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Cellular/Molecular

The Role of Presynaptic Dynamics in Processing of Natural
Spike Trains in Hippocampal Synapses

Umasankar Kandaswamy,1 Pan-Yue Deng,1 Charles F. Stevens,2 and Vitaly A. Klyachko1

1Departments of Biomedical Engineering, and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, and 2Salk
Institute for Biological Studies, La Jolla, California 92037

Short-term plasticity (STP) represents a key neuronal mechanism of information processing. In excitatory hippocampal synapses, STP
serves as a high-pass filter optimized for the transmission of information-carrying place-field discharges. This STP filter enables synapses
to perform a highly nonlinear, switch-like operation permitting the passage and amplification of signals with place-field–like character-
istics. Because of the complexity of interactions among STP processes, the synaptic mechanisms underlying this filtering paradigm
remain poorly understood. Here, we describe a simple mechanistic model of STP, derived in large part from basic principles of synaptic
function, that reproduces this highly nonlinear synaptic behavior. The model, formulated in terms of release probability, considers the
interactions between calcium-dependent forms of presynaptic enhancement and their impact on vesicle pool dynamics, which is de-
scribed using a two-pool model of vesicle recruitment. By considering the interdependency between release probability and various
forms of STP, the model attempts to provide a realistic coupling among major presynaptic processes. The model parameters are first
determined using synaptic dynamics during constant-frequency stimulation. The model then accurately reproduces all major charac-
teristics of the synaptic filtering paradigm during natural stimulus patterns without free parameters. An elimination approach is then
used to identify the contribution of each STP component to synaptic dynamics. Based on this analysis, the model predicts strong calcium
dependence of synaptic filtering properties, which is verified experimentally in rat hippocampal slices. This simple model may thus offer
a useful framework to further investigate the role of STP in neural computations.

Introduction
Short-term plasticity (STP) comprises several rapid synaptic pro-
cesses that operate on millisecond-to-minute timescales and
modulate synaptic strength in an activity-dependent manner
(Zucker and Regehr, 2002). This rapid, bidirectional, and revers-
ible modulation of synaptic properties is believed to function as
one of the fundamental neuronal mechanisms of information
processing in the brain. The specific computations that STP per-
forms during neural activity have been mostly studied in systems
in which a single form of STP dominates synaptic dynamics,
including input compression and gain control in cortical neurons
(Abbott et al., 1997), sound localization in the auditory brain-
stem (Cook et al., 2003), and sensory adaptation in primary vi-
sual (Chance et al., 1998) and somatosensory cortices (Chung et
al., 2002). However, the role of STP in information processing
has been more difficult to establish in central synapses expressing
multiple interacting forms of STP. The contributions of specific
STP components to synaptic dynamics thus remain incompletely
understood.

The relatively well understood information encoding in the
hippocampus makes the excitatory hippocampal synapses an at-
tractive platform to elucidate the contributions of STP processes
to synaptic computations. The activity of many pyramidal cells in
the CA3-CA1 areas of the hippocampus encodes information
about the animal’s location via high-frequency spike discharges
at certain places in the environment, known as place-fields
(O’Keefe and Dostrovsky, 1971). Using such natural spike pat-
terns recorded in active rodents, we have shown that STP in
hippocampal synapses acts as a high-pass filter optimized for
transmission of information-carrying place-field discharges
(Klyachko and Stevens, 2006a). This highly nonlinear switch-like
filtering paradigm is characterized by a rapid increase and satu-
ration of synaptic strength during high-frequency input. Satura-
tion of synaptic strength occurs at frequencies above �7 Hz,
leading to largely content-independent processing of place-field
discharges, which typically have higher spike frequencies. Be-
cause of the complex interdependencies among the STP compo-
nents that determine synaptic dynamics in this system, the
underlying synaptic mechanisms of this filtering paradigm re-
main poorly understood, preventing incorporation of these dy-
namic processes into larger-scale models of neural networks.

We therefore sought to account for the reciprocal interdepen-
dencies among STP components and synaptic release probability
with a simple, yet mechanistically relevant model of STP. This
model builds on and extends several previous STP models
(Magleby and Zengel, 1982; Zengel and Magleby, 1982; Bertram
et al., 1996; Tsodyks and Markram, 1997; Varela et al., 1997; Weis
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et al., 1999; Dittman et al., 2000; Hempel et al., 2000; Pan and
Zucker, 2009). We show that once tuned, the model correctly
predicts synaptic dynamics during natural stimulus trains with-
out free parameters. The model correctly reproduces all main
characteristics of the nonlinear synaptic filtering pattern experi-
mentally observed. Elimination of individual forms of STP from
the model reveals the contributions of each STP process to syn-
aptic dynamics. The model further predicts strong calcium
dependence of the synaptic filtering pattern that we verify exper-
imentally in hippocampal slices. This simple model thus captures
many aspects of rapid synaptic dynamics in hippocampal syn-
apses and may offer a useful framework to further investigate the
role of STP in synaptic computations.

Materials and Methods
Preparation. Transverse hippocampal slices (400 �m) were prepared as
previously described (Pouille and Scanziani, 2001; Losonczy et al., 2002).
In brief, slices were cut on a Leica Vibratome in ice-cold artificial CSF,
incubated for �1 h at 32°C, and then kept at the room temperature
for 1– 4 h before recordings. The CA3 area was surgically separated in
each slice with an incision to prevent recurrent excitation. During the
experiments, the bath temperature was continuously monitored and
adjusted to 33–34°C with an automatic in-line heater controller with
a rapid feedback.

Whole-cell recordings. Synaptic currents were recorded in whole-cell
configuration from CA1 pyramidal cells in rat hippocampal slices at
33�34°C using an Axopatch 200B amplifier. Synaptic activity was in-
duced by stimulation of Schaffer collaterals via a bipolar electrode placed
in the stratum radiatum, and whole-cell currents were recorded at the
holding potential of �70 mV. Micropipettes (3– 6 M�) were filled with
solution containing the following (in mM): 130 K-Gluconate, 5 KCl, 10
NaCl, 10 HEPES, 5 EGTA, 2.5 MgATP, 0.3 LiGTP, pH 7.25 (290 –300
mOsm). Access resistance was continuously monitored, and cells with
unstable access resistance (�20% change) were excluded from analysis.
All recordings were made in the presence of NMDA receptor antagonist
AP-5 (50 �M) to prevent possible long-term effects and either gabazine (2
�M) or bicuculine (20 �M) to block inhibitory transmission.

Data analysis and presentation. Stimulation patterns were presented
multiple times to the same cell, separated by 2 min control sections at
0.1– 0.2 Hz. Each subset of data was normalized to an average of five
control EPSCs immediately preceding each train. Data were analyzed
using custom software locally written in Matlab. To account for the
overlap of postsynaptic currents that occurs at short interspike intervals,
a template of EPSC waveform was first created for each train presentation
by averaging responses separated by at least 100 ms from their neighbors
and normalized to their peak values. Every EPSC in the train then was
approximated by a template waveform scaled to the peak of the current
EPSC and its contribution to synaptic response was subtracted. For the
model fitting, experimentally measured synaptic responses to constant-
frequency trains were smoothened using a second-order polynomial-
based approximation in Matlab to remove the effects of noise. All data are
presented as mean � SEM. Statistical significance was evaluated using
the two-tailed t test.

Natural spike patterns. The natural stimulation patterns used here rep-
resent timings of action potential firing recorded in vivo from the hip-
pocampal place cells of awake, freely moving rats (generously provided
by Drs. Fenton and Muller) (Fenton and Muller, 1998). Natural stimu-
lation patterns were presented multiple times to the same cell, separated
by 2 min control sections at 0.1– 0.2 Hz. Spikes with the interspike inter-
vals (ISIs) � 10 ms were treated as a single stimulus, because the delay
between the action potential firing and the peak of postsynaptic currents/
potentials prevented resolution of individual synaptic responses at
shorter ISIs. Such treatment does not significantly affect synaptic re-
sponses to natural stimulus trains as we previously have shown (Kly-
achko and Stevens, 2006a).

Model of short-term plasticity
Release probability. To establish mechanistically relevant interdependen-
cies of presynaptic STP processes, we start by considering the dependence
of release probability of a synapse Psyn on the fusion probability � of
individual vesicles and on the number of vesicles in the readily releasable
pool (nRRP). In the initial model formulation, we will assume mono-
vesicular release for simplicity and then extend and test the model for the
case of multivesicular release (below). If average vesicle fusion probabil-
ity is �, then the probability that a vesicle is not released is (1 � �), and
the probability that none of the nRRP vesicles is released is, assuming
independence (1 � �)nRRP. Thus, in the mono-vesicular release frame-
work, the overall release probability of a synapse is given by the following:

Psyn � 1 � (1 � �)nRRP. (1)

The above gives the probability that at least one vesicle will be released,
but this is identical to the release probability if at most one vesicle can be
released.

Experimentally observed changes in synaptic strength, Ssyn, during
stimulus trains are defined as relative changes in the EPSCs normalized to
the average control EPSC recorded at low-frequency stimulation, so that
synaptic strength Ssyn is related to the release probability Psyn following
the ith stimulus as follows:

Ssyn(i) �
EPSC(i)

EPSC(0)
�

NPsyn(i)q

NPsyn(0)q
�

Psyn(i)

Psyn(0)
, (2)

assuming that quantal size q and the number of release sites N remains
constant within the short timescale relevant to STP (but see Multivesicu-
lar release below). The experimentally measured EPSCs represent the
average synaptic response of a population of synapses, and this approach
ignores the stochastic nature of release and the population distribution of
synaptic parameters. Similar to the previous models (Magleby and Zen-
gel, 1982; Zengel and Magleby, 1982; Tsodyks and Markram, 1997;
Varela et al., 1997; Markram et al., 1998; Dittman et al., 2000; Pan and
Zucker, 2009), we will thus consider all synaptic parameters, including
Psyn, as the deterministic average of a population of similar synapses. This
situation may be relevant, for example, during simultaneous activation
of a synaptic population by an ensemble firing of CA3 pyramidal cells,
which is typical in the hippocampal circuit (Wilson and McNaughton,
1993; Guzowski et al., 2004).

Contributions of STP components to vesicle fusion probability. The two
main components of short-term synaptic enhancement, facilitation 	
and augmentation A, are believed to act by increasing the release proba-
bility for synaptic vesicles (Zucker and Regehr, 2002). To derive the form
of contribution of 	 and A to vesicular release probability �, we consid-
ered the vesicle fusion produced by an increase in intraterminal calcium
following synaptic activation in terms of rate theory. The probability �
for vesicle fusion is given by a fusion rate � times the duration of calcium
action �Ca according to:

� � ��Ca � �e�
UCa

kT , (3)

where UCa is the energy barrier that must be overcome for a fusion event
when calcium is present, T is the absolute temperature, k is Boltzmann’s
constant, and � is proportional to the resting release rate. Under resting
conditions in the absence of activity, the energy barrier UCa is very high
(very low resting fusion rate) but is lowered as a result of calcium influx
during the action potential due to the calcium binding to a calcium
sensor for release, believed to be synaptotagmin I (Neher and Sakaba,
2008). When facilitation is present, the energy barrier is further lowered
so that the barrier height is UCa 
 U	, where U	 is the contribution to
the barrier for vesicle fusion from the second calcium sensor known to be
separate from synaptotagmin I (Geppert et al., 1994; Goda and Stevens,
1994). With facilitation present, then, the vesicle fusion probability is

� � e�
UCa
U	

kT � e�
UCa

kT

Ç�

e�
U	

kT

Ç	

� �	 (4)
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where � is the basal vesicle fusion probability without facilitation present
and 	 is the contribution from facilitation. Thus, by analogy to the
operation of synaptotagmin I, the contribution by facilitation to vesicu-
lar release probability is multiplicative. Assuming that facilitation and
augmentation are mediated by different calcium-binding molecules
(Rosenmund et al., 2002; Sippy et al., 2003; Junge et al., 2004), augmen-
tation acts independently to lower the energy barrier for vesicle fusion
and thus also multiplies the basal fusion probability �. Then the fusion
probability � in the presence of both facilitation and augmentation is as
follows:

� � �	�. (5)

Facilitation. Our treatment of facilitation 	 closely follows formulations
proposed in previous models (Mallart and Martin, 1967; Bertram et al.,
1996; Wang, 1999; Dittman et al., 2000; Hempel et al., 2000) and is
consistent with an assumption that facilitation is associated with a
calcium-binding molecule that translates elevations of presynaptic resid-
ual calcium levels into effective increase in release probability. The state
of facilitation is specified by the facilitation variable � that may represent
the amount of a calcium-bound facilitation molecule. � is assumed to
increase instantaneously by amount hf with each impulse and then expo-
nentially decay with a time constant �f. The value of facilitation variable �
can be calculated sequentially for each consecutive spike in a sequence as
follows:

�k
1 � hf 	 �k e��t/�f, (6)

where �t is the interstimulus interval between k 
 1 and kth stimuli. The
decay of the facilitation variable as a function of time t when there is no
stimulation is as follows:

�t) � �(0)e�t/�f. (7)

This description of facilitation variable � is based on experimental
evidence for an exponential decay of facilitation measured with a paired-
pulse protocol (Zucker and Regehr, 2002). We further assumed a Dodge–
Rahamimoff-type relationship that couples the state of occupancy of the
facilitation molecule � and effective facilitation 	:

	�� � � �

1 	 
��
�

	 1, (8)

where � is the degree of cooperativity and the constant 
 determines the
value of the effective facilitation 	 for large values of �. The high-affinity
calcium sensor presumably responsible for facilitation has been shown,
like the low-affinity sensor that mediates usual release, to be well de-
scribed with � � 4 (Goda and Stevens, 1994). Similarly to the previous
model (Dittman et al., 2000), however, we found no significant improve-
ment in the model performance for the power law relationship in Equa-
tion 8 versus the linear relationship and thus kept � � 1 for simplicity.
Note that in this formulation, the basal value of 	 in the absence of
activity is set to 1.

Our initial experiments showed that adequate model performance
required the presence of a second, very rapid component of facilitation
(supplemental Fig. 1, available at www.jneurosci.org as supplemental
material). We therefore added a second component of facilitation desig-
nated 	2 that had the same formulation as described above except for a
different time constant �f2 and amount of increase hf2 per stimulus. As-
suming independent action of facilitation components 	1 and 	2 on
vesicle fusion probability, the total facilitation is then given by the
following:

	 � 	1 	2. (9)

Augmentation. The slower calcium-dependent component of synaptic
enhancement, known as augmentation, has been previously incorpo-
rated in phenomenological models of STP in the neuromuscular junc-
tion (NMJ) (Magleby and Zengel, 1982; Zengel and Magleby, 1982;
Kalkstein and Magleby, 2004) but has not been widely considered in
more detailed models of STP at central synapses. Here, augmentation is
assumed to behave much like facilitation, being associated with some

calcium-binding molecule that translates elevation in residual calcium
levels into effective augmentation. As with �, the augmentation variable
� can be calculated sequentially for each consecutive spike as follows:

�k
1 � h� 	 �k e��t/��, (10)

where h� is the increase in the amount of calcium-bound augmentation
molecule with each impulse, and �� is the decay constant of augmenta-
tion variable determined by the decay of intraterminal calcium. In the
absence of stimulation, the augmentation variable decays exponentially
according to the following:

�t) � �(0)e�t/��. (11)

The state of augmentation variable results in effective augmentation A as
given by the following:

A(�) � � �

1
���
�


 1, (12)

where the constant � determines the maximum amount of effective aug-
mentation �. Similarly to treatment of facilitation, we kept � � 1 for
simplicity, and the basal value of � in the absence of activity was also set
to 1.

Short-term depression. Several presynaptic and postsynaptic mecha-
nisms have been proposed to contribute to short-term synaptic depres-
sion in different systems (Zucker and Regehr, 2002). The relative
contributions of different mechanisms vary widely in different synapses;
in excitatory hippocampal synapses, vesicle depletion is believed to be the
dominant contributor to short-term synaptic depression during trains of
activity (Dobrunz and Stevens, 1997; Stevens and Wesseling, 1998; Sara
et al., 2002). Here, we consider a sequential two-pool scheme for vesicle
refilling consisting of a RRP with a size nRRP that refills itself with a time
constant �d1 and is also refilled from a larger “recycling” pool of nREC

vesicles with a time constant of �d2. The recycling pool in turn is refilled
from a much larger reserve pool. In our treatment of depletion, we as-
sume that the size of the RRP is decreased on average by an amount equal
to Psyn with each impulse in a single-vesicle release framework. Let us
consider first the RRP itself without contributions from the second pool;
when the RRP size nRRP has been reduced during a train of stimuli to a
value nRRP (i) after i-th stimulus in a train, it recovers toward the full RRP
pool nRRP(0) according to:

nRRP(i
1) �nRRP(0)�(nRRP(0)�nRRP(i))e�t/�
D1. (13)

Taking into account the additional refilling of the RRP from the second
pool (nREC) and the average amount of vesicle use per stimulus (given by
Psyn), the state of the RRP can be calculated sequentially for each consec-
utive stimulus as follows:

nRRP(i
1)�nRRP(0)�(nRRP(0)�nRRP(i))e��t/�
D1 	 nREC(i 	 1)e��t/�

D2 � Psyn,

(14)

where  �
nRRP(0)

nREC(0)
(1�e�n

RRP
(0)�n

RRP
(i))) is a switch function based on the

refilling state of the RRP introduced to prevent the overfilling of the RRP
from the recycling pool during periods of low activity.

The second pool depletes by transferring vesicles to the RRP and at the
same time slowly replenishes from another large reserve vesicle pool. To
simplify formulation, we described the state of the recycling pool by a
shrinkage rate representing the difference between its depletion and re-
plenishment as follows:

nREC(i
1)�nREC(i)e��t/�
D3, (15)

where �D3 is the rate at which the second pool shrinks.
Multivesicular release. Recent studies have provided evidence for the

presence of multivesicular release (MVR) in several synaptic prepara-
tions (Tong and Jahr, 1994; Auger et al., 1998; Oertner et al., 2002; Singer
et al., 2004; Foster et al., 2005; Christie and Jahr, 2006) and suggest that
the prevalence of MVR may depend on the release probability of the
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synapse. Because the relationship between the release probability and the
extent of MVR in hippocampal synapses is not known, we considered
two simplified descriptions of MVR based on the assumptions that MVR
is due to simultaneous release from multiple release cites, and the num-
ber of simultaneously active release sites is either constant (follows a
uniform distribution) or follows a Poisson distribution.

Our initial formulation then can easily be generalized for the case of
MVR, in which case Psyn represents a release probability for a single
release site Prs and is multiplied by the number of active release sites:

Psyn � Prs

Ssyn(i) �
EPSCi�

EPSC(0)
�

Ni�Prs(i)q

N0�Prs(0)q
� k

Prs(i)

Prs(0)
, (16)

where k represents the change in the number of simultaneously active
release sites. Assuming that the release sites share the same vesicle popu-
lation within the synapse, the amount of vesicle use per stimulus is then
determined by wPsyn in Equation 14, where w � 1, 2, 3 . . . and is the
number of simultaneously active release sites. Our analysis showed that
the model fitted constant-frequency synaptic responses equally well in
assumptions of mono-vesicular release or MVR in the two formulations
we considered (for two examples, see supplemental Fig. 2 A, B, available
at www.jneurosci.org as supplemental material). Our model thus neither
excludes nor proves the possibility that MVR significantly contributes to
rapid synaptic dynamics in hippocampal synapses under the conditions
of our experiments. Because in-depth analysis of MVR contribution to
synaptic dynamics is limited by the lack of a clearly defined relationship
between MVR and release probability and because the presence of MVR
in our simplified description did not significantly alter model perfor-
mance, below we used our initial formulation (Eqs. 1, 2) to preserve the
maximal calculational simplicity of the model.

Postsynaptic mechanisms. Several postsynaptic mechanisms, including
receptor saturation and desensitization, have been proposed to play a
role in STP in numerous synaptic preparations (Zucker and Regehr,
2002). These postsynaptic mechanisms, however, do not play a signifi-
cant role in the observed synaptic dynamics in hippocampal synapses
under our experimental conditions (Wesseling and Lo, 2002; Klyachko
and Stevens, 2006b) and have not been considered in the present study.

Other forms of plasticity. The current model ignores all long-lasting
forms of synaptic plasticity, including post-tetanic potentiation, long-
term potentiation, and depression, which operate on much longer time-
scales than were examined in the current study.

Results
In this study, we considered the interdependencies among STP
components and their impact on synaptic release probability
within a mechanistically relevant, yet computationally simple
model of STP. Our goal was to reproduce the key features of the
nonlinear synaptic dynamics during natural stimulus trains,
thereby revealing the specific contributions to this dynamics of
different STP components. Specifically, the model should be able
to reproduce three main characteristics of STP previously
observed in excitatory hippocampal synapses (Klyachko and
Stevens, 2006a): the high-pass filtering pattern selective for spike
discharges associated with place-fields, the nonlinear switch-like
pattern in frequency dependence of synaptic response, and the
near independence of synaptic response of the discharge tempo-
ral characteristics. Our approach to developing such a model thus
consisted of three steps: following model formulation, we first
“tuned” the model using a series of synaptic responses to
constant-frequency trains to determine model parameters. We
then used the model to predict synaptic responses to natural spike
patterns based solely on the input spike sequence. We determined
whether the model can reproduce the nonlinear filtering para-
digm observed experimentally in excitatory hippocampal syn-
apses. We then used the model to create experimentally testable

predictions, which we verified using recordings in acute hip-
pocampal slices.

Model assumptions and formulations
Interdependencies among the STP components and
release probability
The interplay between components of synaptic enhancement,
depression, and release probability is determined by considering
the synaptic release probability Psyn as a function of vesicle fusion
probability � and the number of release-competent vesicles nRRP

(Eq. 1). The contribution from facilitation 	 and augmentation
A to release probability is formulated via their contribution to the
vesicle fusion probability � (Eq. 5). 	 and A multiply the basal
vesicle fusion probability �, as follows from the assumption that
	 and A act independently to lower the energy barrier for vesicle
fusion (Eqs. 3–5). The impact of changing release probability on
short-term depression is formulated as the reduction in the size
of the RRP nRRP by the amount Psyn (Eq. 14), which represents the
average vesicle use per stimulus. Finally, components of enhance-
ment and depression are intrinsically coupled via the contribu-
tion of 	 and A to Psyn, which determines the RRP depletion.

Formulations for individual STP components
Facilitation is formulated similarly to the previous models (Mal-
lart and Martin, 1967; Bertram et al., 1996; Wang, 1999; Dittman
et al., 2000; Hempel et al., 2000) assuming that it is associated
with some calcium-binding molecule that couples presynaptic
residual calcium levels to vesicle fusion, leading to effective facil-
itation (Eqs. 6 – 8). Initially, a single component of facilitation
was used in the model with the parameters determined from a
large set of paired-pulse experiments we previously performed
(Klyachko and Stevens, 2006a). Parameters of facilitation hf and
�f were extracted from the data based on a mono-exponential fit
that closely agreed with the data, with a �f of 140 ms. We found,
however, that the model was unable to reproduce the very rapid
increase in synaptic strength at the onset of high-frequency trains
or spike bursts during natural stimulation (supplemental Fig. 1,
available at www.jneurosci.org as supplemental material), indi-
cating that a second, very rapid component of facilitation must be
present to reproduce the rapid response onset. Indeed, two com-
ponents of facilitation have been observed in many synaptic
preparations (Zucker and Regehr, 2002). We therefore per-
formed all analyses with two facilitations present (Eq. 9) (Fig. 1).

Augmentation, the slower component of presynaptic en-
hancement that is also believed to act by potentiating vesicle fu-
sion (Stevens and Wesseling, 1999), is formulated similarly to
facilitation (Eqs. 10 –12). The dynamic properties of augmenta-
tion have been studied extensively in the NMJ (Magleby and
Zengel, 1976; Zengel and Magleby, 1982; Kalkstein and Magleby,
2004), but quantitative data are limited for hippocampal syn-
apses, particularly at near-physiological temperatures. We there-
fore determined parameters of augmentation evoked by a set of
constant-frequency trains at 2– 80 Hz, 5–100 stimuli long (Fig. 2).
Augmentation parameters were extracted as reported previously
(Klyachko and Stevens, 2006b). Note that the time course of
augmentation decay is largely independent of the stimulus fre-
quency and the number of stimuli in the train (Fig. 2B).

The kinetics of recovery from depression in hippocampal syn-
apses at near-physiological temperatures has been measured pre-
viously (Klyachko and Stevens, 2006b), giving a time constant of
recovery of �1.2 s following a 150-stimuli train at 40 Hz. In
agreement with previous studies (Schneggenburger et al., 2002),
we found that a single-pool model of recovery from depletion
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does not produce adequate description of the data in that it over-
estimated vesicle depletion, particularly at higher frequencies of
stimulation. We therefore implemented a sequential two-pool
model of recovery from depletion (Eqs. 13–15) in which recovery
of RRP was aided by replenishment from a second “recycling”
pool. We assumed nRRP(0) � 8 and nREC (0) � 17 vesicles for the
initial sizes of the RRP and the recycling pool, respectively, based
on published functional and structural measurements in hip-
pocampal synapses (Harris and Sultan, 1995; Murthy et al., 1997;
Schikorski and Stevens, 2001). Previous studies suggest that the
rate of recovery from depression can be accelerated by elevated
calcium levels during synaptic activity (Dittman and Regehr,

1998; Sakaba and Neher, 2001). Because the extent of calcium-
dependent recovery from depletion varies greatly among differ-
ent synapses (Neher and Sakaba, 2008) and because it is not clear
which of the refilling rates in our model might be accelerated by
calcium, we did not explicitly account for the calcium-dependent
recovery but kept the refilling time constants as free parameters.
Indeed, our analysis showed an acceleration of the RRP refilling
rate with increasing stimulus frequency (Tables 1, 2), which pre-
sumably correlates with the increase in intraterminal calcium
concentration.

Model tuning by fitting synaptic responses to
constant-frequency trains
To be able to predict synaptic behavior during natural patterns of
stimulation, we first determined the model parameters and con-
stants not available from the literature by fitting the model to a set
of constant-frequency train responses recorded from CA1 pyra-

Figure 1. Modeling synaptic dynamics during constant-frequency stimulation. A–D, The
empirical fit of the model for the experimental data at 40 Hz, 150 stimuli, was calculated by
solving the model’s nonlinear system of equations using the Levenberg–Marquardt algorithm.
A–C, The two facilitations, 	1 with �	1 � 140 ms and 	2 with �	2 � 15 ms, showed rapid
onset and saturation (A, B), whereas a sustained increase was observed for augmentation (C)
that had a time constant of �A � 6 s (Tables 1, 2; Fig. 2). The RRP (nRRP) and recycling pool (nREC)
sizes decreased over time from the initial values of 8 and 17, respectively (D). The RRP depleted
to a value of �4 after 150 stimuli at 40 Hz. E, The model fit to the experimental data (n � 12
cells, from Klyachko and Stevens, 2006a).

Figure 2. Experimental estimation of augmentation parameters. A, An example of an ex-
periment used to determine augmentation parameters. A set of synaptic responses to test
pulses at 0.2 Hz following high-frequency stimulus trains was approximated with a mono-
exponential fit, and augmentation parameters were extracted as previously described (Kly-
achko and Stevens, 2006b). The example shown is an average of three trials in the same cell. B,
The decay time constant of augmentation was measured for a set of stimulus trains of different
durations (5–150 stimuli) at 10 and 40 Hz (n � 6 –12 cells). A linear fit showed that augmen-
tation time constant ��� 6 s is largely independent of the train duration and frequency. C, The
h� parameter of augmentation was determined by solving the nonlinear equations (Eqs. 10,
12) using the experimentally determined amplitude of augmentation measured for a set of
5–100 stimuli trains at 2– 80 Hz as described above (n � 6 –9 cells). For the ISIs �25 ms and
�500 ms, the h� parameter of augmentation was determined by linear extrapolation because
of the large variability in experimental values at these ISIs. Other parameters of augmentation
were set as described in Tables 1 and 2.
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midal cells (data from Klyachko and Stevens, 2006a) in whole-cell
configuration in response to stimulation of Schaffer Collaterals
(Figs. 1, 3). Note that both components of facilitation saturated
rapidly and contributed little to synaptic dynamics after �5 con-
secutive stimuli, whereas augmentation continued to increase
throughout the stimulus train, although at a reducing rate. This
analysis produced the remaining parameters and constants of the
model that were not available from the literature and are summa-
rized in Tables 1 and 2. Overall, the model effectively captured all
of the main features of synaptic responses to constant-frequency
stimulation, mainly a rapid increase in synaptic strength at the
onset of the stimulus train, saturation of synaptic enhancement
with frequency above �10 Hz, and a gradual increase in apparent
depression with frequency (Fig. 3).

Prediction of synaptic responses to natural stimulus patterns
If the model correctly captures the basic principles of synaptic
dynamics, we expect that, once tuned on constant-frequency
data, the model should be able to predict synaptic responses to
natural patterns of stimulation. The model prediction for synap-
tic response to a natural spike train was calculated solely based on
the timing of the input stimuli and had no free parameters (Fig.
4A,B). We found that the model accurately reproduced the key
characteristics of synaptic dynamics during natural spike trains,
such as selective high-pass filtering of spike discharges associated
with place-fields (Klyachko and Stevens, 2006a) (Fig. 4A,B). The
model further correctly captured the rapid onset of synaptic re-
sponse changes at the beginning of the spike bursts and rapid
saturation of synaptic strength during the bursts. Note, however,
that the model slightly but consistently overpredicted the synap-
tic strength during natural stimulus trains, particularly following
the end of high-frequency bursts (Fig. 4A,B; supplemental Fig. 3,
available at www.jneurosci.org as supplemental material). This
difference may arise from the model’s underestimation of short-
term depression, because we did not take into account additional
depletion-independent processes since their contributions in
hippocampal synapses are not well established. To quantitatively

compare the model prediction and the experimental results, we
used correlation analysis in which changes in synaptic strength in
the model and experimental data were plotted point by point
versus each other for each stimulus in the train (Fig. 4C). Linear
regression gives an average value of R � 0.88, suggesting a strong
similarity between the model prediction and experiment. This
high degree of similarity between computed and experimentally
observed synaptic dynamics was reproducible across different
natural spike patterns (Fig. 4C).

The model also qualitatively reproduced the switch-like fre-
quency dependence of synaptic response during natural stimulus
trains (Fig. 5A; supplemental Fig. 3, available at www.jneurosci.
org as supplemental material). Similarly to experimental results,
the model showed a rapid transition between the basal (at low
frequency) and elevated (at high frequency) synaptic strength
levels as well as rapid saturation of the response with input fre-
quency. The elevated strength level exhibited by the model was
similar to that observed in the experiment, as determined by a
Boltzmann function fit (2.37 and 2.26, respectively). An interest-
ing feature of this filtering pattern that we previously observed is
that synaptic response during natural stimulus trains was largely
independent of the discharge frequency and duration (Klyachko
and Stevens, 2006a), suggesting that nearly all place-field dis-
charges are processed independently of the temporal pattern
within the discharges. This feature was closely reproduced by the
model for both discharge frequency and duration (Fig. 5B,C).

Table 1. Constants

Parameter Values Description Reference

� 0.035 Basal vesicle fusion probability (Murthy et al., 1997)
nRRP | t � 0 8 Readily releasable pool size (Schikorski and Stevens, 2001)
nREC | t � 0 17 Recycling pool size (Schikorski and Stevens, 2001)
�f1 140 ms Slower facilitation time constant (Klyachko and Stevens,

2006a,b)
�f2 15 ms Faster facilitation time constant (Zucker and Regehr, 2002)
�� 6000 ms Augmentation time constant (Klyachko and Stevens,

2006a,b)
�D1 1200 ms RRP recovery time constant (Klyachko and Stevens,

2006a,b)

1 1.21 Constant determining max. 	1


2 1.21 Constant determining max. 	2

� 0.59 Constant determining max. A
� 1 Cooperativity factor for 	1 /	2/A

Table 2. Variable ranges from experimental data

Parameter

Frequency in Hz

Source2 10 20 40

h� 0.0462 0.1113 0.0653 0.0818 Computed from augmentation data
hf1 ,hf2 0.1032 0.4332 0.5609 0.7560 Computed from paired-pulse data
�D2 (ms) 258.68 52.91 17.94 8.85 Computed from const. frequency fits
�D3 (s) 195.05 9.65 19.06 10.96 Computed from const. frequency fits

Figure 3. The model tuning using constant-frequency data. A, B, Comparison between the
experimental data (A) (n�9 –12 cells) and the corresponding model fits (B) at 2, 10, and 40 Hz,
150 stimuli. The model successfully captured different characteristics of synaptic responses to
constant-frequency stimulation. These fits were used to determine parameters of the model not
available from the previous experimental work (Tables 1, 2).
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Together these results demonstrate that this simple model cor-
rectly captures the main aspects of synaptic dynamics during
natural stimulus patterns in hippocampal synapses.

Specific roles of different forms of STP in synaptic dynamics
One of the main aims of developing a simple mechanistic model of
STP is to reveal the contributions of individual STP components to
overall complex synaptic dynamics. This problem has been difficult
to address so far because of the lack of experimental approaches to
selectively eliminate one of the components of STP without affecting
the others. For example, application of Sr2
 or Ba2
 ions has been
shown to selectively suppress facilitation or augmentation in the
NMJ (Zengel and Magleby, 1977). This treatment, however, is not
applicable to the hippocampal synapses where Ba2
 application
leads to strong depression (Klyachko and Stevens, 2006b) and Sr2


causes a shift from synchronous to asynchronous release (Goda and
Stevens, 1994). To address this question computationally, we re-
moved contributions of individual components from the model one
by one and studied the resulting changes in synaptic strength.

Facilitation 	 or augmentation A were silenced by making
hf1,hf2 � 0 or h� � 0, respectively, while synaptic depression was

removed by making nRRP � nRRP (0) � constant. We found that
removal of facilitation led to a much slower and more gradual
initial increase in synaptic strength, and this effect became more
apparent as frequency increased (Fig. 6). In contrast, in the ab-
sence of augmentation, synaptic strength increased rapidly but
could not be sustained at the experimentally observed elevated
levels in the face of increasing depression. Finally, in the absence
of depression, synaptic strength increased rapidly at the onset of
stimulation, but, unlike experimental data, continued to increase
at a slower rate throughout the stimulus train. This analysis
showed that facilitation is required for the rapid increase in syn-
aptic strength at the onset of high-frequency input, whereas aug-
mentation is essential to sustain the experimentally observed
levels of release during high-frequency activity. Depression, on
the other hand, controls the dynamic range of this synaptic filter
and provides rapid response saturation, thus preventing runaway
synaptic enhancement. The latter model prediction regarding the
role of depression provides an opportunity to experimentally
verify the model performance, because, unlike facilitation and
augmentation, levels of synaptic depression are amenable to
experimental manipulation.

Figure 4. Prediction of synaptic dynamics during natural stimulus trains. A, Relative changes
in synaptic strength (black) (experimental data from Klyachko and Stevens, 2006a) during the
natural spike train (NSP1) shown above and the model prediction exclusively based on inter-
spike intervals (red). No free parameters or fitting algorithms were used to calculate model
prediction of the synaptic responses during natural stimulation. B, Same as A but plotted
against stimulus number and for a different natural spike train (NSP7). Note that the model
slightly but consistently overpredicts the synaptic strength during, and particularly after, high-
frequency bursts. C, The Pearson’s correlation coefficient was measured to estimate correlation
between the model prediction and the experimental data. Two examples of this correlation
analysis for two different natural stimulus trains are shown.

Figure 5. Model prediction of synaptic filtering paradigm during natural stimulus trains. A,
A plot of synaptic strength versus instantaneous input frequency for the experimental data
(black) (Klyachko and Stevens, 2006a) and model (red). The model correctly captured the high-
pass filtering nature of STP in hippocampal synapses. B, C, Model correctly reproduced the
experimental observation (Klyachko and Stevens, 2006a) that synaptic strength during place-
field discharges is largely independent of discharge average frequency (B) and the number of
spikes in the discharge (C).
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Prediction of calcium-dependent changes in synaptic filtering
paradigm and its test in hippocampal slices
To validate the model’s prediction, we took advantage of the fact
that lowering the extracellular calcium concentration reduces the
basal vesicle fusion probability �, thus reducing vesicle use and
depletion (Zucker and Regehr, 2002). The model predicts that
under these conditions of reduced depression, synaptic response
continuously increases during high-frequency stimulation (Fig.
6). The model also predicts large calcium-dependent changes in
the synaptic filtering pattern during natural stimulus trains; syn-
aptic strength during discharges at reduced extracellular calcium
is expected to not rapidly saturate like that observed at standard
calcium concentration but rather to continue to increase, reach-
ing much more elevated strength levels.

To computationally reproduce the decrease in vesicle deple-
tion at reduced extracellular calcium, we modified a single model
parameter, the basal vesicle fusion probability �, which was re-
duced to 0.0002 (Fig. 7A). The synaptic dynamics during stimu-
lus trains was then determined without free parameters, solely
based on the timing of stimuli during the train. As predicted, the
reduced � led to a much larger continuous increase in synaptic

strength during constant-frequency trains (Fig. 7B), similar to
the situation in which depression was removed in our deletion
analysis (Fig. 6). The model produced a similar effect when nat-
ural stimulus patterns were used as the model input (Fig. 7C),
leading to large changes in the synaptic filtering pattern (Fig. 7D).
We verified these predictions using whole-cell recordings in CA1
pyramidal cells in hippocampal slices at 0.7 mM extracellular cal-
cium. Synaptic strength during constant frequency (Fig. 7F) or
natural spike trains (Fig. 7G) qualitatively showed the same be-
havior as predicted by the model. Note that under these condi-
tions, changes in synaptic dynamics were attributed mostly to
reduced vesicle depletion, because facilitation and augmentation
changed relatively little (Fig. 7E). These results indicate that based
on changes in a single nonvariable parameter �, the model cor-
rectly predicted the calcium dependence of the synaptic filtering
paradigm in hippocampal synapses (Fig. 7D,H). These results
further suggest that short-term depression in part controls the
dynamic range of the synaptic filter, thereby allowing high-
frequency discharges to be recognized with high fidelity (Fig. 4)
yet causing rapid saturation of synaptic strength during bursts to
prevent runaway enhancement (Figs. 6, 7).

Discussion
In this study, we explored a mechanistically relevant model of
STP to better understand the underlying mechanisms of highly
nonlinear synaptic dynamics observed in excitatory hippocampal
synapses during natural stimulus patterns (Klyachko and
Stevens, 2006a). The model considers interrelationships among
four major forms of STP in hippocampal synapses, two compo-
nents of facilitation, augmentation, and depression, and de-
scribes their impact on synaptic release probability. The
interactions among calcium-dependent forms of presynaptic en-
hancement are formulated assuming that they act independently
to lower the energy barrier for vesicle fusion, leading to increased
probability of release. The impact of short-term enhancement on
synaptic depression is formulated in terms of vesicle depletion by
taking into account that elevated release probability leads to in-
creased vesicle use. Finally, the basic probability theory is used to
define the impact of these STP components on synaptic release
probability. Once tuned, the model captures all key features of
synaptic dynamics during natural spike trains without free pa-
rameters. The model further explains the specific roles of individ-
ual STP components in shaping synaptic dynamics. Finally, the
model predicts strong calcium dependence of synaptic filtering
behavior, a prediction we experimentally verified in hippocampal
slices. Our approach thus offers a useful framework to further
investigate the role of STP in synaptic computations.

Relationship to other STP models
Our description of individual STP components is based in part
on previous formulations but departs from them in several ways.
Facilitation is treated similarly to that described by (Mallart and
Martin, 1967; Bertram et al., 1996; Dittman et al., 2000; Hempel
et al., 2000). This treatment emphasizes rapid saturation of facil-
itation as experimentally observed in hippocampal synapses (Do-
brunz and Stevens, 1997). This is in contrast to quantitative
description of facilitation in the NMJ, in which saturation of
facilitation was not necessary to account for experimental data
(Magleby and Zengel, 1982; Zengel and Magleby, 1982), possibly
reflecting differences in the initial release probability in the two
experimental systems.

Augmentation is treated similarly to facilitation, based on the
similarity of these STP components in hippocampal synapses

Figure 6. The roles of individual STP components in synaptic dynamics. A, B, The contribu-
tions of different STP components were evaluated by eliminating individual components from
the model. Two examples of this analysis for constant-frequency trains at 10 and 40 Hz are
shown in A and B, respectively. The absence of facilitation resulted in a much slower rise in
synaptic strength at the onset of stimulation than that observed in the experiment. Removal of
augmentation prevented the model from reaching the level of increase in synaptic strength
observed experimentally. Removal of depression prevented rapid saturation of synaptic
strength changes observed in the experiment.
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(Stevens and Wesseling, 1999). Our de-
scription, however, differs from previous
models developed for the NMJ because of
the apparent quantitative differences in
the dynamic properties of augmentation
between the two types of synapses
(Magleby and Zengel, 1982; Zengel and
Magleby, 1982). In the NMJ, augmenta-
tion was found to undergo an accelerating
increase during repetitive stimulation un-
der conditions of low release probability.
In hippocampal synapses, augmentation
exhibits saturating behavior with in-
creasing train frequency and duration
(Fig. 2). These differences could arise
from changes in dynamic properties of
augmentation at higher release proba-
bilities in hippocampal synapses or per-
haps from the intrinsic differences in
augmentation between the NMJ and
hippocampal synapses.

Our treatment of interactions among
components of enhancement assumes
that they act independently to lower the
energy barrier for vesicle fusion. We fur-
ther assumed that these components are
mediated by different calcium-binding
molecules, which translate elevation in re-
sidual calcium levels into effective facilita-
tion/augmentation. Although the identity
of such calcium-binding molecules has
been debated, several studies have sug-
gested that a priming factor Munc-13–2
regulated by calmodulin may serve as a
molecular determinant of augmentation
(Rosenmund et al., 2002; Junge et al.,
2004), and the Neuronal Calcium Sensor-1
has been proposed as a candidate for facil-
itation (Sippy et al., 2003). Alternative
models considering calcium buffer satu-
ration as the underlying mechanism of
facilitation have been proposed and suc-
cessfully verified in several experimental
systems (Klingauf and Neher, 1997; Bla-
tow et al., 2003; Matveev et al., 2004) but
do not seem to fully account for facilita-
tion in other synapses (Pan and Zucker,
2009), including the excitatory hip-
pocampal ones (Sippy et al., 2003). The
identity of the molecular determinants
of facilitation and augmentation thus
remains unclear, and our model assump-
tion of independent action by facilita-
tion and augmentation will require future
verification.

Short-term depression is modeled as
vesicle depletion, similarly to the ap-
proaches previously proposed (Kusano and Landau, 1975; Hei-
nemann et al., 1993; Weis et al., 1999). We chose to use a
sequential rather that the parallel model of vesicle pool refilling,
because it better matches the experimentally observed vesicle re-
lease dynamics in hippocampal synapses (Dobrunz and Stevens,
1997; Stevens and Wesseling, 1998; Sara et al., 2002) and because

structural data suggest the presence of a single active zone in the
majority of these synapses (Schikorski and Stevens, 1997). While
several lines of evidence indicate that vesicle depletion is a dom-
inant contributor to rapid depression in hippocampal synapses
(Dobrunz and Stevens, 1997; Sara et al., 2002; Fernández-Alfonso
and Ryan, 2004), other depletion-independent mechanisms may

Figure 7. Experimental verification of the model prediction. A–D, The model predicts that under the conditions of reduced
vesicle use, when depletion is nearly absent (A), synaptic strength does not saturate rapidly but rather continues to increase with
stimulation, similarly to that in the absence of depression seen in Figure 6. The model prediction for the changes in synaptic
dynamics under conditions of reduced depletion (black) versus normal conditions (red) is shown for a constant-frequency (40 Hz,
150-stimuli) train (B) and a natural stimulus train (C). The resulting changes in the synaptic filtering paradigm are shown in D. The
reduction in vesicle depletion was implemented by changing a single model parameter, the basal vesicular release probability �.
No fitting or free parameters were used in calculating the model prediction. E–H, The conditions of reduced depletion were
experimentally reproduced by lowering the extracellular calcium concentration from 2 to 0.7 mM. E, This treatment resulted in
greatly reduced depression, while facilitation and augmentation were affected relatively little (n � 8). Parameters of STP com-
ponents were determined from whole-cell recordings in acute hippocampal slices as previously described (Klyachko and Stevens,
2006b). F, G, The experimentally measured changes in synaptic strength at normal (n � 12, red) and reduced (n � 8, black)
calcium concentrations are shown for the same constant-frequency stimulus train (F ) and a natural stimulus train (G) as that used
in B, C. The resulting changes in synaptic filtering paradigm are shown in (H ).
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contribute to reduced synaptic strength during high-frequency
activity. Indeed, refractiveness of release cites, calcium channel
inactivation, and calcium-induced inhibition of calcium chan-
nels have been proposed to drive synaptic depression in various
types of synapses (Schneggenburger et al., 2002; Zucker and Re-
gehr, 2002). The contributions of these processes to the hip-
pocampal short-term depression, however, remain unclear. The
refractiveness of release sites, for example, closely describes
short-term depression in cerebellar synapses (Dittman et al.,
2000) but appears to strongly overestimate the extent of depres-
sion in hippocampal synapses by predicting nearly maximal de-
pression after �3 stimuli at 50 Hz, whereas we did not detect
significant depression after the same stimulus under our experimen-
tal conditions (data not shown). Further studies are needed to estab-
lish contributions of depletion-independent mechanisms to
hippocampal short-term depression to be able to incorporate them
into more detailed models of STP.

The roles of STP components in synaptic dynamics
One of the fundamental questions in understanding synaptic
computations is the specific roles that individual forms of STP
play in synaptic dynamics. Several different computations have
been attributed to synaptic depression, particularly in synapses
where depression represents a single dominant form of STP (Ab-
bott et al., 1997; Chance et al., 1998; Chung et al., 2002; Cook et
al., 2003). The contributions of various STP components to syn-
aptic computations have been more difficult to determine in syn-
apses expressing multiple overlapping and interacting forms of
STP (MacLeod et al., 2007). We used our modeling approach to
examine the roles of STP components in synaptic dynamics based
on elimination analysis (Fig. 6). Our results indicate that facilita-
tion is required for the rapid increase in synaptic strength at the
onset of high-frequency input. Facilitation thus controls rapid
switching of synaptic strength from the basal level during low
activity to elevated levels during high-frequency spike bursts. Re-
moval of augmentation suggests that it is a major component of
STP that counterbalances synaptic depression to sustain neuro-
transmitter release during long-lasting spike discharges. Indeed,
earlier models of presynaptic dynamics that did not include aug-
mentation (Dobrunz and Stevens, 1997; Dittman et al., 2000)
exhibited only transient enhancement (for 2–5 stimuli) rapidly
followed by dominating depression. Augmentation is thus essen-
tial to account for the sustained synaptic enhancement observed
in hippocampal synapses for tens of stimuli at high input fre-
quencies under near-physiological conditions (Fig. 3) (Klyachko
and Stevens, 2006b). A similar function for augmentation was
also previously proposed for the NMJ (Kalkstein and Magleby,
2004) and hippocampal synapses (Garcia-Perez and Wesseling,
2008). Removal of depression suggests its role in synaptic com-
putations as a mechanism for a rapid synaptic strength control.
Unlike the dynamic gain-control mechanism proposed for corti-
cal synapses (Abbott et al., 1997), where dominant depression
scales synaptic inputs to allow equal percentage rate changes for
afferents firing at different frequencies, masked depression in
excitatory hippocampal synapses controls the dynamic range of
the synaptic filter, working to rapidly saturate changes in synaptic
strength.

Nonlinear synaptic dynamics during natural stimulus trains
A key feature of hippocampal STP is the strong nonlinearity of
the synaptic filtering paradigm during physiologically relevant
stimulus patterns (Klyachko and Stevens, 2006a). This filtering
paradigm is characterized by a rapid transition between basal and

elevated synaptic gain levels and the near frequency indepen-
dence of synaptic gain above the transition frequency. By ac-
counting for the interdependencies among STP components and
release probability, our model captures these key features of the
synaptic filtering pattern without free parameters (Figs. 4, 5). Our
analysis suggests that while facilitation provides a rapid onset of
synaptic strength changes and then rapidly saturates (Fig. 1), the
balance between augmentation and depression driven by their
interdependency with the release probability provides a rapid
leveling of synaptic gain changes. This leads to the near-
frequency independence of synaptic strength at all frequencies
relevant to place-field discharges. Indeed, the model prediction
confirmed by our experimental recordings (Fig. 7) shows that
disrupting the balance among the components by, for example,
reducing the initial vesicle fusion probability markedly slows re-
sponse saturation during high-frequency discharges, thereby
causing an excessive increase in synaptic strength. It is tempting
to speculate that a relatively modest increase in synaptic strength
during spike discharges under normal conditions is tuned to pro-
vide a balance between a sufficient dynamic range of the STP filter
and ability to rapidly restore the basal state with minimal re-
source consumption. Future studies will be needed to determine
the significance of this tuning and uncover other regulatory fac-
tors that may control the dynamic range and tuning of the STP
filter during computations.
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