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Abstract

As one of the largest protein families, protein kinases (PKs) regulate nearly all processes within the cell and are considered
important drug targets. Much research has been conducted on inhibitors for PKs, leading to a wealth of compounds that
target PKs that have potential to be lead anthelmintic drugs. Identifying compounds that have already been developed to
treat neglected tropical diseases is an attractive way to obtain lead compounds inexpensively that can be developed into
much needed drugs, especially for use in developing countries. In this study, PKs from nematodes, hosts, and DrugBank
were identified and classified into kinase families and subfamilies. Nematode proteins were placed into orthologous groups
that span the phylum Nematoda. A minimal kinome for the phylum Nematoda was identified, and properties of the minimal
kinome were explored. Orthologous groups from the minimal kinome were prioritized for experimental testing based on
RNAi phenotype of the Caenorhabditis elegans ortholog, transcript expression over the life-cycle and anatomic expression
patterns. Compounds linked to targets in DrugBank belonging to the same kinase families and subfamilies in the minimal
nematode kinome were extracted. Thirty-five compounds were tested in the non-parasitic C. elegans and active compounds
progressed to testing against nematode species with different modes of parasitism, the blood-feeding Haemonchus
contortus and the filarial Brugia malayi. Eighteen compounds showed efficacy in C. elegans, and six compounds also showed
efficacy in at least one of the parasitic species. Hypotheses regarding the pathway the compounds may target and their
molecular mechanism for activity are discussed.
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Introduction

Abnormal and unregulated phosphorylation in signaling path-

ways can lead to diseases, such as cancer, diabetes, immunodefi-

ciency, inflammation, and neurological disorders [1,2]. Phosphor-

ylation and dephosphorylation of proteins carried out by kinases

and phosphatases regulate almost every activity in the cell [3].

Protein kinases (PKs) account for 2% of eukaryotic genomes [4] and

are considered viable drug targets because the catalysis mechanism

and overall structure of PKs are conserved. Further, it is well

established that small molecules can bind to their catalytic cleft [5].

Hence, many kinase inhibitors have been developed to treat various

human diseases, including drugs such as imatinib, trastuzumab, and

lapatinib [2]. Understanding PKs can enable a deeper understand-

ing of how signaling pathways effect development, pathology and

biochemistry of an organism and also lead to more efficacious drugs

[6]. In fact, PKs are considered the second most important group of

drug targets after G-protein coupled receptors and are the largest

enzyme family [3]. Although toxicity has been a concern in some

cases, many drugs that target PKs have been approved for treating

various diseases, despite some lacking specificity [3].

Given the importance of PKs in drug development, bioinfor-

matics approaches and classification metrics have been developed

to gain a greater understanding of PKs and PK inhibitors. PKs can

be split into two diverse groups, with one group consisting of

‘‘conventional’’ PKs (ePKs) and the other comprised of ‘‘atypical’’

PKs (aPKs). The ePKs are the largest group and can be subdivided

into 8 families and multiple subclasses using a multi-level hidden

Markov model library [7]. The library consists of the following

ePK classifications: the AGC family, CAMKs, the CK1 family, the

CMGC family, the RGC family, the STE family, the TK family,

and the TKL family. Proteins that do not fit into any of these

classes are classified as other. The four aPK classifications consist

of Alpha, PIKK, PHDK, and RIO. The multi-level library

approach outperforms both BLASTP- and a Pfam HMMmodel-

based approach in retrieving kinases and classifying them on a

family level [7].

The World Health Organization estimates that over 2 billion

people are infected with parasitic worms [8]. Further, parasitic

worms also infect livestock and crops, which has deleterious effects

on food production and has a negative economic impact

worldwide [8]. Nematodes are becoming resistant to currently
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available anthelminthics and pesticides, thereby creating an urgent

need to develop new compounds to combat these parasites [9,10].

Protein kinases in nematodes offer novel targets for new drugs that

are desperately needed to fight parasitic nematode infections

throughout the world. Targeting PKs in parasites that cause

diseases with high mortality and morbidity, such as malaria, have

recently generated much interest, as recent studies have indicated

specific inhibition of the protozoan kinases can be achieved [11].

Like protozoan parasites, anthelmintic drug development for

nematodes could also benefit from studying nematode kinases.

Kinases are evolutionarily conserved in eukaryotes, and the

nematode Caenorhabditis elegans, has kinase orthologs for over 80%

of the human kinome [4]. Given the large amount of information

already existing for human PKs and kinase inhibitors and the

overlap of kinases between Homo sapiens and C. elegans, kinases in

parasitic nematodes are attractive targets for finding lead

anthelmintic compounds. This strategy of target repurposing has

been explored for initiation and prosecution of neglected disease

drug-discovery programs (e.g. [12]). Furthermore, there are

several examples in the literature where drugs have been also

repositioned (e.g. [13,14]).

By combining a variety of bioinformatics and cheminformatics

approaches, along with laboratory screening on C. elegans and

parasitic nematodes, we were able to learn more about kinomes of

several nematodes spanning the phylum Nematoda. We identified

kinases that are putative good targets, and experimentally test

compounds that have been shown to interact with homologs of

these kinases. Some of the compounds are already being used in

the clinic or are in experimental phases of development for

treating other diseases, making it possible to reposition this drug

for use as a lead compound. For others, we have demonstrated

anthelmintic potential, and due to their specificity, we also provide

insight into pathways within Nematoda that might be important

for drug targeting. Comparison of targets in nematodes and

mammals also reveal opportunities for developing increased

selectivity for nematodes.

Results

The methodology comprised a multi-step process, which

commenced with the predicted proteomes of parasites and their

hosts and resulted in prioritized targets and compounds (Figure 1A).

Classification of Nematode and DrugBank Kinases
PKs from each genome were identified (Figure 1B & Figure S1)

and the 294 orthologous groups containing PKs were phyloge-

netically classified. The 133 PKs previously shown to be shared by

3 nematode species [15] decreased to only 103 (or 68 when only

the manually curated kinases are considered) when the plant-

parasitic Thylenchid, Meloidogyne incognita [16], and the zoonotic

parasite, Trichinella spiralis [17] were included (Figure 1B). The

number of kinases shared among the nematode species could be

underestimated due to the draft nature of the parasitic nematode

genomes. The 68 members of the pan-Phylum conserved kinome

are referred to as the minimal kinome. The minimal kinome is

dominated by kinases from the TK, CMGC, and CAMK groups

(Figure 2A). For each nematode genome, the manually-curated

kinases from the minimal kinome are listed in Tables S1, S2, S3,

S4. The most prevalent groups in C. elegans include: CK1_sub1,

CMGC_sub3, CMGC_sub2, RGC_sub1, and TK_sub2 (Kino-

mer with custom cutoffs) (Figure S2). The most prevalent groups in

B. malayi include CMGC_sub2, CMGC_sub3, TK_sub2,

CK1_sub1, AGC_sub4, and STE_sub1. The largest groups in

H. sapiens include CMGC_sub2, CAMK_sub2, AGC_sub4,

CMGC_sub3, TK_sub2, and AGC_sub4.

The kinases in DrugBank were also characterized in a similar

manner as the nematode kinases. There are 519 compounds in

DrugBank that target one or more of the 299 kinases using kinase

models from Kinomer [7]. Interestingly, CAMK_sub1,

CMGC_sub3, CMGC_sub2, and TK_sub2 all have the largest

number of compounds that bind targets in that group (Figure S2).

Some compounds are very specific for a particular kinase group,

whereas others can bind to targets in multiple kinase groups (Figure 3).

Figure 1. Methodology and pan-phylum kinome characteris-
tics. A. Flow chart of methodology (gray) and compounds and target/
compound elimination (white). B. Distribution of orthologous PK families
among the nematodes spanning the phylum Nematoda. The ortholo-
gous groups were counted before the kinases underwent manual
curation. The number in brackets are kinase genes not in groups C. Of the
C. elegans kinases, orthologous groups were extracted that contain C.
elegans, B. malayi, and H. sapiens. The C. elegans proteins were aligned to
orthologous B. malayi proteins and each of these were aligned to
orthologous H. sapiens. For each pairing, the identities were obtained
through alistat [65]. Dissimilarity plot of nematode and human kinases
using full-length sequence indicate different degrees of dissimilarity
between species among kinase subclasses (e.g CAMK vs CMGC).
doi:10.1371/journal.ppat.1003149.g001

Author Summary

Parasitic nematode infection is a large global health and
economic problem, infecting around 2 billion people and
costing $100 billion in crops and livestock. People in
developing countries often live on one dollar per day, so
treatments cannot be expensive, therefore using pre-
existing drugs as lead compounds provides an economical
way to begin to develop affordable treatments. Protein
kinases were chosen as the focus of this work due to the
large number of pre-existing drugs that target them and
their important role in regulating almost all activities in the
cell. Herein we describe a set of protein kinases conserved
in diverse nematode species and experimental screening
results of pre-existing drugs that target these kinases. The
compounds that show in vitro efficacy in both C. elegans
and parasitic nematodes, H. contortus or B. malayi have
potential to be optimized further. These compounds have
potential to provide accessible treatment to people in
developing countries, as well as improving the health of
livestock and boosting food production globally.

Parasitic Nematodes Kinome
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Primary sequence similarity among nematode full-length PKs is

higher than between nematodes and H. sapiens (Figure 1C),

providing opportunities for specific targeting, despite having

similar active sites. For example, when all isoforms are included,

the 68 groups contain 153 proteins from C. elegans. Using cutoffs

intended to identify kinases that were very different from humans,

an amino acid-based similarity search among nematode and

human kinases yielded 138 C. elegans kinases that were above the

cutoffs, and the remaining 15 had weak homology to H. sapiens.

Even within the conserved orthologous groups, kinases have

substantially diverged in the host (Figure 1C) while still maintain-

ing similar active sites necessary to carry out kinase function.

Furthermore, for example, the dissimilarity level between nema-

tode CAMK members and nematode/human CAMK members

was much larger than between the nematode CMGM and

nematode/human CMGM members (Figure 1C).

Target and Compound Selection
The classification of kinases and compounds that target them

resulted in 116 compounds to screen and many gene candidates as

well. To reduce the number of compounds and potential targets,

only orthologous groups that had a protein conserved across all

four nematode species that span the Phylum were considered

because of their potential for broad control. Using the sixty-eight

orthologous PK groups found in the previous section dramatically

reduced compound search space. Out of 38 total kinase subgroups,

only 28 kinase subgroups had orthologs in all four nematode

species. 22 orthologous groups, spanning 13 kinase subgroups, had

an RNAi phenotype in C. elegans. Of the 22 orthologous groups, 14

(spanning 12 kinase subgroups) also have anatomical expression

data in C. elegans. After considering RNAi phenotypes, nine

orthologous groups were found which had expression in specific

tissues known to be useful for drug targeting (i.e. pharynx [18],

intestine [19], muscle [20] etc) and manifested a RNAi phenotype.

These groups include: TK_sub2, AGC_sub4, CMGC_sub1,

TKL_sub4, STE_sub1, CK1_sub2, TKL_sub2, and

TKLK_sub5. Three other orthologous groups were identified

because the groups had expression patterns conducive to being a

drug target, but did not have an RNAi phenotype: CAMK_sub4,

AGC_sub2, and AGC_sub4. The groups meeting these criteria,

along with RNAi phenotypes, and stage and tissue expression, are

shown in Table S5. RNAi phenotype and phenotype that resulted

from the addition of compound could be different, depending on

the region targeted by RNAi in multiple experiments. A similar

phenotype obtained by the compound and the RNAi screen

indicates that the compound has a mode of action that targets the

same gene the RNAi targets; however, different phenotypes do not

preclude a similar mode of action.

Figure 2. Minimal kinome analysis. A. Nematode minimal kinome compared to C. elegans (Ce), H. sapiens (Hs), DrugBank Targets, and drug target
of each compound in DrugBank. Nematode minimal kinome compared to Ce, Hs, DrugBank targets, and drug target of each compound in DrugBank.
B. Nearest neighbors from the minimal kinome clustered based on KEGG Pathways. The minimal kinome is shown as large circles and the nearest
neighbors are small circles. The nodes are colored based on the KEGG pathways in which they participate.
doi:10.1371/journal.ppat.1003149.g002

Figure 3. Drugs from DrugBank and their interaction with the
different kinase groups. The kinase groups are shown in red, and
the blue nodes indicate compounds that yielded a phenotype in C.
elegans. The grey nodes were tested, but didn’t yield a phenotype.
doi:10.1371/journal.ppat.1003149.g003

Parasitic Nematodes Kinome
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For our compound testing, we wanted to maximize the number

of kinase groups tested with compounds, while also being cost

effective. As a result, major kinase groups that appeared more than

once in the top hit list were eliminated partially based on the

number of compounds that target the subgroup: STE_sub4,

TLK_sub2, and TLK_sub5. TLK_sub2 and STE_sub4 had only

3 and 5 compounds, respectively, associated with them in

DrugBank. Based on the subgroup classification, 116 unique

compounds that target kinases in eight kinase subgroups (Table

S6) were investigated, 35 were prioritized based on cost and

accessibility for experimental testing (Table S7). Specificity was not

used to prioritize compounds.

Compound Screening in C. elegans
The compound screening began with L1-stage worms, which

developed into adult worms over the course of the 72-hour

experiment. Expression of target C. elegans genes over these stages

would be ideal to strongly indicate the target was present for the

compounds to bind. Thirteen compounds exhibited an

EC50,20 ppm and 12 yielded a detectable phenotype. In all, 18

compounds (Figure 4) yielded a detectable phenotype and/or

generated an EC50 less than the maximum dose tested (Table 1).

EC50 values were calculated based on the concentration at which

50% of the nematodes were not moving. Phenotype was not

assessed by EC50. The C. elegans were exposed to five different

concentrations of compound in duplicate, and the effect was

subsequently independently confirmed by a separate experiment

on a different set of worms. An example dose-response curve (for

15) is shown in Figure 5B, and the rest are shown in Figure S3.

Selected videos taken at 20 ppm are included as Supplementary

Videos (Video S1, S2, S3, S4).

Compound Screening in Parasitic Nematodes H.
contortus and B. malayi

The 18 compounds that yielded a detectable phenotype in C.

elegans were also tested in an H. contortus larval development assay.

Three compounds (5, 6, 8) had a MIC90 lower than the maximum

dose tested (Table 1). The dose-response curves are shown in

Figure S4, and the selected videos taken at 20 mM are shown in

the Supplementary Videos (Video S5, S6, S7, S8).

Based on their target specificity in DrugBank, three compounds

(11, 12, 15) with activity in C. elegans were chosen for in vitro testing

in B. malayi for antifilarial activity. Results showed motility was

affected by 15 at 100 mM concentration (by Day 4) (Figure 5D);

the other compounds did not affect motility. In addition, 15
markedly reduced viability by Day 8 and 72–75% reduction in

worm viability was observed in both female and male worms,

respectively (Figure 5E). Compound 15 inhibited microfilaria (MF)

production in a time and concentration-dependent manner. After

2 days in culture with 15, female worms showed greater than 50%

inhibition in MF release at high concentrations (100 mM). By Day

8, 10 mM appeared to be the minimum effective concentration

that could inhibit MF release from female worms. Although there

was no effect on motility and viability, a 50% reduction in MF

release was observed by 12 at Day 6 (Figure S5).

Discussion

Therapies are desperately needed to combat parasitic nematode

infections, which plague over 2 billion people or 1/3 of the earth’s

population [21]. Since helminth infections are endemic in

developing countries, we explored possible repositioning of

existing drugs for use as lead compounds, as using a pre-existing

drug lowers substantially the cost of drug development. The

nematode kinome is a rich resource for exploring compounds that

may show anthelmintic activity due to the wealth of existing

information on PKs and PK inhibitors. The lead compounds

found via repositioning could be modified to increase efficacy.

Using a pan-phylum compilation of nematode proteomes, kinases

were identified and classified into groups and subsequently into

subgroups. Kinases in DrugBank were also identified and classified

into groups/subgroups. Compounds were linked to targets via the

subgroup classification, and disparate information regarding the

kinase targets was combined to prioritize the targets (and

associated compounds) for experimental testing. A total of 35

compounds were tested in C. elegans, and 18 exhibited a deleterious

phenotype.

With our upfront prioritization and characterization, our study

had a much higher hit rate with respect to C. elegans nematodes

(51%), compared to a previous study where high-throughput

screening of ,14,000 compounds was done and resulted in 308

compounds yielding phenotypes (2.2% success rate [22]). Out of

the ,14,000 compounds 483 are likely to be kinase inhibitors in

the entire library based on a cheminformatic search using a

Tanimoto score of 0.8 (3.45%), and of the 308 displaying

phenotype (3.24%) 10 were kinase inhibitors. Our hit rate was

18/35 (,51%) compared to the HTS approach 10/483 (2.1%),

resulting in a 256 enrichment. While the difference in the

concentration used by the two studies (,25 mM versus 20 ppm

Figure 4. Structures of compounds that elicited a phenotype in
C. elegans. 1 (DB00773) Etoposide, 2 (DB02709) Resveratrol, 3
(DB04604) 5-iodotubercidin, 4 (DB03615s) Neomycin, 5 (DB02152) K-
252a, 6 (DB02010) staurosporine, 7 (DB03023) PP2, 8 (DB04707)
HA1077, 9 (DB04080s) Tropic Acid, 10 (DB03684) 2-methyl pentanediol,
11 (DB03693) N-(2-Aminoethyl)-5-Chloroisoquinoline-8-Sulfonamide,
12 (DB02984) 4-[3-Methylsulfanylanilino]-6,7-Dimethoxyquinazoline,
13 (DB02175) malonic acid, 14 (DB02908s) Benzylphosphonic Acid,
15 (DB03044) BIRB 796, 16 (DB01254) Dasatinib, 17 (DB01933) KT-5720,
18 (DB03496) Flavopiridol.
doi:10.1371/journal.ppat.1003149.g004

Parasitic Nematodes Kinome
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(,25 to 60 mM, depending on the molecular weight of the

compound)) could in part be responsible for the observed

enrichment, our prioritization approach highly enriches for good

potential candidates. Only two of our compounds tested

overlapped with the high-throughput screening study [22]; 2
caused jerky and abnormal movements in C. elegans, and the other

(DB01953) did not produce a phenotype. Furthermore, our

strategy used species that span the phylum, increasing the

possibility of identifying candidate targets for broad control.

At the root of our study was i) identification of the kinome

within each of the nematode species, and ii) identification and

characterization of a minimal kinome, or group of kinases that are

conserved among species that span the phylum Nematoda. The 68

pan-phylum nematode PK orthologous groups spanned 9 different

PK groups (TK, AGC, CMGC, TKL, STE, CAMK, CK1, RIO,

and RGC) and 28 subgroups (Table S4) out of a possible 12 groups

and 38 subgroups. These kinases were linked to kinases in

DrugBank based on their subgroup classification. A representative

of each of the ePK groups is present in the minimal kinome, but

some groups were more highly represented in the minimal kinome

than others (Figure 2A), with CMGC being the most highly

represented (21.6%). The highest reduction in parasitic nematodes

versus free-living was detected in the Receptor Guanylate Cyclases

(RGC) that has been shown to be expanded in several metazoans,

most dramatically in Caenorhabditis species [23]. Based on our

analysis, there is a drastic reduction of this class in the parasitic

nematodes compared to C. elegans, especially in the human

parasites T. spiralis (2%) and B. malayi (1.7%) vs C. elegans (5.1%)

(Figure S1). The nematode kinase groups had corresponding drug

targets (by associations because drug targets were classified the

same way) and drugs in DrugBank. DrugBank has nearly twice as

many TK targets, most likely due to their prominence as cancer

targets. However, DrugBank had nearly two fold more compounds

that target CAMK proteins relative to the total number of

compounds and targets, which is mainly caused by a large number

of compounds targeting CAMK_sub1 (Figure S2).

Over 65% of the minimal kinome that successfully maps to the

major KEGG pathways are involved in Environmental Informa-

tion Processing including the MAPK, Wnt, mTOR, or ErbB

signaling pathways (Figure 2B); however, only 34% of the minimal

kinome can be mapped to the KEGG pathways. When the

minimal kinome is mapped to KEGG pathways along with the

proteins with which they interact, the vast majority are involved in

genetic information processing or a combination of different

pathways (Figure 2B). The entire C. elegans minimal kinome maps

to all five major KEGG pathways; however, individual kinase

groups often lack a specific major pathway. For instance, TK and

RGC are the only groups that map to metabolic pathways and

CAMK and TK do not map to any genetic information processing

pathways (Figure S6).

The second phase of our study involved linking compounds in

DrugBank to kinases in nematodes that were conserved across the

phylum. This study did not bias the results toward kinase

inhibitors, rather all compounds in DrugBank were considered if

the target made the appropriate cutoff. Thus, some compounds

are not typical kinase inhibitors, but had experimental evidence for

binding to a kinase. These compounds were tested so as to not

throw away potential lead compounds, even though they were not

typical kinase inhibitors. The 18 compounds that yielded a

phenotype in C. elegans provide excellent lead compounds that

could be developed into anthelmintic drugs. Further, 6 of the 18

compounds also showed efficacy against at least one of two very

Table 1. Compound screening in C. elegans, H. contortus, and B. malayi.

C. elegansa H. contortus B. malayi

Comp Num DrugBank ID Common Name C. elegans (EC50 mM) Pheno (MIC90 mM) (MEC mM)b

1 DB00773 Etoposide .34.0 + .20

2 DB02709 Resveratrol .87.6 + .20

3 DB04604 5-iodotubercidin 2.6 + .20

4 DB03615c Neomycin 9.7 + .20

5 DB02152 K-252a 15.3 2 1.3

6 DB02010 Staurosporine 0.7 2 5

7 DB03023 PP2 46 + .20

8 DB04707c HA1077 28.4 2 20

9 DB04080c Tropic acid 120.4 2 .20

10 DB03684 2-Methyl-2,4-Pentanediol 123.5 + .20

11 DB03693 N-(2-Aminoethyl)-5-Chloroisoquinoline-8-Sulfonamide .70.0 + .20 .100

12 DB02984 4-[3-Methylsulfanylanilino]-6,7-Dimethoxyquinazoline .61.1 + .20 100

13 DB02175 Malonic Acid .192.2 + .20

14 DB02908c Benzylphosphonic acid 63.5 2 .20

15 DB03044 BIRB 796 36.3 2 .20 10

16 DB01254 Dasatinib 22.3 2 .20

17 DB01933 KT-5720 36.9 + .20

18 DB03496 Flavopiridol 48.3 + .20

aC. elegans Phenotype 72 hrs post treatment: jerky or slow movement, twitchy, and combination of these.;
bMinimum effective concentration where effect is seen in 50% of worms;
cSimilar to DrugBank compound within a Tanimoto similarity score of 0.8.
doi:10.1371/journal.ppat.1003149.t001

Parasitic Nematodes Kinome
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different nematode species, the blood-feeding H. contortus and the

filarial B. malayi. The difference in lifestyle between C. elegans and

the parasitic nematodes is quite large, making the finding that

these 6 compounds are more broadly applicable to the entire

phylum. However, differences in the species could also lead to a

large difference in compound potency across the species, as the

species have different uptake mechanisms. Further, the screening

on the various species included different life stages, which could

also lead to differences in compound potency. Several of these

compounds that were hits in C. elegans are already FDA approved

drugs used as antimicrobials and/or cancer drugs. One example is

16 (Dasatinib), an approved small molecule that targets BCR/Abl

in chronic myloid leukemia, which exhibited deleterious effects on

worms yielding an EC50 of 22.3 mM. Flavopiridol, 18, is an

experimental treatment for cancer that also yielded an EC50 of

48.3 mM. Neomycin, 4, is an antibacterial compound that yielded

an EC50 of 9.7 mM. Etoposide, 1, is an approved small molecule

and has antitumor activity which caused jerky/abnormal move-

ments in C. elegans. These compounds have already extensive

toxicity data for humans associated with them (16 [24,25]; 18 [26–

28]; 4 [29]; 1 [30–33]).

Detailed examination of the results, allowed formation of

hypotheses regarding the pathways in which the targets are

involved and the compounds might be affecting. It is not surprising

that the pathways are hard to deconvolute based on looking at

compound-protein interactions. Of 276,122 bioactive compounds,

35% were known to bind to multiple targets, and surprisingly,

25% of these bind to proteins in different gene families [34]. In

cases such as TK_sub2, the targets are all very similar even though

this is a particularly large group. Within TK_sub2, 13 compounds

were tested, and 7 of them yielded an EC50 .20 ppm and/or a

phenotype in C. elegans. Oftentimes, the compounds are able to

target several different kinases within this group, making it

particularly difficult to discern a precise targeted protein or

pathway.

For all the compounds, additional studies need to be done to

completely confirm the compounds’ mode of action. However,

three subgroups of kinases, which had compounds that were likely

to specifically target a particular enzyme, provide useful hypoth-

eses into the compound’s mode of action for further study. The

first group is CMGC_sub1, which is a kinase group that contains

predominately CDKs (cyclin dependent kinase) and MAPK

(mitogen-activated protein kinase). Of the 14 C. elegans proteins

in this group (cutoff 1e25), 4 were conserved among T. spiralis, B.

malayi, and M. incognita. These conserved C. elegans kinases are

B0285.1 (cdc2 kinase), B0205.7 (casein kinase II), F43C1.2

(ERK5), and B0478.1 (JNK). From DrugBank, there are 14 drug

targets that are classified in CMGC_sub1. Out of the eight

compounds tested that target this group, two compounds, 12 and

15, showed efficacy and specifically target p38 based on literature

Figure 5. Alignment, structure, and experimental data for p38 MAP kinase (CMGC_sub1). (A). 1KV2 with 15 bound. Residues that differ
between mammals and nematodes within 5 Å of the active site are colored in grey, and residues within 10 Å are shown in blue. The compound is
colored yellow. (B). Dose-response curve of 15 in C. elegans. (C). Expression data from B. malayi microarray data [66] for p38 orthologs in B. malayi.
(D). Percent reduction in microfilarial release in B. malayi cultured with 15 in vitro. (E). Percent reduction in viability in B. malayi female and male
worms cultured with 15. (F). 1KV2 alignment of Tsp_3128 (T. spiralis), Mh10g200708_Contig883_17801_19594 (M. hapla), 14956.m00538 (B. malayi),
B0218.3 (C. elegans), CBN12041 (C. brenneri), CBG01555 (C. briggsae), NP001095644.1 (B. taurus), ENSP00000229795 (H. sapiens), EN-
SMUSP00000004990 (M. musculus), P70618.3 (R. norvegicus), NP_001003206.1 (C. familaris), 1KV2. Residues 5 and 10 Å from the compound in the
active site are starred. Differences in the active site are represented by larger red star at the bottom.
doi:10.1371/journal.ppat.1003149.g005
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searching and DrugBank listings. In a previous study [35], 15
bound to several of the H. sapiens orthologs of C. elegans proteins in

the minimal kinome: B0285.1 (1100 nM), F43C1.2 (2500 nM),

B0478.1 (9100 nM and 7.3 nM). However, 15 binds to the H.

sapiens ortholog of B0218.3 (NP_620581.1) at a much higher

affinity (0.45 nM), increasing the likelihood that B0218.3 is the

main target in our C. elegans screen. The proteins with which

B0218.3 interacts include those involved in organismal systems

and environmental information processing and are also differen-

tially over-expressed during stages in which the compound

screening assay was carried out (Figure 6A & C).

The p38 kinase, B0218.3, is only conserved among C. elegans and

the vertebrate parasites (B. malayi and T. spiralis); it was not present

in the minimal kinome because a p38 ortholog is not found in the

plant parasite, M. incognita. Inhibitors of p38 have shown promise in

fighting other parasite infections [36–39]. Our results suggest that

p38 may be a good target for other filarial parasitic nematodes

species as well. Structural analysis can be done, as X-ray crystal

structures exist of 12 and 15 bound to p38. Although most residues

in the active site are conserved between mammals and mouse, some

nearby residues differ (Figure 5A & C and Figure S5A & S5B),

creating opportunities for development of more specific drugs.

Further, 12 and 15 were tested in B. malayi adult worms and were

found to have an effect. The expression results [40] also support the

sex-dependent effect on worm motility in B. malayi. 12 caused a

reduction in worm viability in female worms, but caused no

reduction in male worms (Figure S5C–E). 15 caused a reduction in

worm viability in female worms at a much lower concentration than

in male worms (Figure 5C–E). Compound 15 is currently in phase

III clinical trials for rheumatoid arthritis and Crohn’s disease [41].

The second group for which the mode of action could be

hypothesized is CK1_sub2, providing an excellent basis for further

experimental testing. Involved in key regulatory processes [42],

casein kinase 1 has been shown to be an important drug target for

various parasitic species [43–46] (Figure S7). Out of the 3

compounds tested that target this group, 2 compounds, 11 and 3,

showed efficacy. Compound 11 specifically targets casein kinase 1

from CK1_sub2. Compound 11 did not yield an EC50 value, but

appeared to have jerky movement. Compound 3 binds casein

kinase 1, as well as ser/thr protein kinase haspin and MAPK3,

yielding an EC50 value of 2.6 mM and resulting in worms that

move slowly and are smaller and less developed. X-ray crystal

structures are available: 3 bound to CK1 in Saccharomyces pombe and

11 bound to H. sapiens CK1-gamma (Figure S8). Comparing their

sequence to C. elegans proteins that were classified into CK1_sub2,

the sequence of the X-ray crystal structure most closely resembles

Y106G6E.6, making it likely that the compounds bind to this

protein and its other casein kinase I gamma nematode orthologs

(Figure S7). Further, Y106G6E.6 is also differentially over-

expressed in late embryo, L2, and young adult stages

(Figure 6D), which include stages during which the screening

experiment was done. The results from B. malayi further point to

the compound targeting its CK1 alpha orthologs. Compound 11
did not pass the threshold for causing a 50% reduction in motility,

but came very close in males with 41.6% reduction in viability in

males at 100 mM concentration. (Figure S9). Given the effect was

sex-associated, it is likely that 11 is also targeting the CK1 alpha

orthologs (Figure S7).

The third group that had a compound that specifically targeted

one enzyme is AGC_sub2. One hit from this group, 17, selectively

Figure 6. PPIs from MINT mapped using PPIs from C. elegans and C. elegans orthologs from D. melanogaster and S. cerevisiae. PPIs for A.
B0218.3 and C. Y106G6E.6 color coded and grouped based on KEGG pathway assignment. PPIs for B. B0218.3 and D. Y106G6E.6 color coded by
expression levels from RNAseq data. The proteins involved in pathways connected to B0218.3 are linked to several different pathways, including
genetic information processing. MAPKs play important roles in signal transduction and are involved in cellular processes such as proliferation,
differentiation, and cell survival in eukaryotes. B0218.3 is differentially over-expressed in the late embryo (LE) and L1–L3 stages (p,0.1) based on our
analysis of C. elegans expression data [59].
doi:10.1371/journal.ppat.1003149.g006
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inhibits Protein Kinase A (PKA). Compound 17 is not in

DrugBank, but was chosen for testing because of its similarity to

DB01933 and the inability to obtain DB01933. DB01933 targets

AGC_sub4, but 17 is a known inhibitor of PKA, which is in

AGC_sub2. Not only did 17 yield an EC50 when added to C.

elegans, the worms also displayed jerky, slowed, and twitching

movements on the test plate, in addition to being smaller.

Interestingly, siRNA was used to knockdown a splice variant of

PKA, causing paralysis in the C. elegans adult stage [47].

Compound 17 is a derivative of 5 and 6 which target other

kinases non-specifically. Compound 8 (similar to DB04707 –

hydrofasudil) also targets PKA, but also inhibits Rho-associated

protein kinase (ROCK), as well as several other targets not listed in

DrugBank (protein kinase G, NADPH oxidase, myosin light chain

kinase, etc). Compound 8 is already used to treat cardiovascular

disease [48] and has the potential to be a promising therapy to

manage severe malaria [49]. PKA has been suggested as a good

drug target in the filarial nematode, Onchocerca volvulus [50], and in

the protozoan, P. falciparum [51].

In this study, we have classified kinases in several different

nematode species, C. elegans, B. malayi, T. spiralis, and M. incognita,

which span several phylogenetic clades and lifestyles (free-living

and parasitic) in the phylum Nematoda. The proteins were placed

in orthologous groups, and 68 orthologous groups had proteins in

each of the nematode species, indicating those proteins are

conserved and therefore important for nematode survival. Drug

targets in DrugBank were also classified, and compounds that bind

to DrugBank targets were matched with promising nematode

proteins via kinase classification. Several PK inhibitors, which are

currently being used in the clinic or in experimental phases of

development for other diseases, were tested and shown to have

efficacy in C. elegans, H. contortus and/or B. malayi. For the

compounds that show efficacy, we also made hypotheses about

their mode of action via bioinformatic and structural analysis and

provide some insight into how to improve specificity for the

nematode versus mammalian protein in several cases.

Materials and Methods

A flowchart of the methodology is shown in Figure 1.

Ethics Statement
All animals were handled in accordance with guidelines defined

by the Animal Welfare Act (A3381-01), Association for Assessment

and Accreditation of Laboratory Care International (AAAALAC),

PHS Policy for the Humane Care and Use of Laboratory Animals,

the Guide for the Care and Use of Laboratory Animals, and the

Division of Comparative Medicine, Washington University School

of Medicine. All animal work was approved under WUSM

Institutional Animal Care and Use Protocol 20120025.

Classification of Nematode and DrugBank Kinases
Kinase domain models were downloaded from the Kinomer

website (http://www.compbio.dundee.ac.uk/kinomer/allPK.

hmm) and were used to screen a collection of gene sets from the

organisms Brugia malayi, Caenorhabditis elegans, Drosophila melanogaster,

Homo sapiens, Meloidogyne incognita, Saccharomyces cerevisiae, and

Trichinella spiralis. Custom score thresholds per kinase group were

taken from Miranda-Saavedra [7] and then adjusted until an

hmmpfam search (HMMER v2.3.2) came as close as possible to

identifying all known C.elegans kinases using the Kinomer

allPK.hmm profile database. Those same cutoffs were then

applied to the gene sets of the remaining 6 organisms, identifying

sets of putative kinases in each case. These putative kinases were

categorized into the 8 conventional kinase groups (ePK) and the 4

atypical kinase groups (aPK) by merit of which model they were

found to hit in the Kinomer profile database (allPK.hmm).

We then manually curated the sets of putative kinases by

screening them against Pfam using hmmpfam (as a part of an

interproscan run (interproscan software v4.5, interpro db release

2.2)) and making sure that no clear contradictions were found. Any

cases where a putatively identified kinase was found to have a

clearly non-kinase Pfam domain hit, were removed from the final

set of identifications. The custom cutoffs used per kinase group

were as follows: TK, 5.5e-03; CAMK, 9.6e-07; CK1, 1.1e-02;

CMGC, 6.7e-03; AGC, 1.1e-14; STE, 3.4e-03; RGC, 4.8e-05;

TKL, 8.7e-03; PDHK, 4.7e-160; PIKK, 1.4e-06; Alpha, 8.5e-66;

RIO, 7.5e-10.

The same methodology used to classify the nematode kinases

was also used to classify targets in DrugBank. DrugBank v2.5 was

used to screen against the kinase domain models using an E-value

cutoff of 0.1. If the target in DrugBank and a nematode kinase

were classified into the same kinase subgroup by the HMM, the

nematode protein by association was hypothesized to interact with

one of the drugs in DrugBank known to bind a particular target.

Prioritization of Kinases to Test
OrthoMCL [52] was used to group the 6 proteomes (B. malayi,

D. melanogaster, M. incognita, T. spiralis, S. cerevisiae, C. elegans) into

orthologous groups using a default inflation factor of 1.5 (all

othologous groups are available at Nematode.net [53]). To

determine the best kinase groups which have compounds that

target them, the kinase groups were evaluated as to whether they

exhibited an RNAi phenotype and if there was tissue expression

data in C. elegans. RNAi phenotypes for C. elegans (http://www.

wormbase.org/#012-3-6, WS220; downloaded on April 19, 2011)

were grouped based on Kumar et al. [54]. The complete list of

RNAi phenotypes, sorted by bin, are available as Table S2 in

Taylor, et al. [55]. Tissue expression for C. elegans was obtained

from Wormmart [56] on April 23, 2010. GO associations of the all

helminth proteins were made by running InterProScan [57]

(release 4.5). EST [58], tissue localization, and RNAseq data [59]

were also used to evaluate potential groups for compound testing.

Protein-protein Interactions and Pathway Information
Protein-protein interactions from MINT [60] were found for C.

elegans, S. cerevisiae, and D. melanogaster. Using the protein

orthologous groups obtained from the OrthoMCL clustering, the

protein-protein interactions in C. elegans were expanded using

orthologous protein-protein interactions in S. cerevisiae and D.

melanogaster. Cytoscape [61] was used to analyze the networks, and

the multicolor node plugin [62] was used to analyze kinase

classification and expression values.

Compound Screening in Caenorhabditis elegans
Compounds for experiments were obtained from the following

sources (compounds obtained are shown in parenthesis): Enzo

LifeSciences (1,2,4,7,8,14,17), Ryan Chemicals (9, 10, 11, 12, 13,

15), and LC (5,6) and TRC (3,16,18). Some of the compounds

were not found commercially, so these compounds were substi-

tuted with available compounds with the highest similarity assessed

via Tanimoto score of 0.8 or greater, which was calculated using

OpenBabel [63]. Compound screening commenced with L1 stage

worms and ran for 72 hrs at which point the C. elegans were around

adult stage, so expression of the conserved C. elegans genes over the

course of the experiment is required to maximize the effect of the

compound on the organism. RNAseq data was taken into account

when selecting compounds to test, but was not used to limit the
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compounds tested. For example, genes expressed during the early

embryo stage may not be functional until the L1 stage. Thirty-five

compounds were chosen for testing in C. elegans based on

compound availability and cost at various vendors.

Compounds formulated in 100% DMSO were tested in

microtiter plates containing 50 ml nematode growth media, 1%

E. coli and 20 L1 C. elegans. The efficacy of a compound was

determined based on the motility of the larvae as compared to

average motility of control wells containing DMSO only at

48 hours post treatment. Larval movement was manually assessed

at 72 hours post treatment to determine if there were altered

movements or morphological changes not detected by the imaging

system. C. elegans was exposed to the five different concentrations

(0.08–20 ppm; ,25 to 60 mM, depending on the molecular weight

of the compound) and two replicates, and the effect was

subsequently confirmed by an independent test.

Compound Screening in Haemonchus contortus
Compounds were screened in H. contortus after formulation in

100% DMSO. The testing was performed in microtiter plates

containing 50 ml nematode media, fecal slurry and 20 L1 H.

contortus. H. contortus was exposed to five different concentrations

(0.08–20 mM). The efficacy of a compound was determined based

on the motility of the larvae as compared to average motility of

control wells containing DMSO only. A MIC90 value was

calculated by determining the lowest dose at which there was a

90% reduction in motility as compared to the control wells. Larval

movement was manually assessed at 72 hours post treatment to

determine if there were altered movements or morphological

changes not detected by the camera.

Compound Screening in Brugia malayi
B. malayi adult male and female worms were obtained from the

peritoneal cavities of male gerbils infected with third-stage larvae

at 120 days post-infection with third stage larvae. Worms were

washed 3 times with RPMI-1640 to eliminate host cell contam-

ination and then washed 3–4 times with RPMI containing 200 U/

ml streptomycin, 100 mg/ml penicillin, and 0.25 mg/ml of

amphotericin-B (Sigma).

Effect of 3 kinase inhibitors on parasite motility and

viability. Effect of inhibitors were studied by incubating two

adult female and male worms (4) in 2 ml of either culture medium

(CM) alone or in CM with added compounds dissolved in solvent

DMSO in 24 well culture plates. Final concentration of DMSO in

CM was less than 1%. Control cultures with worms were set up

with different dilutions of solvent in medium only, and additional

worm cultures included only 2 ml of culture medium. Compounds

were added to the culture medium at a final concentration of

5 mM, 10 mM, 20 mM, 50 mM and 100 mM. The culture medium

was replaced with fresh medium with compounds on alternate

days and all cultures were terminated on day 8. The worm cultures

with or without compounds were carried out in duplicate and

results were expressed as means of the replicate experiments [64].

Parasite motility. Parasite motility and death was assessed

visually by microscopy and the observations were scored as 0,

immotile or dead; 1, slightly active; 2, active and motile; 3,

moderately active and motile; and 4, highly active and motile

(equal to the activity and motility of worms cultured in culture

medium without added compounds).

MTT reduction assay. Parasite (adult worm) viability was

assessed quantitatively by the MTT reduction assay [64]. Briefly,

single worms were placed in 0.5 ml of PBS containing 0.5 mg/ml

of MTT and incubated at 37uC for 1 hr. At the end of the

incubation time, worms were removed and carefully transferred

into a separate well of microtiter plate containing 200 ml of

DMSO and kept at room temperature for 1 hr. The absorbance of

the resulting colored product was then determined at 490 nm

wavelength using a microplate reader. Dead worms that had been

heat killed and doxycyline (10 mg/ml) killed were used as negative

controls for MTT reduction experiments. The minimum concen-

tration of compound that caused .50% reduction in MTT test

was considered as significant.

Microfilaria Counts
Adult female worms incubated in CM released MF in vitro under

the culture conditions tested. MF released into the CM counted in

duplicate 20 ml aliquots on 2, 4, 6 and 8 days post-culture. Results

were expressed as the percent reduction in MF release relative to

results obtained with control worms cultured in CM without

added compounds.

Supporting Information

Figure S1 Distribution of PKs per major families in
distinct nematodes and humans. C. elegans (Ce), H. sapiens

(Hs), B. malayi (Bm), T.spiralis (Ts), M. incognita (Mi).

(EPS)

Figure S2 Number of total kinases within each species/
group of compounds. The curated kinases were considered for

the species. Each compound that mapped to an identified kinase

target in DrugBank via HMM was considered (cutoff 0.1). The

compounds that target a protein in each group were counted.

(EPS)

Figure S3 Example C. elegans dose response curves for
each compound.

(EPS)

Figure S4 Example H. contortus dose-response curves
for each compound.

(EPS)

Figure S5 Alignment, structure, and experimental data
for p38 MAP kinase (CMGC _group1). A. 1DI9 with

DB02984 bound. Residues within 10 Å of the active site that differ

between mammals and nematodes are colored in grey. B. 1DI9

alignment of Tsp_03128 (T. spiralis), Mh10g200708_Con-

tig883_17801_19594 (M. hapla), 14956.m00538 (B. malayi),

B0218.3 (C. elegans), CBN12041 (C. brenneri), CBG01555 (C.

briggsae), NP_001095644.1 (B. taurus), P70618.3 (R. norvegicus),

ENSMUSP00000004990 (M. musculus), ENSP00000229795 (H.

sapiens), NP_001003206.1 (C. familiaris), 1DI9. C. Expression data

from B. malayi microarray data [66] for p38 orthologs in B. malayi.

D. Percent reduction in microfilarial release in B. malayi exposed to

Compound 12 in vitro. E. Percent reduction in viability in B. malayi

when exposed to Compound 12.

(EPS)

Figure S6 Kinases in C. elegans (cutoff 0.1) mapped to
the major KEGG pathways.

(EPS)

Figure S7 Tree of CK1 alpha and gamma with distance
calculated using percent identity. Compound 11 was found

to also inhibit TcCK1.1 in T. cruzi in vitro [45], as well as

aminoglycoside kinase in Legionella pneumophila [46]. A sequence

comparison revealed that TcCK1.1 is closer to CK1 alpha than

CK1 gamma. At this time, there is no data available for 11
binding CK1 alpha in H. sapiens. Given the results with T. cruzi, the

11 may be targeting the CK1-alpha-like nematode proteins,

Parasitic Nematodes Kinome

PLOS Pathogens | www.plospathogens.org 9 February 2013 | Volume 9 | Issue 2 | e1003149



C03C10.1 and F46F2.2 as well, which could provide further

opportunities for specific targeting.

(EPS)

Figure S8 Alignment and structure of casein kinase I
(CK1_group2). A. Structure of 2C47 (H. sapiens casein kinase I

gamma2) with 3 bound (green). The structure of 2CSN (S. pombe

casein kinase I) was superimposed with 2C47 using Pymol [67].

2CSN has 11 bound (yellow). The residues that differ between

mammals and nematodes are highlighted in grey. Sequence

analysis between mammals and nematodes revealed some subtle

differences within 10 Å that could be potentially exploited to make

a slightly more specific compound. B. Dose-response curve of 3 in

C. elegans. C. The alignment of prot_Minc02294 (M. incognita),

Mh10g200708_Contig69_9047_6539 (M. hapla), 14971.m02829

(B. malayi), CBN30117 (C. brenneri), CBG12215 (C. briggsae),

CRE23960 (C. remanei), Y106G6E.6 (C. elegans), Tsp_05423 (T.

spiralis), ENSP00000307753 (H. sapiens), ENSMUSP00000082561

(M. musculus), EHH54474.1 (M. fascicularis), NP_001094526.1 (B.

taurus), and NP_001029042.1 (R. norvegicus).

(EPS)

Figure S9 Expression of B. malayi orthologs for casein
kinase I and results from testing Compound 11 in B.
malayi. A. Expression data from B. malayi microarray data [66]

for casein kinase I alpha orthologs in B. malayi. B. Percent

reduction in viability in B. malayi male and female worm exposed

to Compound 11 in vitro. Two B. malayi orthologs of CK1 alpha,

14972.m07128 and 14979.m04526, were much more highly

expressed in males versus females (log ratio of 0.68 and 0.61,

respectively, compared to an average log ratio of 20.13 and 0.15,

respectively). However, the B. malayi ortholog of CK1 gamma

(14971.m02829) was much more highly expressed in female and

MF (log ratio of 0.48 and 0.82, respectively compared to an

average log ratio of 20.07) [40].

(EPS)

Table S1 The B. malayi kinases in the minimal pan-
phylum containing the 68 orthologous groups. Multiple B.

malayi proteins exist in some orthologous groups. The KO,

Interpro, and GO ids to which the protein was mapped are also

listed.

(XLSX)

Table S2 The M. incognita kinases in the minimal pan-
phylum containing the 68 orthologous groups. Multiple M.

incognita proteins exist in some orthologous groups. The KO and

GO ids to which the protein was mapped are also listed.

(XLSX)

Table S3 The T. spiralis kinases in the minimal pan-
phylum containing the 68 orthologous groups. Multiple T.

spiralis proteins exist in some orthologous groups. The KO and

GO ids to which the protein was mapped are also listed.

(XLSX)

Table S4 The C. elegans kinases in the minimal pan-
phylum containing the 68 orthologous groups. Multiple C.

elegans proteins exist in some orthologous groups. A description of

the protein, the KO and GO ids to which the protein was mapped

are also listed. Tissue expression as well as RNAi classification in

C. elegans are also listed.

(XLSX)

Table S5 The top orthologous groups from the minimal
kinome listed with the respective C. elegans protein, the
kinase classification, E-value from the HMM, DrugBank
target ID and compounds known to bind to the target,
KO and IPR IDs, information regarding tissue expres-
sion in C. elegans, RNAi phenotype, and stage expres-
sion RNAseq data analyzed within a stage and across
different stages.
(XLSX)

Table S6 Top orthologous groups, the drug bank
compound ids associated with the targets within the
orthologous group, drug common name, drug use,
treatment the drug is used to treat, and category of the
drug.
(XLSX)

Table S7 Compounds tested in C. elegans, catalog
number used, kinase classification of compounds target
from drug bank, the phenotype the compound caused in
C. elegans, and the EC50 results in C. elegans listed in
ppm concentrations.
(XLSX)

Video S1 C. elegans control.
(WMV)

Video S2 C. elegans exposed to compounds 5.
(WMV)

Video S3 C. elegans exposed to compounds 6.
(WMV)

Video S4 C. elegans exposed to compounds 8.
(WMV)

Video S5 H. contortus control.
(WMV)

Video S6 H. contortus exposed to compound 5.
(WMV)

Video S7 H. contortus exposed to compound 6.
(WMV)

Video S8 H. contortus exposed to compound 8.
(WMV)
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