech recognition (Gifford et al., 2011).  When ASC is 

enabled, sensitivity of the external speech processor microphones are automatically decreased 

when the background noise surpasses 57 dB SPL (the manufacturer default).  This allows the 

spectral peaks of speech to “exceed the long-term average speech spectrum by 15 dB SPL” 

before they are affected by infinite compression (Custom Sound 3.0 manual; Cochlear Limited, 

2009).  The purpose of ASC is to allow the desirable speech signal to be captured while avoiding 

infinite compression in the presence of moderate to loud background noise (Wolfe et al., 2009).  

In quiet conditions ASC is inactive (Wolfe et al., 2011a). 

 

Utilizing Pre-Processing Strategies  

Cochlear Corporation’s software allows the CI to be programmed to employ pre-

processing strategies individually or in combination with one another.  The default setting for 

pediatrics’ everyday programs activate both ASC+ADRO pre-processing strategies.  ASC works 

to improve speech intelligibility and comfort in background noise and ADRO works to position 

soft and moderate speech levels into a CI user’s audible range.  Previous research has stated that 

using this specific combination of pre-processing strategies when programming children's CI 
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processors has yielded the best speech perception abilities in various listening situations (Wolfe 

et al., 2011b; Gifford et al., 2011). 

 Wolfe et al. (2011b) examined the use of ADRO only and ASC+ADRO as pre-

processing strategies in 11 preschool to school-aged children.  Participants ranged in age from 

4.4 to 12.0 years.  All of the participants were using the Freedom or CP810 external speech 

processor either bilaterally or unilaterally.  Participants were administered the Phonetically-

Balanced for Kindergarten (PBK-50) monosyllabic word tests at 60 dB A-weighting (A) in quiet 

and the Bamford-Kowal-Bench Speech in Noise Test (BKB-SIN) list pairs at 75 dB SPL using 

two different pre-processing conditions:  ADRO and ASC+ADRO.  Wolfe et al. (2011b) found 

that participants performed significantly better in noise in the ASC+ADRO condition than the 

ADRO alone condition.  Also, in the quiet condition, ASC+ADRO yielded scores above 90% for 

all of the participants indicating excellent speech recognition with this pre-processing 

combination. 

 Similarly, Gifford et al. (2011) performed a study to examine speech perception in noise 

using ADRO and ASC+ADRO.  This study had twenty-two participants ranging in age from 5.6 

to 16.8 years who used Freedom or CP810 external speech processors.  Participants completed 

the Hearing in Noise Test (HINT) sentences in the R-SPACE with noise at 72 dBA, HINT 

sentences in quiet, and the Consonant-Nucleus-Consonant (CNC) or the Lexical Neighborhood 

Test (LNT) at 60 dBA.  The results of this study showed that participants achieved significantly 

better speech recognition thresholds when using ASC+ADRO versus ADRO alone (Gifford et 

al., 2011). 

 Based on these results, ASC+ADRO is the recommended setting and default for the 

everyday program in children’s speech processors (Wolfe et al., 2011b).  However, these 
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recommendations were based on studies that did not include information about how the 

participants’ processors were mapped for T and C levels, in addition to audibility in the 

soundfield.  It is possible that different mapping protocols (such as setting Ts at higher levels) 

could affect the benefit of pre-processing strategies for individual CI users.  

Results of a recent study in adults conducted at Washington University in St. Louis, 

where mapping techniques were cited in the article, provided a differing recommendation for the 

application of pre-processing strategies.  Brockmeyer & Potts’s (2011) study tested 30 adults 

ranging in age from 25 to 82 years.  All participants were tested with the Adaptive HINT 

sentences in the R-SPACE using the Freedom speech processor in four pre-processing 

conditions: no pre-processing active, ADRO, ASC, and Beam.  Testing was conducted with an 

adaptive presentation level and a constant noise level of 60 and 70 dB SPL.  The study found that 

the ASC condition resulted in the best speech recognition in the presence of loud, 70 dB SPL, 

background noise.  Participants performed best with Beam in the moderate noise condition, at 60 

dB SPL. However, no statistical difference was observed between Beam and ASC in the 

moderate noise condition.  The authors suggest that ASC should be used when the CI user is in 

loud or moderate background noise to allow for the greatest speech understanding and that Beam 

can be beneficial in moderate noise levels (Brockmeyer & Potts, 2011).  Beam is not a typically 

recommended pre-processing strategy for children since it affects the microphone polar plot and 

creates nulls around the CI user where sound is not amplified.  Due to constant opportunities for 

incidental language learning in the environment, children are typically set to have the 

microphones of their external speech processors programmed to pick up sound in a 360° polar 

plot. 
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Kolb (2011) completed a follow up study to Brockmeyer & Potts (2011), which 

examined the effectiveness of pre-processing strategies in the R-SPACE for 32 adult CI users 

ranging in age from 36 to 92 years.  In this study a CP810 processor was used for all testing.  

HINT sentences were presented to the participants with an adaptive presentation level in the 

presence of a constant noise level of 70 dB SPL for eight different pre-processing conditions: 

Beam only, Beam+ASC, Beam+ADRO, Beam+ASC+ADRO, Zoom only, Zoom+ASC, 

Zoom+ADRO, and Zoom+ASC+ADRO.  The Zoom+ASC condition yielded the lowest (best) 

Reception Threshold for Sentences (RTS) while the Zoom only condition yielded the highest 

RTS (worst).  Also, ADRO was shown to significantly increase RTS (indicating poorer 

performance) when it was added to another pre-processing condition.  Kolb (2011) suggests that 

ADRO may be detrimental for the participants in the study due to the mapping protocol used 

(Skinner, 2003).  For the participants in this study, T levels were set at either 100% detection or 

above, allowing for access to more soft sounds.  The C levels were set at a “loud but 

comfortable” perceptual level for each participant.  With these higher T levels, it may be 

expected that soft sounds are perceived as medium soft to medium as opposed to very soft to 

soft, and the electrical dynamic range is narrower.  The electrical dynamic range for these 

participants was carefully measured with possibly higher T levels than those used in other 

studies.  Since ADRO works to optimally place the input sound within the upper portion of the 

electrical dynamic range, it may have made detrimental adjustments by introducing more 

compression to the sound based on the four statistical rules that it follows (Kolb, 2011). 

The purpose of the present study was to compare pediatric speech perception 

performance across various pre-processing strategies (no pre-processing active, ADRO, ASC, or 

ASC+ADRO).  The population in this study had standardized programming techniques similar to 
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those used in the Brockmeyer & Potts (2011) and Kolb (2011) articles.  These techniques include 

behavioral programming to set counted Ts at 100% accuracy and scaled Cs set to a loud but 

comfortable level, along with using loudness balancing.  When the maximum output (C levels) 

of the electrodes in the array are perceived to be equally loud, speech perception and production 

are believed to benefit (Shapiro, 2006).  After these mapping procedures were applied, aided 

soundfield thresholds were measured and electrical T levels were increased as needed until the 

detection of frequency modulated (FM) tones were optimized between 20 to 30 dB Hearing 

Level (HL) from 250-6000 Hertz (Hz), often leading to T levels that were increased above the 

counted levels, closer to a perception of a medium loudness.  Firszt et al. (2004) found that aided 

thresholds less than 30 dB HL led to better speech recognition.   

 

METHODS 

Design  

This was a prospective, cross-sectional, observational study.  All participants performed 

several speech perception tasks in different pre-processing conditions: no pre-processing, 

ADRO, ASC, ASC+ADRO.  This research had approval from the Human Research Protection 

Office at Washington University School of Medicine (#201210075). 

 

Participants  

Eleven pediatric cochlear implant participants ranging in age from 8.08 to 17.33 years 

(mean 12.62 years, SD 3.40) were recruited for the study.  Participants included five females and 

six males.  Six participants used a CI on both ears (bilateral), one used a CI on only one ear 

(unilateral), and four participants used a CI on one ear and a hearing aid on the opposite ear 
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(bimodal).  For those with bilateral CIs, testing was completed wearing both processors. The 

participant with a unilateral CI had no hearing at the opposite ear and was tested with the CI 

alone.  The bimodal users were tested with only the CI processor on, using a plug and muff at the 

non-implanted ear.  Demographic information is specified in Table 1.    

Each participant used a Cochlear Corporation CI24R, CI24RE, CI512, or CI422 internal 

system with either a Freedom or CP810 external speech processor for daily use.  Seven of the 

participants used a Freedom external speech processor and four participants used a CP810 

external speech processor.  Of the 11 participants, two were using no pre-processing in his or her 

everyday program, six were using ADRO, and three were using ASC+ADRO.  The age at 

implantation of the participants’ first CI ranged from 1.25 to 8.33 years (mean 4.37 years, SD 

2.06).  This average age reflects the fact that several participants were implanted after 2 years of 

age due to progressive hearing losses.  At the time of testing, the participants had a range of 2 to 

12.5 years (mean 8.18 years, SD 3.12) of implant use.  Information about CI use is reported in 

Table 2.   

Participants were recruited from the clinical population at St. Louis Children’s Hospital 

(SLCH).  Only CI users who were able to clinically score at least 50% on a CNC word list at an 

average intensity level (60 dB SPL) in quiet were recruited.  Letters were mailed to participants’ 

families followed by a phone call to participants’ guardians.  If the guardian and child were 

interested, a test session was scheduled. Participants’ guardians signed informed consent 

documents and each participant received a token amount of remuneration for participation. 

All participants had their CI processor(s) mapped within 6 months of the research testing 

by the managing SLCH clinician using a specific protocol.  Ts are obtained using a process 

called “counted Ts” where the CI user was instructed to count the number of soft beeps he or she 
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heard through the CI programming software (Skinner, 2003).  A tone stimulus was presented at 

very soft levels using a modified Hughson-Westlake approach (Carhart & Jerger, 1959).  T levels 

were set at the softest presentation level the CI user could consistently identify the correct 

number of presented beeps with 100% accuracy (Shapiro, 2006).  Cs were obtained using a 

process called “loudness scaling”, where the CI user was instructed to identify how loud a 

stimulus was when presented through the computer using at least a five point scale:  first hearing, 

soft, medium, loud but comfortable, too loud.  C levels were set at “loud but comfortable”.  

Loudness balancing was also performed.  This was completed to ensure that adjacent electrode C 

levels were perceived to be equally loud.  Following mapping, aided soundfield threshold testing 

was conducted in a soundtreated booth.  Typically, Ts set at counted yield aided soundfield 

thresholds between 20 and 30 dB HL (Skinner, Binzer, Potts, Holden, & Aaron, 2002).  If aided 

thresholds are greater than 30 dB HL the electrical T levels are increased above the counted level 

to allow access to softer sounds.  This technique has been found to improve audibility of both 

soft and average speech levels (Skinner et al., 2002). 

 

Equipment/Test Environment  

During testing, all participants were tested with consignment CP810 external speech 

processors.  The processors were preprogrammed with each participant’s current, optimized 

everyday map.  For the seven participants that used a Freedom speech processor, his or her map 

was converted to an equivalent CP810 map before being downloaded to the speech processor. 

Four programs, with the same map, were set in the processor for each participant with different 

pre-processing strategies applied: no pre-processing, ADRO, ASC, and ASC+ADRO in 
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programs one through four, respectively.  All participants used the speech processor with volume 

set at 10 and sensitivity set at 12.  

Testing for this study was performed at the Washington University School of Medicine 

Department of Otolaryngology.  The participants completed testing in one, three-hour session. 

All testing was performed in a double-walled soundtreated booth (8’3” x 8’11”).  Aided 

soundfield testing and word recognition in quiet were obtained with the participant facing the 

loudspeaker at 0° azimuth while sitting approximately one meter away.  Testing in noise was 

conducted in the R-SPACE, a specific setup where eight speakers are positioned 360° around the 

participant (Revit, Schulein, & Julstrom, 2002; Revit, Killion, & Compton-Conley, 2007).  The 

eight speakers are set apart by 45°, with a speaker set at 0, 45, 90, 135, 180, 225, 270, and 315°.  

The participant is seated and centered in the middle, with each speaker 24 inches away 

(Compton-Conley, Neuman, Killion, & Levitt, 2004).  See Figure 1 for a schematic of the 

configuration.  With this setup, a real-world recording of background noise (R-SPACE) from a 

neighborhood restaurant is presented out of the speaker array with the stimulus presented from 

the speaker 0° azimuth to the participant, which creates a realistic noisy listening environment 

(Compton-Conley et al., 2004). 

A Dell personal computer with a sound card, power amplifier, and Urei 809 loudspeaker 

was used for soundfield thresholds and CNC testing.  To present FM tones for the aided 

soundfield thresholds, a custom designed mixing and amplifying network was used.  To present 

CNC word lists, recorded stimuli were presented at 50 and 70 dB SPL while the participant was 

seated 0° azimuth to the loudspeaker. 

An Apple iMac 17 personal computer using a MAC OS X operating system was used to 

run the R-SPACE.  Professional audio mixing software (MOTU Digital Performer 5) and an 
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audio interface (MOTU 828mkII, 96 kHz firewire interface) was used to execute the R-SPACE.  

The audio output was sent to four amplifiers (ART SLA-1, two-channel stereo linear power amp 

with 100 W per channel) then onto eight loudspeakers (Boston Acoustic CR67) positioned in a 

circular array around the participant. 

 

Test Stimuli 

FM tones at 250, 500, 750, 1000, 2000, 3000, 4000, and 6000 Hz were used for aided 

soundfield testing.  The CNC word lists (Peterson & Lehiste, 1962) were used for testing word 

recognition in quiet.  These lists are comprised of 50 monosyllabic words recorded by a male 

talker.  The HINT sentences are comprised of sets of two phonetically balanced lists with 10 

sentences each, presented by a recorded male talker (Nilsson, Soli, & Sullivan, 1994).  These 

sentences were used for testing in noise. 

 

Test Procedures 

Aided thresholds were obtained utilizing a modified Hughson-Westlake procedure with a 

+4/-2 dB step size (Carhart & Jerger, 1959) for each participant in the CI alone condition with no 

pre-processing active using conventional audiometry.  For bilateral participants, each CI was 

tested individually to ensure optimal aided threshold levels for each CI.  After ear specific aided 

thresholds were obtained, bilateral CI participants were tested wearing both CIs together for the 

remainder of the test conditions.  For bimodal participants, the hearing aid was removed and the 

unaided ear was plugged and muffed throughout all testing, including aided soundfield 

thresholds.  Although bimodal participants were not tested in their optimal device configuration; 

the CI alone was tested in order for results to reflect pre-processing effects without introducing 
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complex interactions with hearing aid noise reduction algorithms.  See Figure 2 for mean aided 

threshold results.  Participants’ thresholds fell between 6 and 32 dB HL.  Within the group there 

was only one threshold (at 6000 Hz) that was higher than 30 dB HL.  Programming 

manipulations for this individual had previously been attempted to improve this particular 

threshold without success.  Therefore, no programming changes were necessary for any 

participant after thresholds were obtained for the study.   

The CNC monosyllabic word list recordings were presented in quiet at a soft level of 50 

dB SPL and loud level of 70 dB SPL in each of the four conditions: no pre-processing active, 

ADRO, ASC, and ASC+ADRO.  One word list was randomly selected for each presentation 

level and presented for each pre-processing condition, which were also randomly ordered.  CNCs 

were scored as percent words correct.    

The Adaptive HINT sentences were presented in the R-SPACE from the speaker 0° 

azimuth to the participant and the real-world restaurant noise was presented through all seven 

speakers at each constant noise level, 60 and 70 dB SPL (Gifford & Revit, 2010).  Two 

randomized lists were used per test condition and each randomly ordered pre-processing strategy 

was tested at each presentation level.  The presentation level of the HINT sentences adapted as 

the test proceeded (i.e. a correct response caused the following sentence stimuli to get softer; an 

incorrect response caused the following sentence stimuli to get louder).  For the 70 dB SPL 

conditions the noise remained constant at 70 dB SPL and the first sentence was presented at +14 

dB and the next three sentences presented were adjusted in +/- 4 dB steps for acclimatization 

purposes.  The following 16 sentences were adjusted in +/- 2 dB step sizes.  This same method 

was used for the 60 dB SPL conditions, but the initial SNR was +16 dB.  The level at which the 

participant can correctly repeat the sentence back in its entirety is used to establish his or her 
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score as a SNR which indicates the difference between the intensity level of the sentences 

compared to the noise (a lower score would be better as the child could perceive the sentences 

with more noise present).  In total, each participant completed 16 test conditions.  See Table 3 for 

protocol information. 

 

Data Analysis  

When comparing each pre-processing strategy for the average group data, a repeated-

measures analysis of variance (ANOVA) was used.  If the data violates the assumption of 

sphericity, Greenhouse-Geisser values are reported.  After significance was determined, a post-

hoc analysis using the Bonferroni correction was performed to see which conditions were 

different.  The effects of possible demographic variables that are known to affect outcome 

measures in children with CIs were examined using correlational analyses. 

For each individual participant, scores obtained with each pre-processing strategy were 

compared to the baseline condition of no preprocessing on each measure.  In order to evaluate 

significant differences in an individual’s scores between conditions for the CNC scores, the 

critical difference tables published by Carney and Schlauch were used (Carney & Schlauch, 

2007).  The critical differences are the 95% confidence around the mean percent correct score for 

the baseline condition for a given list length, based on the binomial distribution.  For HINT 

sentence SNR scores in the R-SPACE, a 95% confidence interval was used to identify a critical 

difference of 1.4 dB as significant (Compton-Conley et al., 2004). 
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RESULTS 

CNC Words 

Figure 3 displays results of the CNC words presented at 50 dB SPL in quiet.  For the 

average group data of the CNC words presented at 50 dB SPL, results from the ANOVA 

revealed a significant effect for pre-processing condition [F(1.5,15.4) = 11.47, p<.01]. 

ASC+ADRO had the highest (best) average percentage correct (71.5%) followed by ADRO 

(66.5%) then no pre-processing (60.4%).  ASC had the lowest (worst) average score (59.6%).  

Bonferroni post-hoc comparisons revealed that scores for ASC+ADRO were significantly better 

than all other conditions (p<.05).  ASC resulted in significantly worse scores than ADRO or 

ASC+ADRO (p≤.001).  Individual participant data was analyzed based on the binomial model.  

Two participants performed significantly better with ASC+ADRO than no pre-processing; 

participant 5 (P5) performed significantly better with ASC+ADRO when compared to no pre-

processing (70% compared to 48%, respectively), and participant 7 (P7) performed significantly 

better with ADRO (68%) and ASC+ADRO (72%) than with no pre-processing (44%).  Nine 

participants did not show a significant advantage for one pre-processing condition over another.   

Figure 4 displays results of the CNC words presented at 70 dB SPL in quiet.  For the 

average group data of the CNC words presented at 70 dB SPL, the overall repeated measures 

ANOVA result was marginally significant (p<.05), however, post-hoc tests did not show any 

differences in group average scores for the different pre-processing strategies.  All conditions for 

group averages had percent words correct in the 77-82% range.  Individual participant data 

showed that the pre-processing strategy that yielded the highest percent words correct varied 

across participants with significance based on the binomial model.  One participant (P10) 

showed a significant decrease in percent words correct when using ASC (84%) compared to no 
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pre-processing (96%).  Ten participants did not show a statistically significant difference in 

scores between pre-processing conditions. 

 

Adaptive HINT Sentences 

Figure 5 displays results of the Adaptive HINT sentences in the R-SPACE with 60 dB 

SPL of noise.  For the average group data, no significant results were seen.  ADRO had the 

lowest (best) average score (4.99 dB) followed by ASC+ADRO (6.13 dB) then ASC (6.64 dB).  

No pre-processing had the highest (worst) score (7.47 dB).  When comparing average scores, 

only a difference of 1.14 dB existed between the two best strategies, ADRO and ASC+ADRO.  

Individual participant data showed that the pre-processing strategy that yielded the lowest SNR 

varied across participants with significance based on the 95% confidence interval.  Two 

participants (P3 and P6) had significantly better scores with no pre-processing.  Three 

participants (P5, P7, and P11) had significantly better scores with ADRO.  Two participants (P1 

and P9) had significantly better scores with ASC.  Three participants (P4, P8, and P10) had 

significantly better scores with ASC+ADRO.  One participant (P2) had significantly better 

scores with both no pre-processing and ADRO (equal performance between these conditions). 

 Figure 6 displays results of the Adaptive HINT sentences in the R-SPACE with 70 dB 

SPL of noise.  For the average group data, results from the ANOVA revealed a significant effect 

for pre-processing condition [F(3,10) = 10.07, p<.001].  ASC+ADRO had the lowest (best) 

average scores (3.47 dB) followed by ASC (4.78 dB) then ADRO (5.65 dB).  No pre-processing 

had the highest (worst) average scores (7.56 dB).  ASC (p=.003) and ASC+ADRO (p=.002) 

were significantly better than no pre-processing.  ASC+ADRO (p=.028) was significantly better 

than ADRO.  Individual participant data showed that the pre-processing strategy that yielded the 
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lowest SNR varied across participants.  One participant (P8) obtained significantly better scores 

with no pre-processing activated.  Five participants (P1, P3, P4, P7, and P10) obtained 

significantly better scores with ASC.  Five participants (P2, P5, P6, P9, and P11) obtained 

significantly better scores with ASC+ADRO. 

 

Predictor Variables  

 Correlational analyses between possible demographic predictor variables and outcomes 

were completed.  Predictor variables examined were age at test and duration of CI use.  No 

significant correlations were seen between duration of CI use and participants’ average scores on 

test conditions or age of participant and test condition.  See Table 4 for the correlation table.  

Additionally, a pattern with participants’ previously used pre-processing strategy and their best 

pre-processing condition was not observed.  Table 5 shows participants previously used pre-

processing and their best pre-processing condition per test condition.  Variability was seen 

between previously used pre-processing and best pre-processing condition.  Also, variability was 

seen across and within individuals for the best pre-processing strategy in each test condition. 

 

DISCUSSION 

 The aim of this study was to determine which pre-processing strategy should be used for 

pediatric CI users whose everyday maps are programmed with behaviorally set Ts between a soft 

to medium level, and Cs set at a loud, but comfortable level with aided soundfield thresholds 

between 20 – 30 dB HL as measured through the CI with FM tones. 

For this population group data revealed that when CNC words were presented at a loud 

level of 70 dB SPL in quiet, participants did not show a statistical advantage or disadvantage for 
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one pre-processing strategy over another.  Similarly, sentence recognition of Adaptive HINT 

sentences in 60 dB SPL of noise, did not yield statistical significance for any of the pre-

processing conditions.  However, participants performed significantly better with ASC+ADRO 

compared to any other pre-processing strategy for word recognition of CNC words at a soft 

presentation level of 50 dB SPL in quiet.  For this test condition, participants performed 

significantly worse with ASC alone.  Performance on the Adaptive HINT sentences in 70 dB 

SPL of noise revealed that, ASC+ADRO resulted in significantly better scores than no pre-

processing or ADRO alone.  

 The results from this study are in agreement with results from Wolfe et al. (2011b) and 

Gifford et al. (2011) demonstrating an advantage for ASC+ADRO when listening to speech in 

background noise.  Even though ASC+ADRO was not found to significantly benefit participants 

in each test condition (i.e. CNC words at 70 dB SPL and HINT sentences in 60 dB SPL of 

noise), ASC+ADRO did not significantly decrease scores in any condition. 

 Unlike findings from Kolb (2011), the addition of ADRO to another pre-processing 

strategy did not significantly decrease participants’ speech recognition in noise.  Notably 

ASC+ADRO benefited participants for listening to speech in higher levels of noise (70 dB SPL) 

and for listening to words at a soft presentation level (50 dB SPL).  The adverse effects of adding 

ADRO to other pre-processing strategies for adult participants in the Kolb study were thought to 

be due to excessive compression leading to distortion of speech caused by the reduced dynamic 

range created by using a mapping protocol with higher T levels.  However, studies have shown 

that children typically tolerate higher C levels than adults (Hughes, Brown, Abbas, Wolaver, & 

Gervais, 2000; Weberling, Firszt, Reeder, & Cadieux, 2011).  Even though the same mapping 

protocol is used with higher T levels, the children prefer higher C levels than adults, allowing 
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children to utilize a larger electrical dynamic range compared to adults.  Thus, an excessive 

amount of compression would not be imposed when ADRO was applied to pediatric CI 

programs, resulting in less distortion of the speech signal. 

 Also, interesting to note, is that participants’ everyday experience with pre-processing 

strategies did not seem to affect which pre-processing strategy they performed best with for the 

study.  As there was no acclimatization period before testing the different pre-processing 

strategies, it might have been expected that the participants would achieve the best scores using 

the pre-processing strategy with which they had the most listening experience.  There was no 

trend for the best pre-processing condition to be associated with the child’s everyday pre-

processing strategy.  Furthermore, some participants performed best with pre-processing 

strategies that were different than what they previously used and their best pre-processing 

strategy often varied across test measures.   

 While group data showed significant improvement with ASC+ADRO on two of the four 

test measures with no detriment on any of the measures when ASC+ADRO was applied, 

individual data varied across measures and within subjects.  Therefore, while this data supports 

the recommendation of ASC+ADRO to be the default everyday setting for children, a variety of 

pre-processing applications should be considered on an individual level.   

   

CONCLUSION  

Based on the results from this study, it is recommended that pediatric CI users utilize the 

ASC+ADRO pre-processing strategy for their everyday maps.  Since ASC+ADRO was not seen 

to significantly degrade performance in any situation and was seen to significantly improve 

speech recognition in quiet at a soft level and in noise at a loud level, it would be advantageous 
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to apply it to everyday situations.  Due to the variability seen in the study, if a child is not 

achieving expected speech recognition performance, other pre-processing strategies should be 

assessed. 

Possible future studies could investigate a larger population, explore additional pre-

processing strategies within the pediatric population, examine how CI pre-processing interacts 

with hearing aid processing for bimodal users, and explore possible relationships between pre-

processing and T level settings/electrical dynamic range.  Further information may reveal 

predictive variables as to which pre-processing strategy may be most beneficial for specific 

individuals.     
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Table 1:  Participant demographic information 
Female (F), Male (M), Left (L), Both (B), Right (R), Enlarged Vestibular Aqueduct (EVA) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Participant Age at Test Sex 
Device 

Configuration 
Implanted 

Ear Etiology Age at implant Internal 
Speech 

Processor 

1 17.33 F Bimodal L Unknown 6.08 CI24R CP810 

2 16.92 M Bilateral B Unknown L-4.42; R-11.21 L-CI24R; R-CI24RE Freedom 

3 9.42 F Bimodal L EVA 4 CI24RE Freedom 

4 13.66 F Bilateral B Unknown L-2.83; R-8.5 L-CI24R; R-CI24RE Freedom 

5 12.25 M Bilateral B Unknown R-1.75; L-7.33 R-CI24R; L-CI24RE Freedom 

6 10.66 F Bilateral B Unknown 4.17 R/L-CI24RE CP810 

7 17.08 M Bimodal L EVA 8.33 CI24R CP810 

8 13.17 M Unilateral R Unknown 3.75 CI24R Freedom 

9 11.92 M Bimodal L Unknown 5.17 CI24RE Freedom 

10 8.33 F Bilateral B EVA L-6.33; R-7.92 L-CI512; R-CI422 CP810 

11 8.08 M Bilateral B Unknown L-1.25; R-2.0 L-CI24RE; R-CI24RE Freedom 
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Table 2:  Device use information 
No pre-processing (None), Automatic Dynamic Range Optimization (ADRO), 
Autosensitivity+Automatic Dynamic Range Optimization (ASC+ADRO), Advanced 
Combination Encoder (ACE), Cochlear Implant (CI), Consonant-Nucleus-Consonant word list 
(CNC). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Participant 
Current Pre-processing 

Strategy 
Speech Processing 

Strategy Channel Rate Maxima Years of CI Use 
CNC score presented at 60 

dB SPL for CI(s) 

1 None ACE 900 12 10.5 72% 

2 ADRO ACE 900 8 12.5 92% 

3 ASC+ADRO ACE 900 10 6 78% 

4 ADRO ACE 900 12 10.92 84% 

5 ADRO ACE 900 8 10.5 80% 

6 ADRO ACE 1200 12 6.5 94% 

7 None ACE 900 9 9.5 80% 

8 ADRO ACE 900 12 9.42 74% 

9 ADRO ACE 1200 12 6.75 80% 

10 ASC+ADRO ACE 1200 10 3 72% 

11 ASC+ADRO ACE 1200 12 6.83 78% 
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Table 3:  Test protocol table 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Test Condition Pre-processing Strategy 
Sound Field Thresholds No Pre-processing Active 
CNC Words at 50 dB SPL No Pre-processing Active 
 ADRO 

ASC 
ASC+ADRO 

CNC Words at 70 dB SPL No Pre-processing Active 
 ADRO 

ASC 
ASC+ADRO 

HINT Sentences in R-SPACE in 60 dB SPL of noise No Pre-processing Active 
 ADRO 

ASC 
ASC+ADRO 

HINT Sentences in R-SPACE in 70 dB SPL of noise No Pre-processing Active 
 
*Sound Field Threshold were obtained first for every 
participant.  The order of all other test measures, stimuli, and 
pre-processing strategy were randomized per participant. 

ADRO 
ASC 
ASC+ADRO 
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Table 4:  Correlation table for duration of CI use and average scores per test condition.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Age AvgCNC50 AvgCNC70 AvgHINT60 AvgHINT70 

Age Pearson Correlation 1 .363 -.016 .225 .482 

Sig. (2-tailed)  .272 .963 .507 .133 

N 11 11 11 11 11 
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Table 5:  Participants best pre-processing strategy in the study’s test conditions 
  

Participant Everyday CNC 50 CNC 70 HINT 60 HINT 70 
1 None     ASC ASC 
2 ADRO     None/ADRO ASC+ADRO 
3 ASC+ADRO     None ASC 
4 ADRO     ASC+ADRO ASC 
5 ADRO ASC+ADRO   ADRO ASC+ADRO 
6 ADRO     None ASC+ADRO 
7 None ASC+ADRO   ADRO ASC 
8 ADRO     ASC+ADRO None 
9 ADRO     ASC ASC+ADRO 

10 ASC+ADRO   None ASC+ADRO ASC 
11 ASC+ADRO     ADRO ASC+ADRO 

* Pre-processing Strategies reported in table were found to be statistically significant 
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Figure 1:  Schematic of R-SPACE 
An eight-speaker array is positioned in a 360-degree circle with speakers positioned 45 degrees 
apart.  The participant is seated 24 inches away, in the center of each of the 8 speakers in the 
array (Compton-Conley et al., 2004).  
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Figure 2:  Aided mean soundfield audiogram (dB HL) 
Includes +/- standard deviation error bars for every cochlear implant. 
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Figure 3:  Results for CNC words at 50 dB SPL 
Individual participants’ and group mean percent correct scores for the CNC at 50 dB SPL for the 
four pre-processing conditions:  no-processing (blue), ADRO (red), ASC (green) and 
ASC+ADRO (purple).  The + symbol denotes a statistically significant difference in scores 
between conditions for a specific participant (p<.05).  The asterisks denote a statistically 
significant difference between conditions for group scores (p<.05).  
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Figure 4:  Results for CNC words at 70 dB SPL 
Individual participants’ and group mean percent correct scores for the CNC at 70 dB SPL for the 
four pre-processing conditions:  no-processing (blue), ADRO (red), ASC (green) and 
ASC+ADRO (purple).  The + symbol denotes a statistically significant difference in scores 
between conditions for a specific participant (p<.05).  The asterisks denote a statistically 
significant difference between conditions for group scores (p<.05).  
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Figure 5:  Results for HINT sentences in R-SPACE in 60 dB SPL of noise 
Individual participants’ and group mean HINT in R-SPACE SNR scores in 60 dB SPL noise for 
the four pre-processing conditions:  no-processing (blue), ADRO (red), ASC (green) and 
ASC+ADRO (purple).  The + symbol denotes a statistically significant difference in scores 
between conditions for a specific participant (>1.4 dB critical difference).  The asterisks denote a 
statistically significant difference between conditions for group scores (p<.05). 
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Figure 6:  Results for HINT sentences in R-SPACE in 70 dB SPL of noise 
Individual participants’ and group mean HINT in R Space SNR scores in 70 dB SPL noise for 
the four pre-processing conditions:  no-processing (blue), ADRO (red), ASC (green) and 
ASC+ADRO (purple).  The + symbol denotes a statistically significant difference in scores 
between conditions for a specific participant (>1.4 dB critical difference).  The asterisks denote a 
statistically significant difference between conditions for group scores (p<.05). 
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