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Development/Plasticity/Repair

Spontaneous Activity Promotes Synapse Formation in a
Cell-Type-Dependent Manner in the Developing Retina

Florentina Soto,1 Xiaofeng Ma,1 Jacob L. Cecil,1 Bradly Q. Vo,1 Susan M. Culican,1 and Daniel Kerschensteiner1,2

Departments of 1Ophthalmology and Visual Sciences and 2Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri
63110

Spontaneous activity is thought to regulate synaptogenesis in many parts of the developing nervous system. In vivo evidence for this regulation,
however, is scarce and comes almost exclusively from experiments in which normal activity was reduced or blocked completely. Thus, whether
spontaneous activity itself promotes synaptogenesis or plays a purely permissive role remains uncertain. In addition, how activity influences
synapse dynamics to shape connectivity and whether its effects among neurons are uniform or cell-type-dependent is unclear. In mice lacking
the cone–rod homeobox gene (Crx), photoreceptors fail to establish normal connections with bipolar cells (BCs). Here, we find that retinal
ganglion cells (RGCs) in Crx�/� mice become rhythmically hyperactive around the time of eye opening as a result of increased spontaneous
glutamate release from BCs. This elevated neurotransmission enhances synaptogenesis between BCs and RGCs, without altering the overall
circuitarchitecture.Usingliveimaging,wediscoverthatspontaneousactivityselectivelyregulatestherateofsynapseformation,notelimination,
in this circuit. Reconstructions of the connectivity patterns of three BC types with a shared RGC target further revealed that neurotransmission
specifically promotes the formation of multisynaptic appositions from one BC type without affecting the maintenance or elimination of connec-
tions from the other two. Although hyperactivity in Crx�/� mice persists, synapse numbers do not increase beyond 4 weeks of age, suggesting
closure of a critical period for synaptic refinement in the inner retina. Interestingly, despite their hyperactivity, RGC axons maintain normal
eye-specific territories and cell-type-specific layers in the dorsal lateral geniculate nucleus.

Introduction
Spontaneous activity transmitted among developing neurons is
thought to shape the connectivity patterns of emerging circuits.
The precise role of spontaneous activity during synaptogenesis,
however, remains unclear (Katz and Shatz, 1996). Nearly all stud-
ies so far have probed this relationship using manipulations that
suppress or abolish normal activity (Bleckert and Wong, 2011). A
frequent finding among these studies has been that silenced cir-
cuits develop fewer synapses (Okabe et al., 1999; Bouwman et al.,
2004; Ultanir et al., 2007; Kerschensteiner et al., 2009). This may
reflect a purely permissive function of activity, which is required
for neurons to correctly present and respond to molecular cues
that define the numbers and patterns of synapses. Alternatively,
spontaneous activity could itself promote synaptogenesis and
differentially regulate the emergence of distinct connectivity pat-
terns. This would predict that elevating spontaneous activity in

developing circuits should raise the number of synapses above
normal levels.

Synaptogenesis in most neural circuits is a high turnover pro-
cess in which many synapses are short-lived (Alsina et al., 2001;
Niell et al., 2004; Kerschensteiner et al., 2009). Therefore, activity
could, in principle, shape connectivity by regulating synapse for-
mation, elimination, or both. Few studies have directly analyzed
the influence of spontaneous activity on synapse dynamics in
developing circuits. At the neuromuscular junction, inhibition of
acetylcholine synthesis in a subset of motor neurons or local
blockade of postsynaptic receptors promotes synapse elimination
(Balice-Gordon and Lichtman, 1994; Buffelli et al., 2003). In con-
trast, reduced glutamate release from BC axons in the retina se-
lectively lowers the rate of synapse formation with their targets
(Kerschensteiner et al., 2009). In cultured neurons, decreases in
both synapse formation and elimination have been observed after
pharmacologic blockade of activity (Okabe et al., 1999).

To harness spontaneous activity and establish specific wiring pat-
terns, developing circuits need to have boundaries in place that re-
strict the influence of activity on synaptic development. We
currently know little about these boundaries. For example, whether
the effects of activity on synaptogenesis in a given circuit are uniform
or cell-type dependent is unclear (Morgan et al., 2011). Similarly, the
critical developmental periods during which spontaneous activity
most effectively regulates synaptogenesis for many circuits have not
been identified (Hensch, 2004).

Here, we report that, in Crx�/� mice, spontaneous glutamate
release from bipolar cells (BCs) is elevated and BC–retinal gan-
glion cell (RGC) synaptogenesis is increased. This effect is medi-
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ated by selective changes in synapse formation, not elimination,
and is expressed in a cell-type-dependent manner among con-
verging BCs. We find that synaptic patterns in Crx�/� retinas
stabilize by 4 weeks of age despite continued hyperactivity, likely
indicating the closure of a critical period, and analyze the projec-
tion patterns of RGC axons. Crx�/� mice are a model of Leber’s
congenital amaurosis (LCA), a cone–rod dystrophy affecting
�20% of children enrolled in schools for the blind (Damji et al.,
2001). Knowledge of the changes in synaptic development in
Crx�/� retinas might help inform the design of vision rescue
strategies for patients with LCA.

Materials and Methods
Animals. Throughout this study, we compared mice of either sex lacking
the cone–rod homeobox gene Crx in a mixed 129SVJ/C57BL/J6 back-
ground (Crx�/�) to wild-type (WT) littermates. In some instances, re-
sults from WT mice in a pure C57BL/J6 background were included after
verifying that they were indistinguishable from those obtained in the
129SVJ/C57BL/J6 background. Grm6 –tdTomato and DRD4 –GFP mice
were crossed to Crx�/� mice to reconstruct the patterns of synapses
between BCs and RGCs and visualize mosaics and retinofugal projec-
tions of direction-selective ganglion cells (DSGCs), respectively (Huber-
man et al., 2009; Kerschensteiner et al., 2009). Both transgenic mouse
lines were backcrossed to C57BL/6 for more than six generations before
mating to Crx�/� mice.

Tissue preparation. For multielectrode array and patch-clamp record-
ings, mice were dark adapted for �2 h. Eyes were removed from mice
deeply anesthetized with CO2 and prepared as either cups by removing
the cornea, lens, and vitreous or as flat mounts on membrane discs (Mil-
lipore) by further isolating the retina from the sclera and pigment
epithelium. All procedures were approved by the Animal Studies Committee
of Washington University School of Medicine and were performed in com-
pliance with the National Institutes of Health Guide for the Care and Use of
Laboratory Animals. Eye cups and isolated retinas were stored in a light-tight
chamber at �33°C in bicarbonate (multielectrode array recordings, patch-
clamp recordings) or HEPES-buffered (biolistics, live imaging) mouse arti-
ficial CSF (mACSF). For immunohistochemistry, eye cups and isolated
retinas were fixed in 4% paraformaldehyde (PFA) in mACSF for 30 min at
room temperature. To analyze RGC projections to the brain, mice were
deeply anesthetized with sodium pentobarbital and transcardially perfused
with 4% PFA in PBS. Brains were then removed and postfixed for 3 h in 4%
PFA in PBS at 4°C.

Intraocular injections. Mice were anesthetized with a mixture of ket-
amine (100 �g/mg) and xylazine (10 �g/mg). One to 2 �l of �-cholera
toxin conjugated to Alexa Fluor 488 or Alexa Fluor 594 (1 mg/ml in PBS)
were injected into each eye. Cholera toxin was allowed to be antero-
gradely transported for 1–2 d before mice were killed. Only brains in
which dorsal lateral geniculate nuclei (dLGNs) were completely outlined
by signal of the fluorophore injected in the contralateral eye were in-
cluded in our analysis.

Immunohistochemistry. Vibratome sections (brain or eye cup) and ret-
inal flat mounts were incubated with primary antibodies against calbin-
din (1:1000; Synaptic Systems), calretinin (1:1000; Millipore), choline
acetyltransferase (ChAT; 1:100), C-terminal binding protein 2 (CtBP2;
1:1000; BD Biosciences), protein kinase C�, (PKC�; 1:1000; Sigma),
rhodopsin (1:400; Millipore), synaptotagmin 2 (SytII or Znp-1; 1:1000;
Zebrafish International Resource Center), vesicular glutamate trans-
porter 1 (VGluT1; 1:1000; Millipore), vesicular glutamate transporter 3
(VGluT3; 1:1000; Millipore), and voltage-gated L-type calcium channel
�-subunit 1S (CACNA1S; 1:1000; Millipore Bioscience Research Re-
agents) for 2–7 d at 4°C, washed, and incubated with secondary antibod-
ies (Alexa Fluor 488, 568, or 633 conjugates; 1:1000; Invitrogen)
overnight at 4°C.

Biolistic transfection. Plasmids driving expression of tandem dimer
Tomato (tdTomato), cyan fluorescent protein (CFP), and postsynaptic
density protein 95 fused to yellow or cyan fluorescent protein (PSD95–
Y/CFP) from a cytomegalovirus promoter were precipitated onto gold
particles (12.5 mg, 1.6 �m diameter; Bio-Rad) as described previously

(Morgan and Kerschensteiner, 2012). A Helios Gene gun (Bio-Rad) was
used to deliver gold particles (�40 psi) to RGCs in flat-mount prepara-
tions (Morgan and Kerschensteiner, 2011). The tissue was then incu-
bated for 12–18 h in a humid, warm (�33°C), and oxygenated chamber
in HEPES-buffered mACSF before fixation in 4% PFA. HEPES-buffered
mACSF contained the following (in mM): 119 NaCl, 2.5 KCl, 2.5 CaCl2,
1.3 MgCl2, 1 NaH2PO4, 11 glucose, and 20 HEPES. The pH was adjusted
to 7.37 with NaOH.

Image acquisition and analysis. Images were acquired on an Olympus
Fv1000 laser scanning confocal microscope using 60�, 1.35 NA (fixed
retina) and 20�, 0.85 NA (brain) oil-immersion objectives or a 60�, 1.1
NA (live retina) water-immersion objective. Voxel sizes of image stacks
were 0.069 – 0.069 – 0.3 �m (x–y–z, live retina), 0.103– 0.103– 0.3 �m
(x–y–z, fixed retina), or 0.309 – 0.309 – 0.5 �m (x–y–z, brain). Images
were processed and analyzed using NIH ImageJ, Amira (Visage Imag-
ing), and software written in Matlab (MathWorks).

To identify the positions of labeled somata and analyze their distribution,
z-projections of confocal image stacks were binarized into soma and non-
soma pixels using Otsu’s method for thresholding (Otsu, 1979), followed by
a size filter. Next, the binary image was transformed into a distance map, in
which the value of each pixel reflects its distance from the nearest non-soma
pixel. The centers of mass of the regional maxima (i.e., connected pixels of
equal value that are surrounded by pixels of lower value) in the distance
image then were defined as the soma positions. This algorithm reliably iden-
tified the positions of somata even when their boundaries overlapped. To
characterize the regularity of soma positions in the inner retina, we analyzed
the distribution of nearest-neighbor distances and the density recovery pro-
file (Rodieck, 1991). In the density recovery profile, the density of neurons of
a specific type is calculated at increasing distances from a reference cell. Each
cell in a field of view is once the reference cell, and observed densities are
normalized by the area included in the respective distance bin. A dip in the
density recovery profile close to the origin indicates an exclusion zone, the
extent of which is quantified as an effective radius (i.e., the radius of a cylin-
der with equal volume to the dip in a 3D density recovery profile plot).

Branching patterns of RGC dendrites and distributions of excitatory syn-
apses on them were reconstructed as described previously (Morgan et al.,
2008; Kerschensteiner et al., 2009). Briefly, dendritic skeletons consisting of
linked �1-�m-long segments were generated from binary masks (Amira)
based on the cytosolic fluorescent signal of RGCs. The area covered by the
dendrite was computed by convolving a z-projection of the dendritic skele-
ton with a 10-�m-diameter circle mimicking BC axon terminals. The den-
sity of dendritic branching was defined as the length of the dendritic skeleton
divided by the area it covers. Stratification of RGC dendrites was measured
by the SD of the z-positions of skeleton segments. To prevent slants in the
tissue from biasing stratification measures, for each segment, the SD of the
z-positions of segments within 30 �m in x–y was calculated. The stratifica-
tion index of an RGC dendrite was then defined as the average SD across all
its segments. BC synapses on RGC dendrites were identified by a previously
described algorithm involving the following: iterative thresholding of the
PSD95–Y/CFP signal, size filtering, an estimation of the deviation of the
synaptic signal from a linear prediction based on the signal of the cytosolic
fluorophore, and a final user-guided stage of error minimization (Morgan et
al., 2008; Kerschensteiner et al., 2009).

For live imaging of synaptogenesis, retinal flat-mount preparations
were continuously perfused with 1–2 ml/min of warm (�33°C) HEPES-
buffered mACSF. Image stacks were acquired every 2 h for up to 12 h. For
analysis, image stacks were median-filtered, PSD95–Y/CFP puncta iden-
tified by eye, and manually tracked through the time series (Kerschen-
steiner et al., 2009; Morgan et al., 2011).

Connectivity patterns of pairs of BCs and RGCs were analyzed as
described previously (Morgan et al., 2011). Pairs consisted of type 10
RGCs (G10) labeled biolistically with CFP and PSD95–YFP and one of
three types of BCs [type 6 (B6), type 7 (B7), and rod bipolar (RB)] labeled
in Grm6 –tdTomato mice. BC and RGC types were identified based on
their characteristic morphologies (Ghosh et al., 2004; Völgyi et al., 2009).
Because the number of synapses of one BC with an RGC is low (typically
�15) compared with the total number of excitatory synapses on an RGC
dendrite (�1500), it was feasible to count connections manually by in-
specting image stacks plane by plane. To be assigned to a cell pair, syn-
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apses (i.e., PSD95–YFP puncta) had to occur at
regions where the axonal and dendritic fluores-
cence overlapped (i.e., axo-dendritic apposi-
tions). On a subset of the data, BC axons and
RGC dendrites were masked by applying iso-
intensity thresholds (Amira) to the respective
image channels. Axo-dendritic appositions
were then defined as regions of �50 connected
voxels shared between axonal and dendritic
masks. Appositions identified in this analysis
matched �95% of the appositions identified
by eye. Finally, although optical resolution lim-
its the certainty with which we can determine
contact between axons and dendrites, the large
size of BC axonal boutons makes it very un-
likely that synapses were wrongly assigned to a
given BC.

To analyze the segregation of RGC axons
from the ipsilateral and contralateral eye, R val-
ues of image pixels from the dLGN were calcu-
lated according to Torborg and Feller (2004):

R � log10(FI/FC),

where FI and FC refer to the fluorescence of
axons from the ipsilateral and contralateral
eyes, respectively. Segregation was measured as
the variance of R values across the dLGN.

Multielectrode array recordings and analysis.
Action potentials from RGCs were recorded on
planar arrays of 252 electrodes (30 �m elec-
trode size, 100 �m electrode spacing) arranged
in a 16 � 16 grid with the four corners left empty (MultiChannelSys-
tems). Rectangular pieces of isolated retina were mounted on the arrays
RGC-side down and secured by a transparent tissue culture membrane (3
�m pore size; Corning) weighed down by a platinum ring (Kerschen-
steiner et al., 2008). The tissue was perfused at a rate of 1–2 ml/min with
warm (�33°C) bicarbonate-buffered mACSF containing the following
(in mM): 125 NaCl, 2.5 KCl, 1 MgCl2, 1.25 NaH2PO4, 2 CaCl2, 20 glucose,
and 26 NaHCO3 (equilibrated with 95% O2/5% CO2). Signals of each
electrode were bandpass filtered between 300 and 3000 Hz and digitized
at 5 kHz. Signal cutouts from 1 ms before to 2 ms after crossings of
negative thresholds (set manually for each channel) were recorded to
hard disk together with the time of threshold crossing (i.e., spike time).
Principal component analysis of these waveforms was used to sort spikes
into trains representing the activity of individual neurons (Offline Sorter;
Plexon). Refractory periods in spike trains were used to assess the quality
of the sorting, and only spike trains in which �0.2% of interspike inter-
vals were �2 ms were retained. Cross-correlations among spike trains
were used to detect when activity from a single neuron had been recorded
on more than one electrode. In these cases, only the train with the most
spikes was used for additional analysis.

Correlation indices (i.e., the factor by which the firing of cell Y in-
creases above its average rate in a time window �t around spikes in cell X)
were calculated following a previous definition (Wong et al., 1993) as
follows:

CIXY �
NXY���t, � �t� � T

NX�O,T� � NY�O,T� � 2�t
(2)

where NXY is the number of spikes cell Y fired within 	�t (set to 0.1 s)
from spikes in cell X, T is the total length of the recording, and NX and NY

signify the total number of spikes of cells X and Y, respectively, during the
recording.

Power spectral densities of RGC spike trains or synaptic input currents
to RGCs were calculated from the fast Fourier transforms of the respective
autocorrelationfunctionsusingNeuroexplorer(NexTechnologies)andMatlab.

Patch-clamp recordings and analysis. We performed whole-cell
voltage-clamp recordings from RGCs in flat-mount preparations using
pipettes (4 –7 M
, borosilicate glass) filled with the following (in mM):

120 Cs-gluconate, 1 CaCl2, 1 MgCl2, 10 Na-HEPES, 11 EGTA, 10 TEA-
Cl, and 2 QX-314, pH adjusted to 7.2 with CsOH. Internal solution
included 0.1 mM of either Alexa Fluor 488 or Alexa Fluor 568. Retinas
were perfused at a rate of 2–3 ml/min with warm (�33°C) bicarbonate-
buffered mACSF (equilibrated with 95% O2/5% CO2). To restrict re-
cordings to large monostratified RGC types included in the analysis of
connectivity patterns, cells with large somata (�20 �m) were targeted
under infrared illumination. At the end of each recording, dendrites were
visualized using two-photon laser scanning microscopy to confirm cell-
type identification. Patch-clamp data were acquired using a Multiclamp
700B amplifier, low-pass filtered at 2 kHz, and digitized at 10 kHZ. The
junction potential of �12 mV was corrected offline. Series resistance
(�15 M
) was compensated electronically by �75%. To record EPSCs,
RGCs were voltage clamped at the reversal potential of chloride-
mediated currents (ECl � �60 mV). To analyze input levels, the charge
transfer was measured by integrating a 30 s segment of each EPSC trace.

Statistics. Unless noted otherwise, Wilcoxon–Mann–Whitney rank
sum tests were used to assess statistical significance of differences be-
tween groups.

Results
In Crx�/� mice, photoreceptors (PRs) fail to extend outer seg-
ments, the cellular compartment in which phototransduction oc-
curs, and as a result do not respond to light (Furukawa et al.,
1999). In addition, ultrastructural examination of rod and cone
PRs in Crx�/� mice revealed severely abnormal synaptic termi-
nals in the outer plexiform layer (OPL) (Morrow et al., 2005).
Similar defects were observed in PRs expressing a dominant-
negative form of Crx (Furukawa et al., 1997).

Contacts in the outer retina of Crx�/� mice lack proteins
associated with presynaptic and postsynaptic specialization
We began our analysis of Crx�/� mice by testing whether the
previously described ultrastructural abnormalities of PRs are
accompanied by alterations in the expression and localization
of proteins involved in phototransduction and synaptic trans-

Figure 1. Presynaptic and postsynaptic specializations are disrupted in the OPL of Crx�/� mice. A, B, Retinal vibratome
sections from P21 WT (A) and Crx�/� (B) mice labeled with antibodies against rhodopsin (magenta) and calbindin (green). C, D,
Representative images of the OPL stained for CtBP2 in WT (C) and Crx�/� (D) retinas. E, F, Similar images of the OPL labeled with
an antibody against VGluT1 in WT (E) and Crx�/� (F ) background. G, H, Fluorescently conjugated PNA was used to mark active
zones of cone spherules in WT (G) and Crx�/� (H ) mice. I, J, OPL stained for the Ca 2� channel subunit CACNA1S, which normally
localizes to dendritic tips of ON BCs (Claes et al., 2004), in WT (I ) and Crx�/� (J ) retinas.
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mission. Immunohistochemistry on retinal vibratome sections
[postnatal day 21 (P21)] showed that rhodopsin (the photopigment
of rod PRs), which normally localizes to outer segments (Fig. 1A), is
redistributed throughout rod PRs when their outer segments fail to
develop (Fig. 1B). In addition, staining for calbindin, which labels
horizontal cells, revealed a disorganized OPL in Crx�/� mice (Fig.
1A,B). We analyzed the expression of proteins involved in transmit-
ter release from PR terminals by staining for CtBP2 (a component of
presynaptic ribbons; Fig. 1C,D) and VGluT1 (the vesicular gluta-
mate transporter used by PRs; Fig. 1E,F). Both of these proteins
appear less abundant and mislocalized in Crx�/� mice. Moreover,
labeling with fluorescent peanut agglutinin (PNA), which selectively
marks cone active zones in WT mice (Fig. 1G) (Wässle et al., 2009),
was absent in Crx�/� retinas (Fig. 1H). We next examined the mo-
lecular differentiation of the postsynapse on BC dendrites by labeling

sections with antibodies against the L-type
Ca2� channel �-subunit CACNA1S (Fig.
1I,J) (Claes et al., 2004). The number and
regularity of clusters formed by these chan-
nels on BC dendrites was greatly reduced in
Crx�/� compared with WT mice. Together,
these experiments show that key proteins
involved in signal transmission are absent or
mislocalized in the OPL of Crx�/� mice
and, in conjunction with a previous ultra-
structural study (Morrow et al., 2005), indi-
cate that PRs fail to develop normal synaptic
connections with BCs in these retinas.

Around the time of eye opening, RGCs
become rhythmically hyperactive in
Crx�/� mice
To test how abnormal synaptic develop-
ment in the outer retina affects spontane-
ous activity in the inner retina, we recorded
RGC spike trains on multielectrode arrays
at different stages of development. We
first confirmed that no short-latency light
responses could be elicited from RGCs in
Crx�/� mice (P21) over a broad range of
stimulus intensities (0.01–50,000 Rh*/
R/s; data not shown) (Furukawa et al.,
1999). Before eye opening, circuits in the
inner retina generate spontaneous ac-
tivity in periodic bursts that spread
among neighboring RGCs (Wong, 1999;
Blankenship and Feller, 2010). Distinct
circuit mechanisms initiate and propa-
gate these retinal waves during different
periods of development (Wong, 1999;
Blankenship and Feller, 2010). Figure 2
illustrates the associated changes in the
spatiotemporal patterns of retinal waves
in WT and Crx�/� mice. At P8, a net-
work of cholinergic amacrine cells
(ACs) mediates retinal waves with long
refractory periods and bursts lasting �2 s
(Feller et al., 1996; Demas et al., 2003;
Zheng et al., 2006). By P11, glutamate re-
lease from BCs drives wave activity, re-
sulting in shorter bursts of activity and
shorter silent intervals between them (Demas
et al., 2003; Kerschensteiner and Wong,

2008; Blankenship et al., 2009). Activity patterns during cholin-
ergic and glutamatergic waves were indistinguishable between
Crx�/� and WT mice. At approximately P15, mice open their
eyes and retinal waves decline as visually evoked activity begins to
dominate the retina (Demas et al., 2003; Kerschensteiner and
Wong, 2008). At this age, the spontaneous activity patterns of
RGCs in WT and Crx�/� mice diverged. To quantify changes in
activity, we calculated the average rate and power spectrum of
each RGC spike train and analyzed correlation indices of cell
pairs as a function of the distance separating the electrodes on
which they were recorded. As illustrated by the representative
spike rasters (Fig. 2), the average firing rates (Fig. 3A) of RGCs in
Crx�/� mice increased sharply compared with WT littermates at
P15 (WT, 0.66 	 0.07 Hz, n � 231 cells; Crx�/�, 2.51 	 0.21 Hz,
n � 163 cells; p � 10�30, mean 	 SEM) and remained elevated at

Figure 2. Spontaneous activity patterns in WT and Crx�/� retinas diverge with maturation. Raster plots illustrate (on 2
timescales) the firing patterns of six simultaneously recorded representative RGCs in WT (left column) and Crx� /� mice (right
column). Activity was monitored at different developmental stages: P8 (cholinergic waves), P11 (glutamatergic waves), P15 (eye
opening), and P21 (retinal circuits mostly mature). Whereas wave patterns are similar between WT and Crx�/� mice, activity
begins to diverge drastically around the time of eye opening. Thus, firing in Crx�/� RGCs increases in frequency compared with WT
and appears become rhythmic (see finer timescales) starting at �P15.
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P21 (WT, 1.65 	 0.13 Hz, n � 197 cells;
Crx�/�, 5.15 	 0.37 Hz, n � 224 cells; p �
10�12). In addition, the activity of RGCs
in Crx�/� mice became oscillatory, evi-
denced by large peaks in the power spectra
at fundamental frequencies of �2.4 and
�5 Hz in P15 and P21 retinas, respectively
(Fig. 3B), and smaller peaks at the har-
monics. Finally, because activity during
waves propagates across the surface of the
retina, correlation indices (see Materials
and Methods) fall off smoothly with in-
creasing distance between RGCs at P8
(data not shown) and P11 in both WT and
Crx�/� mice (Fig. 3C). In comparison,
correlation indices for both genotypes
were low after P15, indicating that the os-
cillatory activity in Crx�/� retinas did not
propagate in a wave-like manner.

Neurotransmitter release from BCs is
increased in Crx�/� mice
The increased spontaneous spiking of
RGCs beginning at approximately P15
could be caused by either increased excit-
atory input from BCs or changes in the
intrinsic excitability of RGCs. In rd1 mice,
in which RGCs become hyperactive as PRs
degenerate, the underlying changes were
found to be presynaptic to RGCs (Marg-
olis et al., 2008; Borowska et al., 2011). We
therefore recorded spontaneous EPSCs
(sEPSCs) from large monostratified
RGCs in Crx�/� and WT mice at P15. We targeted RGCs with
large somata (�20 �m) and identified cell types based on their
dendritic morphology revealed by two-photon imaging at the
end of the recording (Fig. 4A,B). Results for ON and OFF RGCs
were indistinguishable and were therefore combined. Represen-
tative sEPSC traces (Fig. 4C) and a comparison of their power
spectra (Fig. 4D) illustrate that neurotransmitter release from
BCs in Crx�/� but not WT mice oscillated with a fundamental
frequency (�3.3 Hz) similar to that observed in the spike trains of
RGCs at this age (�2.5 Hz). In addition, the input level quanti-
fied by the charge transfer through EPSCs was increased 2.5 	
0.5-fold (WT, n � 6 cells; Crx�/�, n � 13 cells; p � 0.03) in
Crx�/� compared with WT retinas (Fig. 4E). Thus, in the absence
of normal PR input, BCs become hyperactive and drive RGCs to
oscillatory spontaneous bursting.

Laminar organization of BC, AC, and RGC neurites in the
inner plexiform layer of Crx�/� mice is preserved
In the inner retina, functionally distinct connections are confined
to separate sublaminae of the inner plexiform layer (IPL)
(Wässle, 2004). To test the influence of spontaneous activity and
PR input on the laminar organization of the inner retina, we
compared the distribution of cell-type-specific markers in the
IPL of WT and Crx�/� mice at P21. Axons of RB (Fig. 5A,B,
PKC�) as well as type 2 (B2) and B6 cone BCs (B2 brightly labeled
with anti-SytII, B6 dimly labeled with anti-SytII; Fig. 5C,D) tar-
geted correct IPL sublaminae in the absence of functional PRs.
Likewise, neurites of different AC populations labeled with anti-
bodies against calretinin (Fig. 5E,F), VGluT3 (Fig. 5G,H), and
ChAT (Fig. 5 I, J ) showed normal lamination patterns in

Crx�/� mice. To study the stratification of dendrites of an
identified RGC type, we crossed BAC transgenic mice (DRD4 –
EGFP), which express EGFP in DSGCs responding preferen-
tially to motion in the posterior direction, to Crx�/� mice
(Huberman et al., 2009). Stratification patters of these DSGCs
were unchanged in Crx�/� compared with WT background.
Thus, for the BC, AC, and RGC types tested here, normal
spontaneous or evoked activity patterns from P15 onward ap-
pear not required for appropriate laminar organization in
the IPL.

Mosaics of cholinergic ACs and DSGCs develop normally in
Crx�/� mice
In addition to the vertical organization of neurites into layers, the
cell bodies of retinal neurons show regular horizontal distribu-
tions. Their arrangement into mosaics is thought to help neuro-
nal cell types cover the retinal surface evenly and represent visual
space homogeneously (Masland, 2001; Wässle, 2004). To what
extent activity regulates the formation and maintenance of mo-
saics is incompletely understood (Zhang et al., 2005; Lee et al.,
2007; Anishchenko et al., 2010). We analyzed the lateral distribu-
tion of two representative cell types in the inner retina. The den-
sity of posterior motion-selective DSGCs (Fig. 6A,B; WT, 214 	
14 cells/mm2, n � 17 retinas; Crx�/�, 225 	 20 cells/mm2, n � 9
retinas, mean 	 SEM; p � 0.9) and the regularity of their distribution
measured by the average distance between nearest neighbors of
the same cell type (Fig. 6C; WT, 39.2 	 1.9 �m; Crx�/�, 37.5 	
1.4 �m, mean 	 SEM; p � 0.8) and the effective radius of density
recovery profiles (Rodieck, 1991) (Fig. 6D; WT, 25.5 	 1.9 �m;
Crx�/�, 25.5 	 2.5 �m, mean 	 SEM; p � 0.9) were unchanged

Figure 3. RGCs develop oscillatory hyperactivity in Crx�/� mice. A, Cumulative distributions of average firing rates of RGCs in
WT (black lines) and Crx�/� (red lines) mice recorded at P11 (left column; WT, n � 253 cells; Crx�/�, n � 78 cells), P15 (middle
column; WT, n � 231 cells; Crx�/�, n � 163 cells), and P21 (right column; WT, n � 197 cells; Crx�/�, n � 224 cells). B, Power
spectra of RGC spike trains at the different ages normalized to the peak power of the P21 Crx�/� dataset. Lines (shaded areas)
represent mean 	 SEM of the population. Black indicates data from WT and red from Crx�/� mice. C, Correlation indices of RGC
activity at different ages plotted as a function of the distance separating the electrodes on which the respective spike trains were
recorded. Circles (WT, black; Crx�/�, red) indicate median of the population and lower and upper ends of the error bars the 25th
and 75th percentile, respectively.
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in Crx�/� compared with WT mice. Similarly, the density (Fig.
6E,F; WT, 1070 	 80 cells/mm 2, n � 16 retinas; Crx�/�, 950 	
41 cells/mm 2, n � 15 retinas, mean 	 SEM; p � 0.3), nearest-
neighbor distances (Fig. 6G; WT, 20.2 	 0.6 �m; Crx�/�, 20.1 	 0.3
�m,mean	SEM;p�0.1),andeffectiveradii(Fig.6H;WT,15.7	0.6
�m;Crx�/�,16.4	0.4�m,mean	SEM;p�0.06)ofcholinergicACs
in the ganglion cell layer were not significantly different between both
genotypes. Qualitatively similar results were obtained for cholinergic
ACs in the inner nuclear layer (data not shown). These observations
suggest that the mosaic organization of representative neuron types in
the retina is primarily independent of spontaneous activity or light-
evoked signaling.

Synaptogenesis on RGC dendrites with normal branching
patterns is enhanced in Crx�/� mice
We have shown previously that, when glutamate release from
BCs is reduced, their axons form fewer synapses with RGC den-
drites (Kerschensteiner et al., 2009). To test whether activity pro-

motes synaptogenesis rather than being
merely required for its normal occur-
rence, we biolistically (i.e., using a gene
gun) labeled RGCs in WT (Fig. 7A–C) and
Crx�/� (Fig. 7D–F) retinas with tdTo-
mato (a red cytosolic fluorophore) and
PSD95–YFP (a marker of excitatory syn-
apses on RGC dendrites) at P9 (Fig.
7A,D), P15 (Fig. 7B,E), and P25 (Fig.
7C,F) (Jakobs et al., 2008; Morgan et al.,
2008). Using custom-written image
analysis software (Morgan et al., 2008;
Kerschensteiner et al., 2009), we recon-
structed the branching patterns of den-
dritic trees and mapped the distribution
of excitatory synapses on them. To avoid
mistaking differences between cell types
for developmental changes or phenotypes
of Crx�/� mice, we restricted our analysis
to large monostratified RGCs within the
ON sublamina of the IPL. However, re-
sults were qualitatively similar when all
cell types were included (data not shown).
Across development from P9 to P25, den-
dritic branching of these RGCs became
sparser (Fig. 7G, p � 0.001, ANOVA), ab-
solute stratification width grew slightly
(Fig. 7H, p � 0.05, ANOVA), and the den-
sity of synapses on them increased from
P9 to P16 (Fig. 7I, p � 10�5, ANOVA) in
agreement with previous findings
(Coombs et al., 2007; Morgan et al., 2008;
Soto et al., 2011). Neither lateral branch-
ing nor laminar targeting differed signifi-
cantly between RGCs in Crx�/� and WT
mice (p � 0.1). However, after the onset
of hyperactivity, the density of excitatory
synapses on RGCs increased in Crx�/�

compared with WT mice (P16; WT,
0.36 	 0.04 synapses/�m, n � 9 cells;
Crx�/�, 0.41 	 0.03 �m, n � 8 cells,
mean 	 SEM; p � 0.4), with the differ-
ence reaching significance at P25 (WT,
0.35 	 0.03 synapses/�m, n � 12 cells;
Crx�/�, 0.46 	 0.04 �m, n � 11 cells,

mean 	 SEM; p � 0.03).

Elevated spontaneous activity selectively increases the rate of
synapse formation in Crx�/� mice
During development, synapses between BCs and RGCs turn over
relatively rapidly (Kerschensteiner et al., 2009). Therefore, the
increase in synapse numbers observed in Crx�/� compared with
WT mice could be the result of more frequent synapse forma-
tions, fewer synapse eliminations, or a combination of both. To
distinguish between these possibilities, we performed live-
imaging experiments in which we tracked the appearance and
disappearance of PSD95–YFP clusters on dendrites of large
monostratified ON RGCs in a time-lapse series (Fig. 8A–C). We
have shown previously that newly formed PSD95–YFP clusters
are apposed by presynaptic ribbons and colocalize with postsyn-
aptic glutamate receptors, whereas axo-dendritic appositions
without PSD95–YFP clusters are and do neither (Kerschensteiner
et al., 2009; Morgan et al., 2011). Thus, appearances and disap-

Figure 4. RGCs in Crx�/� mice receive increased spontaneous synaptic input from BCs. A, B, Representative z-projections of
two-photon image stacks of RGCs filled with Alexa Fluor 568, acquired after whole-cell recordings in P15 WT (A) and Crx�/� (B)
retinas. C, D, Traces of sEPSCs recorded from the cells shown in A and B, respectively, reveal elevated and oscillatory synaptic input
to RGCs in Crx�/� (bottom trace) compared with WT (top trace) mice. E, Power spectra (normalized to maximum power across
traces) of sEPSCs show a large peak at a fundamental frequency of �3.3 Hz in Crx�/� (red line) but not in WT (black line) mice. F,
Charge transfer associated with sEPSCs (normalized to average of the WT dataset). Bars and error bars indicate mean 	 SEM of the
population. The number of cells included in the analysis is shown in parentheses. *p � 0.05.

Soto et al. • Spontaneous Activity Promotes Synaptogenesis In Vivo J. Neurosci., April 18, 2012 • 32(16):5426 –5439 • 5431



pearances of PSD95–YFP clusters in this system reliably indicate
synapse formation and elimination events, respectively. We mea-
sured the rates of PSD95–YFP cluster formation and elimination
at P16, when spontaneous glutamate release from BCs is in-
creased (Fig. 4), and connectivity patterns between BC and RGCs
begin to diverge between Crx�/� and WT mice (Fig. 7). We found
that, compared with WT mice, the rate of synapse formation was
increased several-fold in Crx�/� retinas (Fig. 8D; WT, 21 	 4
synapses/mm dendrite/24 h, n � 14 cells; Crx�/�, 85 	 9 synaps-
es/mm dendrite/24 h, n � 13 cells, mean 	 SEM; p � 10�4),
whereas synapse elimination was unchanged (Fig. 8E; WT, 6.8 	
1.2% of synapses/24 h; Crx�/�, 7.1 	 0.8% of synapses/24 h,
mean 	 SEM; p � 0.8).

The effects of increased spontaneous activity are cell-type
dependent among converging BCs in Crx�/� mice
To better understand how spontaneous activity regulates synap-
togenesis in the context of an intact circuit, we wanted to deter-
mine whether its effects are uniform or distinct among different
BC types converging onto a shared RGC target. These experi-
ments require simultaneous and spectrally separable labeling of
isolated presynaptic and postsynaptic neurons and their connec-
tions in the intact retina. To achieve this, we made use of trans-
genic mice in which three types of BCs (B6, B7, and RB) express
tdTomato (Grm6 –tdTomato). In Grm6 –tdTomato mice, few cells
fluoresce brightly and can thus be reconstructed in isolation
(Kerschensteiner et al., 2009). We crossed Grm6 –tdTomato mice
to Crx�/� mice and biolistically labeled RGCs with cytosolic CFP
and PSD95–YFP. We restrict our analysis to G10 RGCs because

axons of B6, B7, and RB cells converge onto their dendrites. In
addition, G10 RGCs are easily identified based on their charac-
teristic morphology (Völgyi et al., 2009; Morgan et al., 2011). We
counted synapses in BC–RGC pairs through plane-by-plane in-
spection of confocal imaging stacks (Fig. 9A–F). A synapse was
assigned to a pair when a PSD95–YFP punctum coincided with a
region where axonal and dendritic fluorescence overlapped. In
this way, we analyzed the connectivity of 109 BC–RGC pairs in
P21 retinas. Strikingly, B6 cells more than doubled the number of
synapses with G10 dendrites in Crx�/� compared with WT back-
grounds (Fig. 9A,D,G; WT, 4.2 	 0.5 synapses/pair, n � 25 pairs;
Crx�/�, 8.9 	 0.9 synapses/pair, n � 23 pairs, mean 	 SEM; p �
10�4). In contrast, connectivity patterns from B7 to G10 cells
were indistinguishable between the two genotypes (Fig. 9B,E,G,
inset; WT, 2.4 	 0.5 synapses/pair, n � 8 pairs; Crx�/�, 2.3 	 0.6
synapses/pair, n � 12 pairs, mean 	 SEM; p � 0.7) and RB axons
while frequently being apposed to G10 dendrites (Fig. 9C,F,G;
WT, 1.2 	 0.1 appositions/pair, n � 16 pairs; Crx�/�, 1.3 	 0.1
appositions/pair, n � 24 pairs, mean 	 SEM; p � 0.6) with which
they form synapses earlier in development (Morgan et al., 2011)
lose their connections in both Crx�/� and WT retinas (Fig.
9C,F,G; WT, 0.06 	 0.06 synapses/pair; Crx�/�, 0.13 	 0.07
synapses/pair, mean 	 SEM; p � 0.5). We recently found that
axonal boutons of B6 cells can form multisynaptic appositions
with G10 dendrites (Morgan et al., 2011). In multisynaptic appo-
sitions, several matched presynaptic and postsynaptic specializa-
tions are contained within continuous areas of axo-dendritic
overlap. In Crx�/� mice, the frequency of these multisynaptic
appositions is increased and shifted toward connections of higher

Figure 5. Normal laminar targeting of BCs, ACs, and RGCs in the IPL of Crx�/� mice. A, B, RB cells in retinal vibratome sections from P21 WT (A) and Crx�/� (B) mice labeled by immunohisto-
chemistry (PKC�). C, D, In the IPL (dashed lines) of WT (C) and Crx�/� (D) retinas, staining for SytII brightly labels axon terminals of B2 BCs and dimly labels axon terminals of B6 BCs. E, F, AC
processes visualized with an antibody against calretinin form three distinct bands in the IPL of WT (E) and Crx�/� (F ) mice. G, H, A single type of AC stratifying toward the center of the IPL expresses
VGluT3 in WT (G) and Crx�/� (H ) retinas. I, J, Cholinergic ACs (expressing ChAT) are found in the ganglion cell layer and inner nuclear layer stratifying their processes in the inner and outer half of
the IPL, respectively, of WT (I ) and Crx�/� (J ) mice. K, L, Posterior motion-selective DSGCs are labeled by transgenic expression of GFP (amplified by immunohistochemistry) in DRD4 –EGFP mice
(Huberman et al., 2009) in WT (K ) and Crx�/� (L) backgrounds.
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order (Fig. 9 H; WT, 0.95 	 0.08 synapses/
apposition, n � 25 pairs; Crx�/�, 1.87 	
0.13 synapses/apposition, n � 23 pairs,
mean 	 SEM; p � 10�6).

Hyperactive RGCs maintain normal
axonal projection patterns in dLGN
Spontaneous activity patterns of RGCs
have been shown to shape their axonal
projections (Huberman et al., 2008a).
Thus, both the development and mainte-
nance of segregation of axons from the
ipsilateral and contralateral eye in the
dLGN are thought to depend on normal
activity (Dubin et al., 1986; Penn et al.,
1998; Chapman, 2000; Pfeiffenberger et
al., 2005; Torborg et al., 2005; Demas et
al., 2006). To test whether eye-specific
segregation in dLGN was disrupted by the
oscillatory hyperactivity of RGCs in
Crx�/� mice, we injected, at P21, �-cho-
lera toxins conjugated to Alexa Fluor 488
and Alexa Fluor 594, respectively, into op-
posite eyes and assessed the distribution
of fluorescence in the dGLN 1–2 d later.
Quantified by the variance of the log10 ra-
tios of the two fluorescence signals (see
Materials and Methods) (Torborg and
Feller, 2004), eye-specific segregation of
RGC axons in dLGN was indistinguish-
able between WT and Crx�/� mice (Fig.
10A–F,K; WT, 0.46 	 0.13, n � 6 dLGNs;
Crx�/�, 0.46 	 0.04, n � 8 dLGNs, mean
variance 	 SEM; p � 0.9).

In addition to eye-specific segregation,
axons of different RGC types have been
shown recently to occupy distinct layers in
the mouse dLGN (Huberman et al.,
2008b, 2009; Kim et al., 2010). To what
extent the maintenance of these lamina-
tion patterns that emerge before P10 de-
pend on activity remained unknown. We
therefore crossed DRD4 –EGFP mice to
Crx�/� mice. Our results showed that, as
in WT mice, the axons of this RGC type
occupy a tight band in the lateral portion
of the dLGN in Crx�/� mice (Fig. 10G–J,L).

Despite additional hyperactivity,
BC–RGC synapse numbers and
eye-specific segregation of RGC axons
in dLGN remain stable in older Crx�/�

mice
During development, many neural cir-
cuits are particularly receptive to activity-
dependent synaptic refinement during critical periods (Hensch,
2004). The existence and timing of such a phase of heightened
synaptic plasticity in the retina remain unknown. We first wanted
to test whether hyperactivity persists in older Crx�/� mice and, if
so, analyze its effects on BC–RGC connectivity. Recordings of
spike trains from ensembles of RGCs in 4- to 6-month-old
Crx�/� mice and WT littermates showed that, in fact, spontane-
ous activity was further elevated at this age (Fig. 11A,B; WT,

2.31 	 0.35 Hz, n � 201 cells; Crx�/�, 12.66 	 0.77 Hz, n � 167
cells, mean 	 SEM; p � 10�39). Accordingly, RGC spiking in
Crx�/� mice was oscillatory with a higher fundamental frequency
than at younger ages (Fig. 11C, �8.6 Hz). Despite this additional
increase in spontaneous activity, however, the densities of BC
synapses on RGC dendrites in 6-month-old Crx�/� and WT mice
were indistinguishable from those observed at P25 (p � 0.3) and
remained stably elevated for Crx�/� compared with WT RGCs

Figure 6. Mosaics of cholinergic ACs and DSGCs are preserved in Crx�/� mice. A, B, Maximum intensity projections of repre-
sentative confocal image stacks of posterior motion-selective DSGCs expressing GFP (DRD4 –EGFP) acquired from flat-mount
preparations of WT (A) and Crx�/� (B) retinas. C, Distributions of nearest-neighbor distances (NND) between GFP-expressing
DSGCs in WT (black open circles) and Crx�/� (red filled circles) background. Circles (overshoot) represent mean 	 SEM of the
population data (WT, n � 17 retinas; Crx�/�, n � 9 retinas). D, Density recovery profiles for GFP-expressing DSGCs. For randomly
distributed cells, histograms are expected to be flat around the average density (normalized to 1). A dip in the density of cells of the
same type close to the origin indicates the existence of an exclusion zone characteristic of mosaic distributions. Color coding and
symbols analogous to C. E, F, Representative maximum intensity projections (same magnification as A) through confocal image
stacks of cholinergic ACs (stained for ChAT) in the ganglion cell layer. G, H, Analogous to C and D for ChAT-positive rather than
GFP-expressing cells. Population data are based on 16 and 15 retinas from WT and Crx�/� mice, respectively.
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(Fig. 11D,E; WT, 0.32 	 0.02 synapses/�m, n � 4 cells; Crx�/�,
0.46 	 0.04 �m, n � 6 cells, mean 	 SEM; p � 0.04). We next
analyzed whether the continued and more pronounced hyper-
activity observed in older Crx�/� mice affected the eye-
specific segregation of their RGC axons in the dLGN.
Injections of �-cholera toxins conjugated to Alexa Fluor 488
and Alexa Fluor 594, however, revealed that the separation of
axons from the ipsilateral and contralateral eyes was main-
tained in 4- to 6-month-old mice (Fig. 11 F; WT, 0.58 	 0.06,
n � 4 dLGNs; Crx�/�, 0.49 	 0.03, n � 4 dLGNs, mean
variance 	 SEM; p � 0.2).

Discussion
In this study, we show that spontaneous activity promotes syn-
aptogenesis and we analyze the dynamics, specificity, and critical
period of this regulation in developing retinal circuits. Moreover,
we determine the effects of spontaneous activity on laminar tar-

geting and mosaic organization in the retina and the maintenance
of retinogeniculate projection patterns.

Glutamate release from BCs promotes synaptogenesis
with RGCs
Patch-clamp recordings revealed that the increased, rhythmic fir-
ing of RGCs in Crx�/� mice is generated at least in part by ele-
vated excitatory input (Fig. 4). Similar increases in synaptic input
to RGCs have been reported for rd1 mice (Margolis et al., 2008;
Stasheff, 2008). The mechanisms that cause circuits in inner ret-
ina to become hyperactive in the absence of normal input from
the outer retina are incompletely understood but seem to involve
electrical coupling of ACs and BCs (Borowska et al., 2011; Mar-
golis and Detwiler, 2011).

Previous studies have demonstrated that, when spontaneous
activity is suppressed, many developing circuits establish fewer

Figure 7. Density of excitatory synapses on RGC dendrites increases after onset of hyperactivity in Crx�/� compared with WT mice. A–F, Representative maximum intensity z-projections (top
panels) and y-projections (bottom panels) of confocal image stacks from RGCs biolistically labeled with tdTomato (blue) and PSD95–YFP (red) in WT (A–C) and Crx�/� (D–F ) mice at P9 (A, D), P16
(B, E), and P25 (C, F ). Insets show higher-magnification views of excerpts from the z-projections. G, Dendritic density (dendrite length/area) of RGCs biolistically labeled in WT (black) and Crx�/�

(red) background plotted as a function of postnatal age. Throughout the figure, small circles represent average values of one cell and are offset for visual clarity. Large circles and error bars indicate
the mean 	 SEM across all cells of a given genotype. H, Width of RGC dendritic stratification plotted across development. I, Density of excitatory synapses onto RGC dendrites diverges between WT
and Crx�/� retinas at approximately P16. *p � 0.05.
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Figure 9. Synaptic development of converging BCs with a shared RGC target is altered in a cell-type-specific manner in Crx�/� mice. A–F, Maximum intensity z-projections through
confocal image stacks of BC–RGC pairs. Pairs consisted of B6 (A, D), B7 (B, E), or RB (C, F ) axons labeled by transgenic expression of tdTomato (Grm6 –tdTomato; red) and G10 RGCs
biolistically transfected with CFP (blue) and PSD95–YFP (green) in WT (A–C) and Crx�/� (D–F ) background. Insets show synapses in higher-magnification views of single-image planes.
In the z-projections (but not in the single-plane views), BCs were masked for visual clarity. G, Population data for the number of synapses of B6 –G10 (left), B7–G10 (middle), and RB–G10
(right) pairs. Each circle indicates the number of synapses for a single cell pair, and bars represent the mean of the respective populations in WT (white bar) and Crx�/� (red bar) mice.
Inset in the right shows the number of appositions of RB–G10 pairs. **p � 0.01. H, Histogram of synaptic constellations at appositions of B6 –G10 pairs. Bars and error bars indicate
mean 	 SEM of WT (white bars) and Crx�/� (red bars) datasets.

Figure 8. Elevated neurotransmission selectively increase the rate of synapse formation in Crx�/� mice. A, First image of a time-lapse series of a large monostratified RGC in a P16 Crx�/� retina
biolistically labeled with tdTomato (blue) and PSD95–YFP (red). B, C, Time series of the region indicated by the white box in A in which two new PSD95–YFP clusters form (arrows). The PSD95–YFP
signal is shown in isolation in C. D, E, Summary data (mean 	 SEM) of the rates of PSD95–YFP cluster formation and elimination in WT and Crx�/� retinas (P16). In D, the number of cells in each
dataset is shown in parentheses. To avoid biases, cluster formation rates (D) were normalized to the length of dendrite imaged, and elimination rates (E) were expressed as the percentage of
synapses lost. *p � 0.05.
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synapses (Verhage et al., 2000; Bouwman et al., 2004; Ultanir et
al., 2007; Kerschensteiner et al., 2009). This suggests that normal
activity is required for normal synaptogenesis. However, whether
elevated spontaneous activity is sufficient to promote synapto-
genesis beyond normal levels remained unclear. Overexpression
of the vesicle-associated protein synapsin IIb had been shown to
advance the maturation of synapses among cultured neuroblas-
toma cells (Han et al., 1991), but how this result related to devel-
oping circuits in vivo was unknown. We find that enhanced
neurotransmission in Crx�/� mice elevates the density of BC–
RGC synapses above the norm (Fig. 7), supporting the notion
that spontaneous activity in this circuit regulates synaptogenesis
in a continuous, bidirectional manner. Because of its presynaptic
origin (Fig. 4), the observed RGC hyperactivity cannot in turn be
explained by increased BC–RGC synaptogenesis.

BCs in Crx�/� mice show increased spontaneous activity but
lack all light responses. We interpret the changes in synaptogen-
esis to be caused by the increase in spontaneous rather than the
absence of light-evoked activity, because they are opposite to
those observed in tetanus toxin-expressing retinas in which both
spontaneous and evoked glutamate release from BCs are similarly
reduced (Kerschensteiner et al., 2009). A dominant role for spon-
taneous over visually evoked activity during BC–RGC synapto-
genesis is consistent with a previous study that found the density
of ribbon synapses in the IPL to be indistinguishable between
dark-reared and control mice (Fisher, 1979a). However, dark

rearing has been shown to cause a number of physiologic changes
in the connections between BCs and RGCs (Tian and Copenhagen,
2001; Di Marco et al., 2009).

The relative influence of spontaneous and evoked activity on
synaptic development varies among visual system circuits, in part
because of the distinct timing of critical periods (Katz and Shatz,
1996; Hensch, 2004). For tetanus toxin-expressing BCs, synapto-
genesis is reduced after P7 (Kerschensteiner et al., 2009). In
Crx�/� mice, increased spontaneous activity from P15 onward
increases synaptogenesis until P25 (Fig. 7) but not thereafter (Fig.
11). Together, these studies suggest that in mice the critical pe-
riod for synaptic refinement in the inner retina extends approx-
imately from the end of the first to the fourth week of postnatal
life, when the majority of connections are established (Fisher,
1979b; Morgan et al., 2008).

Neurotransmission selectively regulates BC–RGC synapse
formation, not elimination
In most developing circuits, synaptogenesis is a high turnover
process in which synapse formation and elimination coexist as
precise patterns of connectivity emerge (Alsina et al., 2001; Niell
et al., 2004). In BC–RGC circuits, we found previously that re-
ducing glutamate release from BCs selectively lowers the rate of
synapse formation (Kerschensteiner et al., 2009) and report here
that increases in spontaneous activity selectively increase this rate
(Fig. 8). Neither manipulation affected synapse elimination. Sim-

Figure 10. Hyperactive RGC axons maintain eye-specific segregation and laminar targeting in the dLGN of Crx�/� mice. A–F, Coronal sections through dLGN of WT (A, C, E) and Crx�/� (B, D,
F ) mice. RGC axons from ipsilateral and contralateral eyes were labeled with �-cholera toxin conjugated to Alexa Fluor 594 (red) and Alexa Fluor 488 (green), respectively. Images of ipsilateral (C,
D) and contralateral (E, F ) projections are also shown in isolation. G–J, Coronal sections through dLGN of WT (G, I ) and Crx�/� (H, J ) mice in which neuronal cell bodies are stained with NeuroTrace
(G, H, in magenta), and projections of posterior motion-selective DSGCs are labeled by transgenic expression of EGFP (G, H, in green). In I and J, DGSG projections are shown in isolation. K, Mean 	
SEM variance of R value distributions from �-cholera toxin injections in WT (white bars) and Crx�/� (red bars) mice. L, Laminar targeting of DRD4 –EGFP-expressing DSGCs is illustrated by plotting
the distribution of fluorescence intensity along the width of the dLGN in WT (black line, open circles, n � 5 dLGNs) and Crx�/� (red line, filled circles, n � 5 dLGNs) mice.
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ilarly, local LTP induction on pyramidal neurons in hippocampal
slice cultures specifically increases the rate of spine formation,
without affecting the probability of spine loss (Engert and
Bonhoeffer, 1999). Thus, it seems that, in circuits of the CNS,
presynaptic transmitter release can promote the assembly of
postsynaptic specializations. The degree to which this regulation
extends to their stability likely depends on the specific circuit
studied (Holtmaat et al., 2005; Zuo et al., 2005).

Neurotransmission promotes the maturation of specific
connectivity patterns in a cell-type-dependent manner
By reconstructing the connectivity patterns of identified BC–
RGC pairs in retinas with increased (Fig. 9) and reduced (Morgan
et al., 2011) spontaneous activity, we have found that neurotrans-
mission selectively regulates the formation of multisynaptic ap-
positions between B6 BCs and G10 RGCs but does not affect the
maintenance of connections between B7 BCs and G10 RGCs or
the elimination of synapses from RB BCs. Similar cell-type-
dependent regulation of synaptic maturation was described re-
cently for the inputs to CA3 pyramidal neurons, in which

cadherin-9 is required for the differentia-
tion of mossy fiber synapses from dentate
gyrus inputs (Williams et al., 2011).
Activity-dependent and -independent cues
likely interact throughout the nervous system
not only to determine which cells connect
(Cline,2003)butalsotoshapethearchitecture
of these connections.

Crx�/� mice are a model of LCA. Pre-
viously, large-scale circuit remodeling at
late stages of this and other photoreceptor
degenerative diseases had been noted
(Marc et al., 2003). The changes in circuit
development we report here are an im-
portant addition to these studies because,
unless addressed therapeutically, they
may limit the degree to which normal
RGC light responses can be restored even
by early replacement or photosensitiza-
tion of upstream circuit elements
(MacLaren et al., 2006; Lagali et al., 2008;
Busskamp et al., 2010).

Normal IPL lamination and neuronal
mosaics in Crx�/� retinas
In agreement with a previous study (Pig-
natelli et al., 2004), we found that BC ax-
ons and AC neurites in Crx�/� mice target
correct sublaminae in the mature (P21)
IPL (Fig. 5). In addition, both lateral
branching and stratification patterns of
RGC dendrites develop normally despite
abnormal PR input and spontaneous ac-
tivity (Fig. 7). To what extent neural activ-
ity regulates IPL lamination has been
debated for some time and appears to de-
pend on the cell type and species studied
(Bodnarenko and Chalupa, 1993; Tian
and Copenhagen, 2003; Stacy et al., 2005;
Kerschensteiner et al., 2009; Kim et al.,
2010; Xu et al., 2010). Recently, cues other
than activity have emerged as key regula-
tors of laminar targeting in the mouse IPL

(Yamagata et al., 2002; Yamagata and Sanes, 2008; Matsuoka et
al., 2011a,b).

Repulsive homotypic interactions, mediated in part by Down
syndrome cell adhesion molecule DSCAM and DSCAM-like 1,
are required for the formation of neuronal mosaics in the retina
(Fuerst et al., 2008, 2009). Whether activity regulates the number
and distribution of neurons in the retina is incompletely under-
stood (Zhang et al., 2005; Anishchenko et al., 2010). Our results
(Fig. 6) suggest that spontaneous and light-evoked activity play
only a minor role in the organization of retinal mosaics of cho-
linergic ACs and DSGCs.

Maintained segregation and laminar targeting of RGC axons
despite abnormal activity
Spontaneous activity of RGCs can regulate the maintenance of
projection patterns of their axons in subcortical visual nuclei.
When RGC activity is blocked after eye-specific territories in fer-
ret dLGNs have been established, axons from both eyes come to
overlap again (Chapman, 2000). Similarly, in nob mice, eye-
specific territories desegregate as RGCs become hyperactive at

Figure 11. Retinal connectivity and retinogeniculate projections patterns stabilize despite additional hyperactivity in older
Crx�/� mice. A, Raster plots (on 2 timescales) of the spike trains of six simultaneously recorded representative RGCs in 6-month-
old WT (left column) and Crx�/� (right column) mice. B, Cumulative distributions of average RGC firing rates in 4- to 6-month-old
WT (black lines) and Crx�/� (red lines) mice (WT, n � 201 cells; Crx�/�, n � 167 cells). C, Power spectra of RGC spike trains
normalized to the peak power of the P21 Crx�/� dataset (Fig. 3B). Lines (shaded areas) represent mean 	 SEM of the respective
populations (WT, black; Crx�/�, red). D, Representative maximum intensity z-projections of confocal image stacks from RGCs
biolistically labeled with tdTomato (blue) and PSD95–YFP (red) in 6-month-old WT (left) and Crx�/� (right) mice. Insets show
higher-magnification views of excerpts from the z-projections. E, Population data (mean 	 SEM) of the density of BC synapses on
RGC dendrites. The number of cells included in the analysis is shown in parentheses. *p � 0.05. F, Mean 	 SEM variance of R value
distributions from �-cholera toxin injections in 4- to 6-month-old WT (white bars) and Crx�/� (red bars) mice.
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approximately P12 (Demas et al., 2006). In contrast, in Crx�/�

mice, in which RGCs develop comparable elevated oscillatory
firing at approximately P15, eye-specific dLGN territories remain
intact (Fig. 10). RGCs in Crx�/� fire at higher rates than in nob
mice (P21: Crx�/�, �5 Hz; nob, �2 Hz), and their activity prop-
agates in a wave-like manner in nob but not Crx�/� mice (Demas
et al., 2006). This may indicate that not hyperactivity per se but
specific patterns of RGC activity are disruptive to eye-specific
segregation, a notion supported by the observation that high-
frequency firing of RGCs earlier during development of Cx36�/�

mice does not affect the formation of eye-specific territories
(Torborg et al., 2005). Alternatively, the onset of hyperactivity in
nob but not Crx�/� mice may fall within a period when retino-
geniculate circuits are amenable to activity-dependent rewiring
(Hensch, 2004). This would imply that the respective critical pe-
riod closes between P12 and P15. Two lines of evidence corrob-
orate this timing. First, in nob mice, most of the desegregation
occurs between P12 and P14, whereas differences in the activity
patterns of WT and nob RGCs become more pronounced later
(Demas et al., 2006). Second, in a recent study, synchronous
optogenetic stimulation of RGCs from both eyes led to desegre-
gation of their axonal projections to superior colliculus only
when stimuli were presented before P14 (Zhang et al., 2012).

We also show that cell-type-specific laminar targeting of
DSGC axons in the dLGN is preserved despite retinal hyperactiv-
ity (Fig. 10). Together with the observation that lamination pat-
terns of axons from another RGC type develop normally when
cholinergic waves are disrupted (Huberman et al., 2008b), this
indicates that cell-type-specific layers in the dLGN of mice can
form and be maintained independent of retinal activity patterns.
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