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Multiple Hereditary Exostosis, EXT Genes,
and Skeletal Development

By Linda J. Sandell, PhD

ultiple hereditary exostosis is an autosomal domi-
l \ / I nant inherited disease in which osteochondral growths
occur on the periphery of bones. These growths are
comprised of bone surrounded by a cap of cartilage. A small
number of these exostoses proceed to a low-grade chondrosar-
coma". Although the disease can occur spontaneously, it has
been estimated that 80% of affected individuals have a positive
family history?.

Research on the genetics of multiple hereditary exostosis
over the past thirty years has been productive. Advances in the
understanding of the disease have paralleled the methodologi-
cal advances that have occurred in the field of molecular ge-
netics. Initially, it was recognized that multiple hereditary
exostosis is often inherited and that large families were available
for genetic mapping. As techniques for gene mapping im-
proved, regions of the chromosomes involved were identified,
localized, and eventually subjected to DNA sequencing. The
genes identified, the exostosins, were found to encode known
enzymes whose function within the disease could be reasonably
predicted. Mouse models were created, and the hypothesized
function of these genes was verified. Many surprises were en-
countered along the way, which served to uncover important
biological principles. The understanding of human multiple
hereditary exostosis is a paradigm for the power of combining
modern molecular biology, genetics, and clinical science.

The Genetics of Multiple Hereditary Exostosis
In the early 1990s, the clearly autosomal dominant inheri-
tance of multiple hereditary exostosis was recognized by
clinicians and DNA techniques became available to localize the
inheritance patterns in the DNA. By genetic linkage analysis,
Hecht et al. and Le Merrer et al. were able to localize the
inheritance patterns of these families to three chromosomal
locations: 8q24.1, 11p11-13, and 19p*°. These genes were
identified as tumor-suppressor genes, and loss of heterozy-
gosity in these regions was associated with transformation into
chondrosarcoma™.
The genes that cause multiple hereditary exostosis were
called exostosins and named EXT1, EXT2, and EXT3. EXT1
and EXT?2, corresponding to the chromosomal localizations on

chromosomes 8 and 11, respectively, were identified by posi-
tional cloning™, whereas EXT3 has not yet been identified and
its linkage to patients with multiple hereditary exostosis has
been questioned’. Based on DNA sequence homology, genome
screens have uncovered additional members of the gene family,
three EXT-like (EXTL) genes, bringing the total number of
similar genes to six. However, only EXT1 and EXT?2 have been
associated with both familial multiple hereditary exostosis and
spontaneous multiple hereditary exostosis, and more than 80%
of unrelated patients who have been tested have a mutation in
one of these two genes™.

Function of EXT Genes

he EXT1 and EXT2 genes encode two glycosyltransferase

subunits of the heparan sulfate (HS)-synthesizing system
that elongates HS chains to specific proteins belonging to a
class called proteoglycans. The HS chain is a linear glycos-
aminoglycan made up of alternating D-glucuronic acid
(GlcAc) and N-acetyl-D-glucosamine (GlcNAc) subunits. The
synthesis of HS chains is a very complex post-translational
event, initiated with a protein linkage through serine. The HS
chains are elongated with the alternating GlcAc and GlcNAc
residues via a complex of enzymes that includes the EXT1 and
EXT2 glycosyltransferases. The length of the chains can vary
and appears to be cell specific. Mutation in the glycosyltrans-
ferase genes, usually by causing a frame-shift in protein elon-
gation or missense in amino acid code, creates truncated forms
of the enzymes that those genes encode®, leading to lower
enzyme activity and less HS chain synthesis. In fact, chon-
drocytes isolated from persons with multiple hereditary ex-
ostosis contain less enzyme’.

The connection between HS-synthesizing glycosyl-
transferases and the multiple hereditary exostosis genes was
made by two independent studies. EXT1 was demonstrated to
encode for a protein that could rescue HS biosynthesis in an
HS-deficient mutant cell line'. EXT2 was identified as an HS
co-polymerase purified from bovine serum''. Mutations in
EXT1 and EXT?2 result in the formation of clinically indistin-
guishable exostoses. While both enzymes are able to transfer
GIcNAc and GlcAc, they are not functionally redundant
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Function of HS proteoglycans. Syndecans are transmembrane or extracellular matrix proteoglycans
made up of alternating GlcAc and GIcNAc carbohydrate residues attached to a protein backbone. A:
Binding of growth factor ligands (black squares) to HS chains (circles). B: Distribution of morphogen
(black circle) attached to HS chains (white circles) of proteoglycan22. (Reprinted, with permission,
from: Nadanaka S, Kitagawa H. Heparan sulphate biosynthesis and disease. J Biochem. 2008;

144:8.)

in vivo; instead, EXT1 and EXT2 seem to be a complementary
pair that forms a stable enzyme complex in vivo. The EXT1/
EXT2 complexes have considerably higher glycosyltransferase
activity than either EXT1 or EXT2 alone.

The products of the EXTL genes are able to transfer
GIcNAc™" and are thought to be involved in transferring the
first GIcNAc residue to the linkage region to initiate HS syn-
thesis. While the roles of these enzymes have not been com-
pletely determined in vivo, at least EXTL2 and EXTL3 may
have additional biological functions in the regulation of HS
synthesis and the determination of chain length but are not
necessary for initiation and elongation of HS chains.

Function of Heparan Sulfate

he HS chains of these proteoglycans are responsible for a

variety of functions primarily involving carbohydrate-
protein interactions. Heparan sulfate chains are found on a
variety of proteoglycans, including the large proteoglycan ver-
sican, found primarily in blood vessels; perlecan, the major
proteoglycan in basement membranes and many other tissues,
including the developing limb and chondrocytes; and smaller
proteoglycans called syndecans. Syndecans are found in most
tissues and occur in a family of four proteins (Fig. 1, A)"; they
are found at the cell surface bound into the membrane as
receptors or in the extracellular matrix.

At the cell surface or in the extracellular matrix, the
proteoglycans act as ligands or co-receptors where the HS
chains are necessary for receptor recognition and binding". HS
proteoglycans are known to be necessary for signaling of fi-
broblast growth factors (FGFs), vascular endothelial growth
factor (VEGF), and transforming growth factor-beta (TGF-3)
and are involved in the gradient formation of morphogens
such as hedgehog or bone morphogenetic proteins (BMPs)
(Fig. 1, B). HS proteoglycans also influence the formation of
amyloid fibrils in the brain and help to incorporate lipopro-
teins into cells in the liver. The distribution and function of
proteins that contain HS chains are extensive, and not all have
been well characterized. Since these proteoglycans occur
throughout the body, it is unclear why mutations in the genes
coding for HS chains cause multiple hereditary exostosis, a
phenotype apparently restricted to bone.

Lessons from Developmental Biology:

Drosophila and Mice

Most of the insight into the function of HS proteoglycans
and the role of the EXT genes has come from studies in

Drosophila and mice, as a result of genetic manipulations. In

Drosophila, there are three orthologs of mammalian EXT

genes, EXT1 (tout-velu), EXT2 (sister of tout-velu), and EXTL3

(brother of tout-velu). The phenotypes resulting from muta-
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Fig. 2
e Hypothesis for creation of exostoses from dysregulated chondrocytes. Chondrocyte nests in the
O H B B O &= s ; i
Cel2 thh PPR CollD Bone Perichandrium Ext2*/~ heterozygote. Top panel: a: Normal growth occurs until embryonic day 14.5 of long-bone

development. b: Due to dysregulated growth-factor signaling, isolated chondrocytes in the periphery of

the developing cartilage anlagen undergo terminal differentiation by proliferation and hypertrophy. c:

When exposed to the vasculature from the passing growth plate, cells undergo endochondral bone
A development. Bottom panel: A: Safranin O stained longitudinal section of a rib of the Ext2*/~ mouse,
‘ showing nodules (arrows) that are forcing the perichondrium to bulge out. B: Safranin O stained
transverse section through the rib, showing a single displaced chondrocyte (arrow) near the peri-
chondrium (P). C: Higher magnification of safranin O stained longitudinal section, showing a nodule. D:
Low magnification of alcian blue (cartilage) and alizarin red (bone) staining of a rib of an Ext2*/~mouse,
showing a large nodule (arrow). Scale bars: 200 um in A; 50 wm in B and C; and 300 wm in D.
Reproduced and adapted with permission from: Stickens D, Zak BM, Rougier N, Esko JD, Werb Z. Mice
deficient in Ext2 lack heparan sulfate and develop exostoses. Development. 2005;132:5062, 5066.
Reprinted with permission.

tions in these genes provided insight into the primary functions
of HS proteoglycans. In all of these mutant phenotypes, the
morphogenetic gradients of the Drosophila proteins Hedgehog
(mammalian homolog hg), Wingless (mammalian homolog
Wnt), and Decapentaplegic (mammalian homolog BMP) were
interrupted, causing these proteins to accumulate in front of the
mutant cells'’. All three protein pathways are involved in both
early embryonic development and mammalian skeletal devel-
opment. Targeted deletion of the Extl gene in mice (mouse
genes are indicated with lower case letters) abolishes the syn-
thesis of HS" and disrupts signaling of FGFs, TGF-$, Wnts,
and BMPs and results in early embryonic lethality around the
time of gastrulation. Mice that are heterozygous for the Extl

deletion show somewhat increased chondrocyte proliferation
and delayed hypertrophic differentiation, probably due to in-
creased Indian Hedgehog (Thh)". Mice that are hypomorphic
for the Extl allele (which means they have a mutation with a
reduced level of gene activity) survive to a later embryonic stage,
with expanded growth plates and an expanded range of Indian
Hedgehog signaling. These results indicate that, in mice, one of
the critical roles of HS is to establish a gradient of Indian
Hedgehog signaling to induce the proper differentiation of
chondrocytes in the growth plate.

Deletion of the Ext2 gene was expected to result in the
same phenotype as deletion of the Extl gene, because human
mutations in EXT1 and EXT2 result in the same phenotype.
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However, as Stickens et al. showed, this is not the case'. Inac-
tivation of the Ext2 gene results in early embryonic lethality
similar to the Extl deletion, but compared with Indian
Hedgehog-null mice, which die mid-gestation, the Ext2-null
mice die earlier with defects in the extra-embryonic structures
and gastrulation. This early demise could imply that fibroblast
growth factor (fgf) signaling is involved; however, while fgfrl
and fgf8 cannot be ruled out, fgf4 and fgf2 mutant mice die
shortly after implantation, earlier than the time at which Ext-
null mice die. The Ext-null phenotype also does not coincide
with the phenotype of members of the BMP or Wnt pathway
families. Consequently, it is possible that multiple pathways, or
an as yet undiscovered pathway, are modulated by the Ext
genes. Additional interesting models used by developmental
biologists to study Ext genes include Caenorhabditis elegans (a
nematode®) and zebrafish®.

Alternate Hypotheses for Initiation of Exostoses

he hypothesis that haploinsufficiency of an EXT gene (i.e.,

one allele inactivated by a mutation, with the resulting
reduced gene product not sufficient for a normal phenotype)
reduces enzymatic activity of the glycosyltransferases, causing
formation of exostoses, is not the only plausible explanation
for this condition. An alternate hypothesis for the initiation of
exostoses has been presented by Stickens et al."”. This hy-
pothesis involves the interaction of the FGF and BMP-TGF-
pathways. As noted above, FGF signaling pathways depend on
HS. In long-bone growth plates, FGF signaling shortens pro-
liferative cell columns, both by decreasing chondrocyte pro-
liferation directly and by suppressing Ihh expression. BMPs
antagonize the effects of FGF signaling and are necessary for
chondrocyte differentiation. Therefore, mutations in the EXT1
and EXT2 genes decrease HS synthesis, which reduces FGF
signaling and leads to defects in chondrocyte differentiation.
Whether the premature differentiation of chondrocytes leads
to the formation of exostoses or whether the processes are
distinct is not known. However, a model that combines the two
possibilities into a unifying hypothesis is presented. If, due to a
slightly deranged signaling system, some chondrocytes near
the perichondrium differentiate into hypertrophic chondro-
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cytes (characterized by type-X collagen synthesis), as the growth
plate grows past this nest of hypertrophic chondrocytes, vascular
elements of the growth plate are exposed to the hypertrophic
chondrocyte nest and bone formation is initiated (Fig. 2, upper
panel; the nested chondrocytes from the Ext2*/~ mice are
shown in Fig. 2, lower panel). This could result in growth at a
90° angle from the normal bone growth as seen in an exostosis,
and this hypothesis could explain the low penetrance of the
phenotype and the variable distribution of exostoses.

Conclusions

hile the exact mechanism by which underproduction

of HS proteoglycan chains causes exostosis formation is
not fully understood, the synergism of molecular biology,
genetics, and biochemistry combined with the power of ani-
mal models and the observations of astute clinicians has
produced a superior understanding of the inheritance and
biology of multiple hereditary exostosis. The pursuit of
knowledge about this disease has in turn stimulated the de-
velopment of molecular biology, impacting the understanding
of both normal development and other disease processes. The
efforts focused on understanding this particular disease have
provided an outstanding paradigm for the roles of HS chains
in regulating biological processes, the delineation of the un-
derlying causes of other cartilage and bone diseases, and some
of the factors that enable early embryo survival. Finally, be-
cause the EXT genes have been shown to be tumor-suppressor
genes and HS proteoglycans are intimately involved in
angiogenesis and cancer, study of multiple hereditary ex-
ostosis could even shed light on the mechanisms of cancer
development. ®
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