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Systems/Circuits

Stream-Related Preferences of Inputs to the Superior
Colliculus from Areas of Dorsal and Ventral Streams of
Mouse Visual Cortex

Quanxin Wang1,2 and Andreas Burkhalter1

1Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, and 2The Allen Institute for Brain
Science, Seattle, Washington 98103

Previous studies of intracortical connections in mouse visual cortex have revealed two subnetworks that resemble the dorsal and ventral
streams in primates. Although calcium imaging studies have shown that many areas of the ventral stream have high spatial acuity
whereas areas of the dorsal stream are highly sensitive for transient visual stimuli, there are some functional inconsistencies that
challenge a simple grouping into “what/perception” and “where/action” streams known in primates. The superior colliculus (SC) is a
major center for processing of multimodal sensory information and the motor control of orienting the eyes, head, and body. Visual
processing is performed in superficial layers, whereas premotor activity is generated in deep layers of the SC. Because the SC is known to
receive input from visual cortex, we asked whether the projections from 10 visual areas of the dorsal and ventral streams terminate in
differential depth profiles within the SC. We found that inputs from primary visual cortex are by far the strongest. Projections from the
ventral stream were substantially weaker, whereas the sparsest input originated from areas of the dorsal stream. Importantly, we found
that ventral stream inputs terminated in superficial layers, whereas dorsal stream inputs tended to be patchy and either projected equally
to superficial and deep layers or strongly preferred deep layers. The results suggest that the anatomically defined ventral and dorsal
streams contain areas that belong to distinct functional systems, specialized for the processing of visual information and visually guided
action, respectively.

Introduction
Mice have an elaborate visual cortex in which the visual field is
represented in multiple areas (Wang and Burkhalter, 2007). Op-
tical recordings of calcium transients have shown that many of
these areas are specialized for the processing of different spatio-
temporal features of visual input (Andermann et al., 2011;
Marshel et al., 2011). Network analyses of the connections of 10
visual areas have further revealed that areas are linked within
interconnected streams (Wang et al., 2012). In the dorsal stream,
outputs from medial/anterior extrastriate areas are strongly con-
nected to parietal, motor, and prelimbic cortices, whereas in the
ventral stream, outputs from lateral extrastriate cortex are pref-
erentially connected to temporal cortex. Although these group-
ings resemble the dorsal, “where/action,” and ventral, “what/
perception,” streams in primates (Ungerleider and Mishkin,
1982; Goodale and Milner, 1992), functional characterization of

mouse extrastriate areas showed that responses not always segre-
gate as expected from the network in primates (Andermann et al.,
2011; Marshel et al., 2011; Wang et al., 2012). To provide addi-
tional insight into stream-related characteristics, we studied the
input from different cortical areas to the superior colliculus (SC),
which in monkey has stream-specific features (Abel et al., 1997).
To assess the associations with streams, we determined the inputs
to superficial and deep layers, which are specialized for visual
processing and sensorimotor transformations, respectively (May,
2006; Gandhi and Katnani, 2011).

In mice, retinal input to the contralateral SC terminates in the
superficial layers, which includes the zona layer (Zo), the super-
ficial gray (SuG), and the optic nerve layer (Op) (Godement et al.,
1984; Kim et al., 2008; Huberman et al., 2009; Kay et al., 2011).
Neurons in superficial layers are retinotopically organized and
are tuned to direction, orientation, and spatial and temporal fre-
quency (Dräger and Hubel, 1975; Wang et al., 2010). SuG is
further subdivided into an upper tier that receives input from
direction-selective on– off retinal ganglion cells (Huberman et
al., 2009; Kay et al., 2011; Rivlin-Etzion et al., 2011) and a lower
tier that receives input from large �/Y-like retinal ganglion cells
(Hofbauer and Dräger, 1985; Huberman et al., 2008; Kim et al.,
2010). The more ventral intermediate gray (InG) and white
(InWh) layers receive inputs from the trigeminal nucleus
(Huerta et al., 1983) and the inferior colliculus (García Del Caño
et al., 2006). Neurons at these locations respond to somatosen-
sory and auditory stimuli (Dräger and Hubel, 1976), and electri-
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cal stimulation produces ear and whisker movements (McHaffie
and Stein, 1982; Hemelt and Keller, 2008). Outputs from these
layers terminate in the thalamus, pretectum, brainstem, and spi-
nal cord (May, 2006) in which they elicit premotor activity for eye
movements and goal-directed movements (Sahibzada et al.,
1986; Felsen and Mainen, 2008; Sakatani and Isa, 2008).

In rats, corticotectal inputs from different areas terminate in
different layers of the SC (Harvey and Worthington, 1990;
Coogan and Burkhalter, 1993). However, the depth profile of
projections from distinct visual areas is not completely under-
stood. Here, we show that laminar inputs to the SC are area
specific and support the existence of ventral and dorsal streams.

Materials and Methods
Experiments were performed in 2- to 3-month-old C57BL/6J mice of ei-
ther sex. All procedures were approved by the Washington University
Animal Studies Committee and agreed with National Institutes of
Health guidelines.

Tracer injections. The procedure for tracer injection in mice has been
described in detail by Wang et al. (2012). In brief, mice were anesthetized
(86 mg/kg ketamine and 13 mg/kg xylazine, i.p.) and secured in a stereo-
taxic apparatus. To label the corticotectal connections, we used the pre-
dominantly anterograde tracer biotinylated dextran amine (BDA; 10,000
molecular weight, 5% in H2O; Invitrogen). BDA was injected iontopho-
retically (3 �A, 7 s on/7 s off duty cycle, 10 min) through glass pipettes (15
�m tip diameter), 350 �m below the pial surface at different locations of
the left visual cortex. The injection coordinates for different areas were
measured from the midline and from the anterior margin of transverse
sinus (lateral/anterior in millimeters): primary visual cortex (V1; 2.8/
1.1), lateromedial area (LM; 4.1/1.4), anterolateral area (AL; 3.7/2.4),
posterior area (P; (4.2/1.0), laterointermediate area (LI; 4.2/1.45),
postrhinal area (POR; 4.3/1.15), rostrolateral area (RL; 3.3/2.8), anterior
area (A; 4.2/3.4), anteromedial area (AM; 1.7/3.0), and posteromedial
area (PM; 1.6/1.9). For post hoc identification of cortical areas, we labeled
callosal landmarks. The retrograde tracer bisbenzimide (5% in H2O;
Sigma) was pressure injected (Picospritzer III; Parker-Hannafin)
through glass pipettes (20 �m tip diameter) at 30 – 40 sites (20 –50 nl
each) distributed across the right posterior cortical hemisphere. After the
injections, the bone flap was replaced, the wound was closed, and mice
were returned to a heated recovery chamber.

Histology and imaging. Three to 4 d after surgery, mice were overdosed
with ketamine/xylazine and perfused transcardially with PBS, pH 7.4,
followed by 4% paraformaldehyde in 0.1 M phosphate buffer (PB), pH
7.4. The brain was removed from the skull, postfixed overnight (4°C) in
the same fixative, followed by cryoprotection in 30% sucrose. The next
day, the hemisphere containing the bisbenzimide-labeled callosal con-
nections and the BDA injection was imaged in situ with a CCD camera
(CoolSnap EZ; Roper Scientific) attached to a fluorescence stereomicro-
scope (Leica MZ16F) equipped for UV fluorescence. The hemisphere
was then sectioned on a cryostat at 50 �m in the coronal plane. Serial
sections were wet mounted on glass slides, and the callosal connections,
including the BDA injection site, were imaged with a CCD camera (Op-
tronics MagnaFire) attached to a compound microscope (Nikon Eclipse
80i) equipped for UV fluorescence. To determine the rostrocaudal loca-
tion of each coronal section and its relation to the pattern of callosal
connections, the sequence of slices was mapped onto the in situ image of
the hemisphere. The injection site was assigned to a specific area by its
location relative to callosal landmarks (Wang and Burkhalter, 2007). In
addition, each section was imaged under dark-field illumination to reveal
the myeloarchitecture of V1. The sections were then removed from the
slides, treated with 0.3% Triton X-100 in PB, and reacted in a solution
containing avidin and biotinylated HRP (Vectastain ABC Elite) in the
presence of diaminobenzidine (DAB; 0.005%) and H2O2 (0.01%).
Stained sections were mounted on glass slides, dehydrated in ethanol,
and cleared in xylenes, and the DAB reaction product was intensified
with AgNO3 and HAuCl2 (Jiang et al., 1993). Sections were coverslipped
with DPX (BDH Laboratory Supplies). Digital images of anterogradely
BDA-labeled neuronal connections to the SC were taken under a micro-

scope equipped with a CCD camera. Montages of dark-field images were
produced using Photoshop CS5 (Adobe). To visualize the layers of the
SC, alternate sections were counterstained with 0.5% cresyl violet. In a
separate case, the Nissl-stained lamination pattern of the SC was com-
pared with the myeloarchitectonic pattern, using alternating sections
stained with cresyl violet and AgNO3 for myelin (Gallyas, 1979). The
dimensions of projections were expressed as mean � SEM.

Optical density measurements. To determine the size of the injection
site, we used custom MATLAB software to delineate the region that
contained 80% of the optical density. The weight of corticotectal input
was measured as the optical density of BDA-labeled projections, which
we have shown previously to be tightly correlated with bouton density
(Wang et al., 2011). Using custom MATLAB software, we determined the
optical density in each layer by averaging across three to four sections
through the center of the projection and subtracting the background
from the mean pixel value. Sublaminae of the SuG were defined as the
upper and lower halves of the layer. The same procedure was used to
determine the optical density at the injection site. The weight of projec-
tions from a given area across two to four mice was expressed as mean �
SEM percentage of the optical density at the injection site. The relative
weight of input to specific layers was expressed in percentage of the total
corticotectal input. The Student’s t test was used for statistical compari-
sons. Significance was p � 0.05.

Results
We obtained results from 26 mice. The mean diameters of the
BDA injection sites were similar in all areas and varied be-

Figure 1. Projections of V1 to the SC. A, In situ image of callosal connections retrogradely

labeled with the fluorescent tracer bisbenzimide (blue). BDA injection site is indicated by arrow.

White lines indicate the rostrocaudal level of the coronal sections shown in B and B�. B, Coronal

section showing bisbenzimide-labeled callosal connections and injection site (arrow) in acal-

losal V1 near the callosally connected band at the V1/LM border (arrowhead). B�, Dark-field

image of injection site in section adjacent to B, showing that BDA is confined to gray matter. C,

Dark-field images of BDA-labeled terminal axonal branches in superficial layers of the SC at

anterior (top), middle, and posterior (bottom) levels of the projection. Superficial layers consist

of the Zo, SuG, and Op. Deep layers consist of the ventral InG, InWh, deep gray layer (DpG), deep

white layer (DpWh or DWh), and periaqueductal gray (PAG). D, Myeloarchitecture of the SC. Au,

Auditory cortex; RSD, dorsal retrosplenial cortex; Ent, entorhinal cortex; A, anterior; M, medial;

P, posterior; L, lateral; D, dorsal; V, ventral. Scale bar: A, B, B�, D, 1 mm; C, 0.5 mm.
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tween 424 � 55 and 493 � 33 �m
(mean � SD). In all cases, injections
were confined to gray matter and ex-
tended from layer 1 to the middle of
layer 6 (see Figs. 1, 3–11).

Input from V1
Three injections were found in the heavily
myelinated, acallosal region identified as
V1 (Fig. 1A,B; Wang et al., 2012). Each
injection labeled a single dense cluster of
axon terminals in the upper nasal repre-
sentation of the ipsilateral SC (Fig. 1C;
Mrsic-Flogel et al., 2005). The projections
at these sites were twice as extensive in the
rostrocaudal as the mediolateral axes
(563 � 9 vs 280 � 11 �m). Optical density
measurements showed that 95% of corti-
cotectal inputs were confined to superfi-
cial layers (Zo, SuG, Op), whereas �5% of
boutons were found in the deep InG and
InWh layers (Fig. 2A). Of all layers, the Op
received the largest proportion (Fig. 2A)
and heaviest V1 input (Fig. 2B). A signifi-
cantly (p � 0.03) larger percentage of in-
puts to SuG terminated in lower (63 �
2%) than the upper (37 � 2%) half of the
layer (Fig. 2A). The sum of optical densi-
ties across layers was approximately equal
(99%) to the total optical density mea-
sured at the injection site (Fig. 2B).

Input from LM
Four injections were found in LM located in
the acallosal region lateral to V1 (Wang and
Burkhalter, 2007). In the example shown in
Figure 3, A and B, the injection was near the
callosal band at the posterior border of LM,
which represents the upper peripheral visual
field (Wang and Burkhalter, 2007). The cor-
ticotectal projection terminated in a single,
non-uniform cluster in the center of the
posterior ipsilateral SC (Fig. 3C). The mean
size of projections from LM was more ex-
tensive (mediolateral, 362 � 11 �m; antero-
posterior, 967 � 15 �m) than from V1
because of the fact that similar-size injec-
tions fill a larger proportion of the smaller
area, LM. A total of 99% of labeled terminals
were found in superficial layers, of which
Op received the dominant (59%) input
(Figs. 2A, 3C). Of the total input from LM,
projections to Zo were significantly (p �
0.01) weaker than from V1, whereas inputs
to Op were significantly (p � 0.01) stronger
(Fig. 2A). Most of the inputs to SuG termi-
nated in the lower tier (75%), whereas input
to the upper tier was significantly (p � 0.01)
sparser (25%) (Fig. 2A). The overall weight
of corticotectal input from LM was 28% of
the optical density measured at the injection
site (Fig. 2B).

Figure 2. Laminar distribution of the weight of projections of 10 visual cortical areas to the SC. A, Mean�SEM optical density of inputs

from areas V1, LM, LI, P, POR, AL, PM, RL, AM, and A to different layers of the SC, expressed in percentage of the total projection. Superficial

layers (black). Deep layers consist of intermediate InG and InWh layers (dark gray) and the basal deep gray layer (DpG), deep white layer

(DWh), and PAG layers (light gray). Red numbers indicate percentage of projections to superficial (top) and intermediate plus basal

(bottom)layers.Bluenumbersindicatethepercentageofinputstosuperficial(top)anddeep(bottom)sublaminaeoftheSuG.Thebluebars

above and below the blue line represent the proportions of inputs to the two sublaminae. B, Mean � SEM optical density of inputs from

visual cortical areas to different SC layers, expressed in percentage of the optical density at the center of the injection site. Black numbers

indicate the sum total of the relative optical densities across layers. Blue numbers and bars above and below the blue line indicate the

absolute strengths of inputs to superficial and deep sublaminae of SuG. For abbreviations, see Figure 1.
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Input from LI
Three injections were found in LI (Wang and Burkhalter, 2007),
located at the callosally connected lateral border of the large acal-
losal region adjacent to V1 (Fig. 4A,B). All of the injections
labeled projections in the upper temporal visual field representa-
tion in the posteromedial quadrant of the SC (Fig. 4C). The cor-
ticotectal projection was relatively wide and highly elongated
(mediolateral, 472 � 10 �m; anteroposterior, 1150 � 13 �m),
indicating that the injection site was large relative to the size of LI.
Of the overall ipsilateral projection, 65% terminated in superfi-
cial layers, of which Op received twice (35.5%) as much input as
Zo and SuG combined (Fig. 2A). The lower half of SuG received
a significantly (p � 0.02) larger (68%) proportion of input than
the superficial half (32%) (Fig. 2A). Unlike V1 and LM, which
essentially lack deep layer inputs, 35% of the projections of LI
terminated in deep layers (Fig. 2A). The weight of the entire
ipsilateral corticotectal projection was low (16%) (Fig. 2B). In-
terestingly, a few corticotectal fibers crossed the midline and ter-
minated in the contralateral Op. How common crossed inputs
are we were unable to determine because, in most cases, we only
preserved the ipsilateral SC. However, from the material posted
by the Allen Institute, it appears that weak bilateral corticotectal
connections are present throughout large parts of mouse visual
cortex, including V1.

Input from P
Two injections were made in area P, located in the most posterior
acallosal ring lateral to V1 (Fig. 5A,B). Both injections labeled a
single patch (mediolateral, 259 � 11 �m; anteroposterior, 875 �

26 �m) at the medial corner in the posterior SC (Fig. 5C). A total
of 82% of the corticotectal input terminated in superficial layers,
of which Op was the main (54%) recipient (Fig. 2A). Of the weak
input to SuG, approximately equal proportions terminated in the
superficial (44%) and deep (56%) halves of the layer (Fig. 2A,B).
A small fraction of corticotectal projections was bilateral and
terminated in the contralateral Op. The weight of the ipsilateral
superficial layer input was �8%, and inputs to deep layers were
barely detectable (Fig. 2B).

Input from POR
Two injections were made into the parahippocampal area, POR,
located in callosally connected cortex posterior and lateral to the
large acallosal ring on the lateral side of V1 (Fig. 6A,B). Both
injections labeled a single cluster (mediolateral, 378 � 11 �m;
anteroposterior, 825 � 16 �m) of inputs in the upper nasal field
representation in the posteromedial part of the ipsilateral SC (Fig.
6C). A total of 83% of the corticotectal inputs projected to super-
ficial layers (Fig. 2A), of which 34% terminated in Op. Projec-
tions to SuG were sparse and distributed equally to upper and
lower sublaminae (Fig. 2A,B). Inputs to deep layers were ex-
tremely weak (Fig. 2A), and so was the overall weight (14%) of the
entire corticotectal projection (Fig. 2B).

Input from AL
Three injections were found in area AL, located in the anterior
third of the acallosal region lateral to V1 (Fig. 7 A, B). All in-

Figure 3. Projections of LM to the SC. A, In situ image of callosal connections retrogradely

labeled with the fluorescent tracer bisbenzimide (blue). BDA injection site (arrow) at postero-

medial border of acallosal zone lateral to V1. White lines indicate the rostrocaudal level of the

coronal sections shown in B and B�. B, Coronal section showing bisbenzimide-labeled callosal

connections and injection site (arrow) on the lateral side of the callosal band near the V1/LM

border (arrowhead). B�, Dark-field image of section adjacent to B, showing that BDA injection

site is confined to gray matter. C, Dark-field images of BDA-labeled axonal branches terminating

mainly in superficial layers Zo, SuG, and Op. Scale bars: A, B, B�, 1 mm; C, 0.5 mm. For abbrevi-

ations, see Figure 1.

Figure 4. Projections of LI to the SC. A, In situ image of callosal connections retrogradely

labeled with the fluorescent tracer bisbenzimide (blue). BDA injection site (arrow) at postero-

lateral border of acallosal zone lateral to V1. White lines indicate the rostrocaudal level of the

coronal sections shown in B and B�. B, Coronal section showing bisbenzimide-labeled callosal

connections and injection site (arrow) at the lateral border of the large acallosal zone adjacent

to V1. B�, Arrowhead marks V1/LM border. Dark-field image of section adjacent to B showing

that BDA injection site is confined to gray matter. C, Dark-field images of BDA-labeled axonal

branches terminating mainly in superficial layers. Inputs to deep layers are sparse. Scale bars: A,

B, B�, 1 mm; C, 0.5 mm. For abbreviations, see Figure 1.
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jections were located at the lateral border of the acallosal re-
gion in the representation of the lower temporal visual field
(Wang and Burkhalter, 2007). Accordingly, the corticotectal
projections occupied central and lateral parts of the ipsilateral
SC (Fig. 7C). In sharp contrast to projections from V1, LM, P,
LI, and POR, inputs from AL terminated in repeating clusters
with a center-to-center spacing in the coronal plane of �200
�m (Fig. 7C). The mean width and length of the overall pro-
jection was 650 � 12 and 926 � 6 �m, respectively. Unlike the
projections from V1 LM, LI, P, and POR, which were strongly
biased to superficial layers, inputs from AL were distributed in
approximately equal percentages to superficial (54%) and
deep (46%) layers (Fig. 2A). The largest percentage of super-
ficial input terminated in Op (39%), whereas deep layer input
projected mostly (32%) to InG. Input to SuG terminated
mostly in the lower sublamina (82%) and differed signifi-
cantly ( p � 0.001) from the much sparser (18%) projection to
the superficial tier (Fig. 2A). The overall weight (9.8%) of the
corticotectal projection was low (Fig. 2B). Crossed projections
were extremely weak.

Input from PM
Three injections were found in PM, located at the medial edge of
the acallosal region at the medial side of V1 (Fig. 8A,B). All of the
injections were centered in posterior PM and labeled projections
in the upper temporal representation in the posterior medial
quadrant of the SC (Fig. 8C). The projections were weak and

dispersed across a relatively wide region (mediolateral, 418 � 7
�m; anteroposterior, 700 � 8 �m) of the SC. A total of 88% of the
corticotectal projection terminated in deep layers, with large con-
tributions to the intermediate layers (64%) and the periaqueduc-
tal gray (PAG) (21%) (Fig. 2A). All inputs to SuG terminated in
the deep portion of the layer (Fig. 2A). The overall weight (5%) of
the corticotectal projection was very light (Fig. 2B).

Input from RL
Three injections were found in area RL, located in the small acal-
losal ring lateral to the tip of V1 (Fig. 9A,B). In each case, the
corticotectal projection was targeted to slightly different loca-
tions, supporting the topographic map within RL (Wang and
Burkhalter, 2007). The example illustrated in Figure 9C shows
inputs from the upper peripheral quadrant. Similar to the cor-
ticotectal inputs from AL, the projections from RL were non-
uniform and widespread (mediolateral, 581 � 4 �m;
anteroposterior, 933 � 5 �m). In contrast to the projections
from areas of lateroposterior extrastriate cortex, 73% of the
input from RL terminated in deep layers, predominantly in
InG (44%) (Fig. 2A). Input to SuG accounted for merely
0.25% of the total projection (Fig. 2B). Of the few fibers found
in SuG, 84% terminated in the lower sublamina (Fig. 2A). The
overall weight (8%) of corticotectal input was light (Fig. 2B).

Figure 5. Projections of P to the SC. A, In situ image of callosal connections retrogradely

labeled with the fluorescent tracer bisbenzimide (blue). BDA injection site (arrow) in small

acallosal region behind the large acallosal zone on the lateral side of V1. Blue staining at injec-

tion site is attributable to tissue damage. White lines indicate the rostrocaudal level of the

coronal sections shown in B and B�. B, Coronal section showing bisbenzimide-labeled callosal

connections and injections site (arrow) in acallosal zone between the V1/P (left arrowhead) and

P/POR (right arrowhead) borders. B�, Dark-field image of section adjacent to B, showing that

BDA injection site is confined to gray matter. C, Dark-field images of BDA-labeled axonal

branches terminating mainly in the superficial layer Op. Scale bars: A, B, B�, 1 mm; C, 0.5 mm.

For abbreviations, see Figure 1.

Figure 6. Projections of POR to the SC. A, In situ image of callosal connections retrogradely

labeled with the fluorescent tracer bisbenzimide (blue). BDA injection site (arrow) in callosally

connected cortex lateral to the acallosal field containing area P. White lines indicate the rostro-

caudal level of the coronal sections shown in B and B�. B, Coronal section showing

bisbenzimide-labeled callosal connections and injection site (arrow) in callosally connected

cortex lateral to the P/POR border (left arrowhead). Right arrowhead marks V1/P border. B�,

Dark-field image of section adjacent to B, showing that BDA injection site (arrow) is confined to

gray matter. C, Dark-field images of BDA-labeled axonal branches terminating mainly in the

superficial layer Op. Scale bars: A, B, B�, 1 mm; C, 0.5 mm. For abbreviations, see Figure 1.
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Input from AM
Two injections were found in AM, located at the border of cal-
losally connected cortex medial to the tip of V1 (Fig. 10A,B).
Both injections labeled corticotectal projections across large parts
of the upper temporal and nasal quadrants of the ipsilateral SC
(Fig. 10C). The widely dispersed projections (mediolateral,
676 � 8 �m; anteroposterior, 950 � 8 �m) were non-uniform,
and 87% terminated in deep layers (Fig. 2A). A total of 71% of the
input was found in intermediate layers (Fig. 2A). Input to SuG
was extremely sparse and confined to the lower tier of the layer
(Fig. 2A). The overall weight (26%) of input from AM was com-
parable with that of LM (Fig. 2B).

Input from A
Three injections were found in area A, located in acallosal cortex
between V1 and primary somatosensory cortex (S1) (Fig.
11A,B). In all three cases, the corticotectal projections were non-
uniform and confined to the ipsilateral side. Terminal branches
were distributed across large parts (mediolateral, 652 � 5 �m;
anteroposterior, 675 � 6 �m) of the upper nasal and temporal
representations of the SC (Fig. 11C), indicating that the injections
were located at the anteromedial border of area A (Wang and
Burkhalter, 2007). A total of 93% of the projections terminated in
the intermediate layers, InG and InWh (Fig. 2A). Input to SuG
terminated exclusively within the lower sublamina (Fig. 2A). The
overall weight (11%) of inputs was light (Fig. 2B).

Discussion
The results show a striking preference in the corticotectal connec-
tions of mouse visual cortex, in which 65–99% of inputs from the
ventral areas (LM, LI, P, and POR) terminate in superficial layers,
whereas 73–93% of projections from dorsal areas (RL, A, AM, and
PM) project to deep layers. The preference for superficial (95%) over
deep (5%) layers also exists in the projections from V1. The only
exception is area AL, whose inputs to superficial (54%) and deep
(46%) layers are of approximately equal strength.

In most mammals, superficial layers of the SC are the principal
midbrain targets of retinal input (Hofbauer and Dräger, 1985; May,
2006). The neurons in these layers respond mainly to visual inputs
and selectively respond to the size, orientation, and direction of drift-
ing high spatial frequency gratings (Girman and Lund, 2007; Prévost
et al., 2007; Wang et al., 2010). Deep layers project to the saccade-
and gaze-control centers in the brainstem (Murray and Coulter,
1982; Dean et al., 1986, 1988; Redgrave et al., 1990), in which neu-
rons are sensitive to somatosensory, auditory, and visual inputs
(Dräger and Hubel, 1975). Thus, the patterns of corticotectal input
suggest that ventral stream areas contribute to the detection of visual
objects, whereas dorsal stream areas provide sensory inputs to pre-
motor neurons for guiding gaze, orienting, and navigation (Felsen
and Mainen, 2008; Sakatani and Isa, 2008).

Connectivity profiles
The corticotectal projection from V1 is the strongest and resem-
bles that of primates (Fries, 1984; Lock et al., 2003; Collins et al.,

Figure 7. Projections of AL to the SC. A, In situ image of callosal connections retrogradely

labeled with the fluorescent tracer bisbenzimide (blue). BDA injection site (arrow) in the an-

terolateral border of the large acallosal zone lateral to V1. Blue staining at the injection site is

attributable to tissue damage. White lines indicate the rostrocaudal level of the coronal sections

shown in B and B�. B, Coronal section showing bisbenzimide-labeled callosal connections and

injection site (arrow) in anterior part of acallosal zone. Right arrowhead marks V1/AL border,

and left arrowhead indicates lateral border of acallosal zone. B�, Dark-field image of section

adjacent to B, showing that BDA injection is confined to gray matter. C, Dark-field images of

BDA-labeled patchy axonal branches terminating mainly in superficial layer (Op) and deep layer

(InG). Scale bars: A, B, B�, 1 mm; C, 0.5 mm. For abbreviations, see Figure 1.

Figure 8. Projections of PM to the SC. A, In situ image of callosal connections retrogradely

labeled with the fluorescent tracer bisbenzimide (blue). BDA injection site (arrow) in callosally

connected cortex medial to V1. White lines indicate the rostrocaudal level of the coronal sections

shown in B and B�. B, Coronal section showing bisbenzimide-labeled callosal connections and

injection site (arrow) in callosally connected cortex medial to V1. Arrowhead marks V1/AL

border. B�, Dark-field image of section adjacent to B, showing that BDA injection is confined to

gray matter. C, Dark-field images of BDA-labeled axonal branches terminating in deep layers of

the SC. Scale bars: A, B, B�, 1 mm; C, 0.5 mm. For abbreviations, see Figure 1.
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2005; Baldwin and Kaas, 2012). Input from the early extrastriate
area, LM, is weaker (28%), although the injection sites extended
across larger parts of the map than in V1. The paucity of cortico-
tectal input from LM resembled that of V2 in primates (Fries,
1984; Lock et al., 2003; Collins et al., 2005; Baldwin and Kaas,
2012). Corticotectal inputs from other areas of occipital (LI and
P) and temporal (POR) cortices are even sparser (14 –16%), re-
sembling the weak inputs from visual area 3 (V3), visual area 3a
(V3a), visual area 4 (V4), dorsolateral visual area (DL), tempo-
ral– occipital area (TEO), and temporal cortex (TE) in primates
(Fries, 1984; Baizer et al., 1993; Collins et al., 2005; Baldwin and
Kaas, 2012). Weak (10%) input also originates from AL, an area
that was likened to primate middle temporal area (MT) (Mon-
tero and Jian, 1995). Corticotectal inputs from MT are strong
in simian (Fries, 1984; Lock et al., 2003; Collins et al., 2005)
but sparser in prosimian (Baldwin and Kaas, 2012) monkeys,
which resemble AL projections in mice. Corticotectal input
from posterior parietal cortex is weak for RL and A (8 –11%)
but stronger for AM (26%), supporting the areal subdivisions
within this region (Wang and Burkhalter, 2007). The weak
corticotectal input from these areas is consistent with findings
in primates (Baizer et al., 1993; Lui et al., 1995; Collins et al.,
2005; Baldwin and Kaas, 2012). In rodents, posterior partial
cortex is involved in the processing of multimodal informa-
tion, guiding self-motion and navigation (Torrealba and Val-
dés, 2008; Marshel et al., 2011; Harvey et al., 2012). The
weakest projections originate from PM, which resembles area
DL in New World monkeys (Collins et al., 2005). PM contains

head-direction cells (Chen et al., 1994) and may be involved in
object tracking during navigation.

Topography
We found that the corticotectal projections of all 10 visual areas
are topographically organized (Olavarria and Montero, 1989;
Mrsic-Flogel et al., 2005). The projections from all areas, except P
and A, are more widespread along axes of azimuth than elevation.
The extent and anisotropy is greater for inputs from areas in
which the representation of azimuth is compressed (Wang and
Burkhalter, 2007). This indicates that the tracer uptake at the
injection site labeled a larger proportion of the azimuthal than
elevation map in the SC. Although this may explain the anisot-
ropy of inputs from LM, LI, and PM, it is inconsistent with the
projections from POR, AL, RL, and AM, whose maps are more
symmetrical (Wang and Burkhalter, 2007). Thus, corticotectal
projections from areas POR, AL, RL, and AM strongly diverge
along the nasotemporal axis for body, head, and eye movements.
The connections from POR may provide influences on receptive
field centers from the surround (Girman and Lund, 2007). Cor-
ticotectal projections from AL may contact wide-field neurons,
boost responses to transient stimuli (Isa and Hall, 2009), and,
through connections with the lateral geniculate nucleus, enhance
the detection of horizontally moving objects (Mooney et al.,
1988). In monkey, this indirect colliculo-thalamo-cortical path-
way exists to MT and V3 but not to V2 and V4 (Lyon et al., 2010).
Widespread corticotectal input from the posterior parietal areas

Figure 9. Projections of RL to the SC. A, In situ image of callosal connections retrogradely

labeled with the fluorescent tracer bisbenzimide (blue). BDA injection site (arrow) in the small

callosal ring on the lateral side of V1. White lines indicate the rostrocaudal level of the coronal

sections shown in B and B�. B, Coronal section showing bisbenzimide-labeled callosal connec-

tions and injection site (arrow). Right arrowhead marks V1/RL border. Left arrowhead indicates

RL/AL border. B�, Dark-field image of section adjacent to B, showing that BDA injection is

confined to gray matter. C, Dark-field images of BDA-labeled axonal branches terminating in

deep layers of the SC. Scale bars: A, B, B�, 1 mm; C, 0.5 mm. For abbreviations, see Figure 1.

Figure 10. Projections of AM to the SC. A, In situ image of callosal connections retrogradely

labeled with the fluorescent tracer bisbenzimide (blue). BDA injection site (arrow) in callosally

connected cortex, medial to the tip of V1. White lines indicate the rostrocaudal level of the

coronal sections shown in B and B�. B, Coronal section showing bisbenzimide-labeled callosal

connections and injection site (arrow) in callosally connected cortex medial to V1. Arrowhead

marks AM/A border. B�, Dark-field image of section adjacent to B, showing that BDA injection is

confined to gray matter. C, Dark-field images of BDA-labeled axonal branches terminating in

deep layers of the SC. Scale bar: A, B, B�, 1 mm; C, 0.5 mm. For abbreviations, see Figure 1.
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RL and AM to deep layers may play a role in remapping visual
receptive fields to neurons that will represent that location after a
change of gaze (Dunn et al., 2010).

Lamination
Studies in rat have shown that inputs from lateral posterior ex-
trastriate cortex to the SC terminate more superficially than in-
puts from anterior, medial, and prefrontal areas (Beckstead,
1979; Harvey and Worthington, 1990; Coogan and Burkhalter,
1993). Our results in mice show that these depth profiles are
diagnostic for nine visual areas. Area-specific laminar distribu-
tions of corticotectal projections are known in cats and primates
in which all early and some higher visual areas (cat: 17, 18, 19;
macaque: V2, V3, V3A, V4, MT, TEO, TE) terminate in superfi-
cial layers (Fries, 1984; Ungerleider et al., 1984; Baizer et al., 1993;
Webster et al., 1993; Lock et al., 2003; Collins et al., 2005; Baldwin
and Kaas, 2012). In contrast, deep layers receive inputs from
posterior parietal (ventral intraparietal area, lateral intraparietal
area, orientation association area, preoptic area, area 7) and pre-
frontal (frontal eye field) cortices (Stanton et al., 1988; Harting et
al., 1992; Baizer et al., 1993; Webster et al., 1993; Lui et al., 1995;
Leichnetz, 2001; Collins et al., 2005; Baldwin and Kaas, 2012).
Thus, unlike in cats and monkeys, V1 in mice is surrounded by
areas with superficial and deep corticotectal projections. This
suggests that only the ventral areas are comparable with early

areas of primates, whereas the dorsal and medial areas are related
to primate posterior parietal and posterior medial cortices. This
may be a simplification, because lateral areas (LI, AL) include
projections to deep layers that are absent from early areas in
primates. Among lateral areas, deep layer inputs are strongest
from AL, suggesting that AL plays a role in aligning visual coor-
dinates with body coordinates. Inputs to PAG originate from
many areas but are particularly strong from PM, suggesting that it
belongs to a network for defensive behavior (Schenberg et al.,
2005; Zhang et al., 2012).

In addition to area-specific input to superficial and deep SC
layers, we found differential inputs to upper and lower sublami-
nae of SuG. Inputs from all areas, except P and POR, are strongly
biased to the lower half of SuG. The bias for the deep sublamina is
stronger for projections from dorsal than ventral areas. The pau-
city of inputs to the superficial SuG shows that this central target
of many different types of off and on– off direction-selective ret-
inal ganglion cells (Huberman et al., 2009; Kim et al., 2010; Kay et
al., 2011; Rivlin-Etzion et al., 2011), whose somata are small and
axons are slow conducting (Fukuda et al., 1978; Sachs and Sch-
neider, 1984; Hofbauer and Dräger, 1985; Hong et al., 2011),
receives only weak cortical feedback. Thus, corticotectal inputs
may have little effect on orientation tuning in upper SuG and on
downstream image-forming signals in the geniculocortical sys-
tem (Harting et al. 1991). In contrast, corticotectal input to the
lower half of SuG may interact with input from motion-sensitive
� retinal ganglion cells, which have large receptive fields and
fast-conducting axons (Huberman et al., 2008; Kim et al., 2010).
The outputs from deep layers may flow through the lateral pos-
terior nucleus into a network for directed attention (Kamishina
et al., 2009) and/or to gaze-control centers in the brainstem
(Dean et al., 1986, 1988). This suggests that the strong corticotec-
tal input from dorsal areas is important for decision making and
visuomotor actions.

Streams
The laminar patterns of corticotectal inputs show groupings of
areas that resemble the community structure of ventral and dor-
sal subnetworks (Wang et al. 2012). The distinctions match the
groupings into dorsal and ventral streams in primates, except that
projections from MT are confined to superficial layers of the SC
(Ungerleider et al., 1984). Moreover, the scheme does not fit
perfectly the functional distinctions of high spatial acuity ventral
areas and high temporal sensitivity dorsal areas, in that LM ex-
hibits response properties of dorsal and PM characteristics of
ventral areas (Andermann et al., 2011; Marshel et al., 2011). Al-
though we are intrigued by the mismatch, the patterns of corti-
cotectal projections demonstrate that LM is associated with V1,
LI, P, and POR of the ventral stream, whereas PM belongs to-
gether with AL, RL, A, and AM to the dorsal stream. The high
spatial acuity of neurons in PM (Andermann et al., 2011; Marshel
et al., 2011) suggests that the pathway through medial extrastriate
cortex represents a distinct branch of the dorsal stream special-
ized for encoding landmarks during navigation (Kravitz et al.,
2011).
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