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Connexin �1Cx43 has previously been shown to bind to the PDZ domain–containing protein
ZO-1. The similarity of the carboxyl termini of this connexin and the lens fiber connexins �3Cx46
and �8Cx50 suggested that these connexins may also interact with ZO-1. ZO-1 was shown to be
highly expressed in mouse lenses. Colocalization of ZO-1 with �3Cx46 and �8Cx50 connexins in
fiber cells was demonstrated by immunofluorescence and by fracture-labeling electron micros-
copy but showed regional variations throughout the lens. ZO-1 was found to coimmunoprecipi-
tate with �3Cx46 and �8Cx50, and pull-down experiments showed that the second PDZ domain
of ZO-1 was involved in this interaction. Transiently expressed �3Cx46 and �8Cx50 connexins
lacking the COOH-terminal residues did not bind to the second PDZ domain but still formed
structures resembling gap junctions by immunofluorescence. These results indicate that ZO-1
interacts with lens fiber connexins �3Cx46 and �8Cx50 in a manner similar to that previously
described for �1Cx43. The spatial variation in the interaction of ZO-1 with lens gap junctions is
intriguing and is suggestive of multiple dynamic roles for this association.

INTRODUCTION

Gap junctions form channels between neighboring cells,
which allow the diffusion of low-molecular-weight sub-
stances that can coordinate physiological events in tissues
(Kumar and Gilula, 1996). A gap junction channel consists of
two interacting hemichannels (connexons), which contain
six connexin subunits each. Each connexin is a polypeptide
that traverses the cell membrane four times, with both the
NH2- and COOH-termini located in the cytoplasm (Milks et
al., 1988; Yeager and Gilula, 1992). Connexons may consist of
only one connexin isoform (homomeric) or of multiple iso-
forms (heteromeric). In the ocular lens, cells in the interior
are dependent on gap junctional communication to maintain

the ionic and water balance of the intercellular milieu, and
the transparency and optical properties of the lens (Mathias
et al., 1997). The anterior epithelial monolayer of the lens
contains gap junctions composed primarily of �1Cx43 con-
nexin, whereas �3Cx46 and �8Cx50 connexins are coex-
pressed during the process of terminal differentiation and
elongation of the epithelium into fiber cells. The importance
of a functional gap junction network in the lens is demon-
strated by targeted deletion of �3Cx46 connexin, which re-
sults in nuclear cataracts and Ca2�-activated proteolysis
(Gong et al., 1997; Baruch et al., 2001), whereas �8Cx50-
knockout mice show microphthalmia and develop a pulver-
ulent type of cataract (White et al., 1998).

In lens fiber cells, �3Cx46 and �8Cx50 connexins are
found in the same junctional plaque (Paul et al., 1991; Dunia
et al., 1998) and have been reported to form heteromeric
connexons (Jiang and Goodenough, 1996). In the lens cortex,
these connexins are localized primarily to the broad sides of
fiber cells (Gruijters et al., 1987; Tenbroek et al., 1992),
whereas in the nuclear region, the COOH-termini of �3Cx46
and �8Cx50 connexins are proteolytically cleaved, and the
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packing arrangement of the junctional plaques is modified.
This ordered distribution of gap junctions is thought to be
important for maintaining lens homeostasis because of in-
volvement in a proposed internal microcirculatory system
(Mathias et al., 1997). The details of how the organization
and processing of lens gap junctions are achieved are un-
clear.

In a multitude of cellular systems containing special-
ized membrane domains, certain membrane channels and
receptors have been demonstrated to interact with pro-
teins containing PDZ (PSD-95, discs large, ZO-1) domains
(e.g., Shaker voltage-gated K� channels [Kim et al., 1995]
and �2-adrenergic receptors [Hall et al., 1998a]). In some
cases, these interactions are needed to direct the mem-
brane proteins to the appropriate membrane subdomain
(Muth et al., 1998; Moyer et al., 2000). Other roles for PDZ
domain– containing proteins include coupling channels
and transmembrane proteins to downstream signaling
and cytoskeletal elements and their involvement in inser-
tion, endocytosis, and recycling of proteins (Fanning et al.,
1999). Zona occludens protein-1 (ZO-1) is a member of the
MAGUK (membrane-associated guanylate kinase) family
and contains three PDZ domains, an Src-homology-3
(SH3) domain, and an inactive guanylate kinase (GUK)
domain. The interaction of ZO-1 with the tight junction
components occludin and claudins and with cadherins
has been demonstrated previously (Itoh et al., 1993). ZO-1
also interacts with �1Cx43 connexin (Toyofuku et al.,
1998) via binding of the second PDZ domain to the most
COOH-terminal residues of �1Cx43 (Giepmans and
Moolenaar, 1998; Giepmans et al., 2001). Recently, �7Cx45
was also shown to interact with ZO-1, although it is not
clear what domains are involved in this interaction (Kaus-
alya et al., 2001; Laing et al., 2001).

Because of the sequence similarity between the COOH-
termini of �1Cx43, �3Cx46, and �8Cx50, the expression of
ZO-1 and its interaction with �3Cx46 and �8Cx50 connexins
was examined in the lens.

MATERIALS AND METHODS

Northern Blot Analysis
RNA was extracted from 2- to 3-wk-old wild-type C57BL/6 mice by
use of Trizol reagent (Life Technologies, Gaithersburg, MD), sepa-
rated by denaturing formaldehyde gel electrophoresis, and blotted
to Hybond-XL (Amersham Pharmacia, Piscataway, NJ). A probe
encompassing nucleotides 0–560 of the mouse ZO-1 coding se-
quence was generated by RT-PCR, cloned, and sequenced. This
probe was random prime–labeled using 32P and hybridized to the
blot at 68°C using ExpressHyb buffer (Clontech, Palo Alto, CA)
according to the instructions from the manufacturer. The blot was
washed to a stringency of 0.1 � SSC, 60°C, and exposed to BioMax
MS film (Eastman Kodak, Rochester, NY) for 48 h at �80°C.

Antibodies
A rabbit pAb was raised against a synthetic peptide from the
cytoplasmic loop of mouse �8Cx50 as described previously (White
et al., 1992) and affinity-purified. A rabbit pAb was raised against a
synthetic peptide from the cytoplasmic loop of mouse �3Cx46
(RRDNPQHGRGREPMC) and affinity-purified. This antibody has
been used in previous studies (Gong et al., 1997; Dunia et al., 1998).
An anti–ZO-1 pAb was obtained commercially (Zymed Laborato-
ries, South San Francisco, CA). A rat anti–ZO-1 monoclonal anti-

body (mAb), R26.4C (Stevenson et al., 1986; Anderson et al., 1988),
was obtained from the Developmental Studies Hybridoma Bank
developed under the auspices of the National Institute of Child
Health and Human Development and maintained by The Univer-
sity of Iowa, Department of Biological Sciences, Iowa City, IA.

Immunoblot Analyses
Lens material was homogenized in IP buffer (50 mM Tris, 150 mM
NaCl, 2 mM EDTA, 1% NP-40, 0.25% deoxycholate, pH 8.0), soni-
cated, and clarified by centrifugation. Samples were separated on
7% or 10% SDS-PAGE gels on a Hoefer vertical gel apparatus,
followed by transfer to Protran 0.2-�m pore size nitrocellulose
membranes (Schleicher & Schuell, Keene, NH). Membranes were
stained with 0.2% Ponceau S in 1% acetic acid, blocked with 5%
skimmed milk powder in TBST, and incubated with primary anti-
bodies. These were detected by chemiluminescence (SuperSignal
West Pico, Pierce, Rockford, IL) using goat anti-rabbit horseradish
peroxidase–conjugated secondary antibodies (Bio-Rad Laborato-
ries, Hercules, CA), followed by exposure to Biomax ML film (East-
man Kodak).

Immunostaining and Confocal Laser Scanning
Microscopy
Lenses from C57BL/6 mice were fixed in 4% paraformaldahyde for
40 min, sectioned to a thickness of 150 �m with a Vibratome (model
3000, TPI, St. Louis, MO), and refixed in 4% paraformaldahyde for
30 min. For most of the colocalization stainings, rabbit pAbs were
used to detect �8Cx50 and �3Cx46, as well as ZO-1, by use of a
procedure that discriminated between the various antibodies.
Briefly, sections were blocked with 5% goat serum in PBS, followed
by application of the connexin antibody. The bound antibody was
detected with goat anti-rabbit Fab fragments conjugated with rhoda-
mine (Jackson ImmunoResearch Laboratories, West Grove, PA).
Bound pAbs were then blocked with unconjugated goat anti-rabbit
Fab fragments, after application of anti-ZO-1 pAbs. The bound ZO-1
antibody was then detected with Alexa 488-conjugated goat anti-
rabbit IgG (Molecular Probes, Eugene, OR). Controls included in-
cubation with either of the primary antibodies alone, followed by
incubation with Alexa 488-conjugated secondary antibody, blocking
with Fab fragments, and incubation with rhodamine-conjugated
secondary antibody. In all cases, very little staining was observed
from the rhodamine-conjugated secondary antibody, indicating that
the blocking was efficient and that the labeling of individual pri-
mary antibodies was specific. Furthermore, these results were ver-
ified by substituting the rabbit pAb against ZO-1 with rat mAb
R24.6C and detecting the primary antibodies with species-specific
secondary antibodies. In this case, R24.6C was detected by use of
goat anti-rat FITC (Southern Biotechnology Associates, Birming-
ham, AL). Stained preparations were imaged with a confocal mi-
croscope (LSM410, Carl Zeiss, Thornwood, NY) equipped with an
argon/krypton laser.

Cell Lines. Cells were grown on poly-l-lysine–treated glass cover-
slips, washed in PBS, and fixed in �20°C methanol for 6 min.
Coverslips were blocked with 5% goat serum in PBS (blocking
buffer), followed by incubations with primary antibodies overnight
in blocking buffer at 4°C. pAbs were used at 1–5 �g/ml. After
washing with PBS, coverslips were incubated with fluorochrome-
labeled secondary antibodies (Southern Biotech Associates, Bir-
mingham, AL), diluted 1:100, together with 50 nM To-Pro3 (Molec-
ular Probes, Eugene, OR), in blocking buffer. Washed slides were
mounted with Fluoromount-G (Sigma, St. Louis, MO), and images
were collected with a Zeiss Axiovert confocal microscope.
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Electron Microscopy Freeze-Fracture
Immunolabeling
Lenses for freeze-fracture immunolabeling were dissected immedi-
ately after the animals were killed. The cortical lens region was
separated, and small pieces were placed on flat gold specimen
holders (Balzers, Liechtenstein), frozen by quick immersion in liq-
uid propane (Balzers), and finally stored in liquid nitrogen until
replicated. Freeze-fracture was performed at �140°C in a freeze-
fracture apparatus (model 301 or 400; Balzers). After fracture, the
specimens were shadowed by platinum/carbon evaporation from
an electron gun. The replicas were detached from the tissue by
immersion in PBS, treated with 2% SDS, and processed for immu-
nolabeling according to a technique described elsewhere (Dunia et
al., 2001). Replicas were examined with a Philips CM12 or Tecnai 12
electron microscope operating at 80 kV.

Immunoprecipitation
Lenses from adult wild-type C57BL/6, �8Cx50�/�, and
�3Cx46�/� mice were homogenized in IP buffer, as described
above. This buffer has been optimized to maximize the binding of
�1Cx43 to ZO-1 while minimizing nonspecific interactions (Giep-
mans and Moolenaar, 1998). The clarified homogenates were incu-
bated with either mAb R26.4C (anti–ZO-1) or normal rat serum
bound to protein-G agarose. The agarose beads were washed ex-
tensively in IP buffer and eluted with SDS-PAGE sample buffer, and
precipitated proteins were analyzed by immunoblotting.

Constructs
The generation of ZO-1 PDZ–GST fusion protein constructs was
described previously (Nielsen et al., 2002).

Oligonucleotide primers A3FOR (5�-ATGGGATCCGCAAT-
GGGCGACTGGAGCTTCC-3�) and A3REV (5�-ATGGAATTCCTA-
GATGGCCAAGTCACCTGGTCTGGC-3�) were used to amplify the
coding region of �3Cx46 from mouse genomic DNA by PCR. Sim-
ilarly, the coding region of �3Cx46 lacking the most COOH-termi-
nal isoleucine residue (�I) was amplified with primers A3FOR and
A3dIREV (5�-ATGGAATTCCTAGGCCAAGTCACCTGGTCTGGC-
3�). The coding region of �8Cx50 was amplified with primers
A8FOR (5�-ATGGGATCCGCAATGGGCGACTGGAGTTTCC-3�)
and A8REV (5�-ATGGAATTCTCATATGGTGAGATCATCTGAC-
CTGGC-3�), and the �8Cx50�I construct was generated with prim-
ers A8FOR and A8dIREV (5�-ATGGAATTCTCAGGTGAGAT-
CATCTGACCTGGC-3�). The PCR products were digested with
BamHI and EcoRI and cloned into pcDNA3 (Invitrogen, San Diego,
CA). This expression vector contains a CMV promotor and a SV40
polyadenylation signal. After sequence verification, the constructs
were transiently expressed in HEK293 cells.

Pull-down Experiments
Lenses from 2- to 4-wk-old wild-type C57BL/6 and �3Cx46 and
�8Cx50 knockout mice were homogenized in IP buffer and clarified.
GST fusion proteins containing the PDZ domains of ZO-1 were
induced by standard procedures and bound to glutathione-agarose.
After washing, agarose beads were incubated with equal amounts
of lens homogenate. Agarose beads were then washed extensively,
and fusion proteins, together with specifically bound proteins, were
released from the beads with SDS-PAGE sample buffer. The samples
were analyzed by immunoblotting. Membranes were stained with
Ponceau S to verify that equal amounts of the PDZ1-, 2-, and 3-GST
fusion proteins had been incubated with lens homogenates.

RESULTS

ZO-1 Expression in the Lens
Because ZO-1 expression has not previously been examined
in the lens, the ZO-1 RNA levels in lens and other tissues

from adult C57BL/6 mice were examined by Northern blot
analysis. The lens ZO-1 RNA expression levels (Figure 1A,
lane 1) were found to exceed the ZO-1 RNA levels from
testis, heart, brain, and kidney (Figure 1A, lanes 2–5), tissues
known to express ZO-1 protein. The transcript size of ZO-1
RNA was slightly larger in the lens than in the other organs
examined. This most likely represents alternative splicing of
the transcript, because multiple splice variants of ZO-1 are
found in various tissues (Gonzalez-Mariscal et al., 1999).

ZO-1 protein levels were then analyzed by immunoblot of
lysates from several mouse tissues (Figure 1B) and were
found to correlate well with the respective ZO-1 RNA levels
in Figure 1A, confirming that significant amounts of ZO-1
were expressed in lens (Figure 1B).

In these studies, whole lenses were analyzed. These con-
tain at least three regions, epithelium, cortical fibers, and
nuclear fibers, with cells at different stages of differentiation.
To determine the proportion of ZO-1 in each of these re-
gions, mouse lenses were microdissected to enrich for the
respective layers, and the fractions were analyzed by immu-
noblot. ZO-1 was found in all regions of the mouse lens,
although more abundantly in the epithelial and differenti-
ating, cortical fiber cell layers (Figure 1C, lanes 1–2) than in
the mature, nuclear fiber cells (Figure 1B, lane 3). Further-
more, immunoblot analysis of whole lenses from 1-, 2-, 3-,
and 16-wk-old mice revealed that ZO-1 levels decreased
drastically 3 wks after birth (Figure 1D).

Figure 1. ZO-1 is expressed in all regions the mouse lens in an
age-dependent manner. (A) Northern blot analysis of lens, testis,
heart, brain, and kidney from adult wild-type (wt) C57 mice probed
for ZO-1 (top) and actin (bottom). ZO-1 RNA was highly expressed
in the whole lens. (B) Immunoblot analysis of ZO-1 expression from
mouse lens, testis, heart, brain, and kidney (top) and actin (bottom).
ZO-1 was found to be expressed significantly in the lens compared
with the other tissues. (C) Immunoblot analysis of ZO-1 expression
in different regions of adult mouse lenses. The lens epithelial (lane
1), cortical (lane 2), and nuclear (lane 3) layers were separated by
microdissection. ZO-1 was detected in all regions of the lens (top).
The blot was reprobed for actin expression (bottom). (D) Immuno-
blot analysis of lens ZO-1 levels at different ages. ZO-1 levels de-
creased several-fold in adult lenses (top). Reprobing of the blot for
actin showed that equal amounts of proteins were analyzed (bot-
tom). The faster-migrating form of actin observed in heart probably
corresponds to a splice variant that has been described previously
(Pari et al., 1991).
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Localization of ZO-1 and Connexins in the Lens
Mouse lenses were sectioned in the equatorial plane and
examined by immunofluorescence-scanning confocal mi-
croscopy with two different antibodies against ZO-1. These
two antibodies gave similar staining patterns. Distinct zones
with different ZO-1 staining patterns were discernible in the
lens and are labeled by numbers (1–4) in Figure 2. A de-
scription of the observed results in the different zones is
given below.

Zone 1. At the epithelium–fiber interface, an intense punc-
tate staining at the apical side of the epithelial cells was
observed from the proliferative region to the equator. At
high magnification, a punctate staining was also observed at
cell–cell contacts between epithelial cells. Similar staining
was also observed at cell–cell contacts between the posterior
tips of elongating fibers. It is noteworthy that such punctu-
ate staining of ZO-1 at the fiber cell tips was observed only
at the posterior part of the lens. At the corresponding do-
main of the epithelial cell membrane, staining for ZO-1 was
not observed (our unpublished results).

Zone 2. In outer cortical fibers cells, 10–150 �m from the
surface, a punctate membrane staining with spots predom-
inantly at the narrow faces of fiber cell hexagons was ob-
served. For a few outer cell layers, small, scattered punctuate
spots of ZO-1 were seen at the broad face of fiber cells, but
these disappeared by 30–40 �m and deeper (our unpub-
lished results).

Zone 3. At 175–300 �m from the surface (midcortex), ZO-1
appeared to translocate from the narrow side of fiber cells, to
localize predominantly to the broad face of fiber cells.

Zone 4. At 325–425 �m from the surface (deep cortex), ZO-1
appeared to be more evenly distributed on both narrow and
broad sides of fiber cells, although these are more irregular
at this location.

In the nuclear region, a diffuse staining of the plasma
membrane was observed. At high magnification, however, it
became apparent that ZO-1 staining was not uniform across
the fiber cell membrane, showing limited areas of decreased
staining. Because of the extensive proteolysis and exposure
of cryptic epitopes in the nucleus, it is not clear whether the

staining observed in the nucleus represents intact ZO-1,
fragments of ZO-1, or cross-reactivity of the antibodies (our
unpublished results).

The colocalization of ZO-1 with �3Cx46 and �8Cx50 connexins in
mouse lens sections was then examined (Figure 3). In the outer
cortex (corresponding to zone 2 in Figure 2, 10–150 �m from the
surface), ZO-1 and �3Cx46 connexins are located primarily on dif-
ferent faces of hexagonal fiber cells: ZO-1 was observed on the
narrow faces, whereas �3Cx46 connexins localized to the broad
faces of fiber cells (Figure 3, A–C; detail in Figure 3, D–F). In the
midcortex (corresponding to Zone 3 in Figure 2, 175–300 �m from
the surface) and continuing into the deep cortex (corresponding to
Zone 4 in Figure 2, 325–425 �m from the surface), ZO-1 was
observed to colocalize extensively with �3Cx46 on the broad faces of
fiber cells (Figure 3, G–I). Furthermore, at the lens periphery, some
colocalization at the fiber–epithelium interface and the lateral mem-
brane was observed (our unpublished results).

Similarly to �3Cx46, �8Cx50 connexin was observed to colocalize
extensively with ZO-1 in both mid and deep cortex but rarely in the
outer cortex, where �8Cx50 was also located primarily at the broad
faces of fiber cell hexagons (Figure 3, J–L).

Topographic distribution of ZO-1 and �3Cx46 and
�8Cx50 Connexins as Revealed by Fracture-Labeling
Electron microscopy analysis of fracture-labeling (FL) of
lenses performed with either anti-�3Cx46 or anti-�8Cx50
connexin antibodies, or both, indicated that these connexins
are the major constituents of the nascent junctional domains
(linear strands or small packed arrays of 9-nm junctional
intramembranous particles). On the protoplasmic fracture
face (PF), the fracture exposed large aggregates of 9-nm
intramembranous particles and the corresponding pits on
the exoplasmic fracture face (EF), which are a characteristic
of gap junctions. The fiber connexins appeared codistributed
on the same junctional plaque. Double-gold immunolabel-
ing with anti-�3Cx46 or anti-�8Cx50 and anti-ZO-1 antibod-
ies demonstrated that both ZO-1 and connexins could be
detected in the same junctional plaque (Figure 4A). At more
advanced stages of junctional assembly, double-gold immu-
nolabeling with anti–ZO-1 antibodies and anti-�3Cx46 (Fig-
ure 4B) or anti-�8Cx50 (Figure 4C) indicated that ZO-1 is
randomly distributed within the junctional plaque. In a few
junctional domains, the gold-labeled ZO-1 appeared prefer-
entially packed at the periphery of the junctional plaque.
However, ZO-1 does not form a crown of labeled particles
along the edge between EF and PF as has been described
previously for MP26 (Dunia et al., 1998).

FL on Lens Fiber Cells from Mice Lacking Either
�3Cx46 or �8Cx50 Connexins
Targeted gene ablation of lens connexin produces two different
phenotypes: a nuclear cataract in �3Cx46 (�/�) mice and a
microphthalmia associated with a pulverulent type of cataract
in �8Cx50 (�/�) mice. The topographic distribution of the
immunogold-labeled ZO-1 in the lens fiber cells of each of the
connexin knockout mice is comparable to that described above
for wild-type mouse lenses. Thus, double-immunogold label-
ing using anti-�3Cx46 or anti-�8Cx50 and anti-ZO-1 antibod-
ies, respectively, indicated that ZO-1 remains in close topo-
graphic association with the junctional plaques irrespective of
whether they contained homomeric–homotypic �8Cx50 con-
nexons (�3Cx46�/�) (Figure 4D) or homomeric–homotypic
�3Cx46 connexons (�8Cx50 �/�) (Figure 4E).

Figure 2. Expression pattern of ZO-1 in mouse lenses. The epithe-
lium at the surface of the lens is indicated by an asterisk. The ZO-1
localization changes throughout zones of the lens (indicated by
numbers). Intense ZO-1 staining is seen at the epithelium–fiber cell
interface (1). In the outer cortex (2), ZO-1 is located primarily at the
narrow face of fiber cells. In midcortex (3), ZO-1 is localized pri-
marily to the broad face at fiber cells. In deep cortex (4), ZO-1 is
more uniformly distributed on the membrane. Bar, 25 �m.
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Coimmunoprecipitation of ZO-1 and Lens
Connexins
To determine whether ZO-1 interacts with �3Cx46 and
�8Cx50 in mouse lenses, immunoprecipitated ZO-1 from
mouse lenses was analyzed by immunoblotting using spe-
cific connexin antibodies. These experiments demonstrated
that �3Cx46 was coprecipitated with ZO-1 from total lens
lysates (Figure 5A, lane 3) but not with an irrelevant antibody
(Figure 5A, lane 2). A similar coimmunoprecipitation of
�3Cx46 with ZO-1 was observed with lens lysates prepared
from �8Cx50 knockout mice (Figure 5A, lane 4), suggesting

that this is a result of direct interactions with �3Cx46 connexin
and not of heteromeric gap junctions of �3Cx46 and �8Cx50
connexins that may exist in the lens. Reprobing of the blot
showed that ZO-1 was present in both immunoprecipitations,
as expected (Figure 5A, bottom). A similar immunoprecipita-
tion of ZO-1 from wild-type mouse lenses and from �3Cx46
knockout lenses showed that �8Cx50 connexin also coprecipi-
tated with ZO-1 but not with an irrelevant antibody (Figure
5B). Ponceau staining of the blot showed that equal amounts of
anti–ZO-1 and irrelevant antibody had been used for the im-
munoprecipitation (Figure 5B, bottom).

Figure 3. ZO-1 partially colocal-
izes with �3Cx46 and �8Cx50 in
wild-type (wt) mouse lenses.
Panels A–C, d–F, G–I, and J–L
each represent one double-la-
beled section, with each row of
three images showing ZO-1 stain-
ing (left column), connexin stain-
ing (middle column; �3Cx46 in B,
E, and H and �8Cx50 in K), and
the merged staining (right col-
umn). The lens epithelium is seen
to the left in all panels. (A–C)
Overview showing the outer and
middle cortex. In the outer cortex,
ZO-1 and �3Cx46 show very lim-
ited colocalization, whereas ex-
tensive colocalization is observed
in the midcortex. Bars, 25 �m.
(d--F) Detail showing the epithe-
lium–fiber interphase and outer
cortex. ZO-1 localizes primarily
to the narrow faces of fiber cell
hexagons, whereas �3Cx46 is lo-
calized primarily to the broad
faces of fiber cells. Bars, 10 �m.
(G–I) Detail showing the transi-
tion zone between outer cortex
and midcortex. ZO-1 appears to
translocate from the narrow face
of fiber cells to the broad face and
is observed to colocalize exten-
sively with �3Cx46. Bars, 10 �m.
(J–K). Overview showing the
ZO-1 and �8Cx50 distribution in
the lens cortex. The colocalization
is limited in the outer cortex but
extensive in the midcortex region.
Bars, 25 �m.
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The Second PDZ Domain of ZO-1 Interacts with
Lens Connexins
The different PDZ domains of ZO-1 were analyzed for their
involvement in the interaction with �3Cx46 and �8Cx50
connexins. Lysates from mouse lenses were used in pull-
down experiments with the three separate ZO-1 PDZ do-
mains expressed as GST fusion proteins, and the lens con-
nexins bound to the fusion proteins were detected by
immunoblot analysis. Using the second PDZ-domain of
ZO-1, a signal for both �3Cx46 (Figure 6A, lane 3) and
�8Cx50 (Figure 6B, lane 3) was observed, suggesting its
involvement in the interaction with lens gap junctions. No
interaction between lens connexins and the first or third

PDZ domain was detected (Figure 6, A and B). Ponceau
staining of the blot showed that equal amounts of PDZ-GST
fusion proteins were used in all pull-down experiments
(Figure 6, A and B, bottom). To determine whether these
results were a result of the presence of the other connexin
isoform in a heteromeric connexon, similar pull-down
assays were performed using the second PDZ domain and
lens lysates from �3Cx46 and �8Cx50 knockout mice. As
expected, �3Cx46 was detected in �8Cx50 knockout lenses
(Figure 6C, lane 2) but not �3Cx46 knockout lenses (Fig-
ure 6C, lane 1). Pull-down experiments with the second
PDZ domain and lens lysates from these knockouts
showed that �3Cx46 could bind to the second PDZ do-

Figure 4. FL of differentiating
lens fiber cell plasma membranes
of wild-type (wt) and connexin
knock-out mice. PF, Protoplasmic
fracture face; EF, exoplasmic frac-
ture face. (A) Wt mouse lens.
Double-immunolabeling with an-
tibodies directed against �8Cx50
(10-nm gold particles) and ZO-1
(15-nm gold particles). On PF,
small clusters of junctional parti-
cles (arrowheads) are labeled
with �8Cx50 antibody. Note that
ZO-1 immunolabeling is distrib-
uted strictly in association with
initial sites of junctional assem-
bly. Bar, 60-nm. (B) Wt mouse
lens. Double-immunolabeling
with antibodies directed against
�3Cx46 (10-nm gold particles)
and ZO-1 (15-nm gold particles).
Immunolabeled ZO-1 is associ-
ated with clusters of junctional
intramembranous particles (IMP)
composing �3Cx46, visualized on
PF. Bar, 38 nm. (C) Wt mouse
lens. Double-immunolabeling
with antibodies directed against
�8Cx50 (10-nm gold particles)
and ZO-1 (15-nm gold particles).
PF displays a large packing of
junctional IMP labeled by anti-
�8Cx50 antibody. Note that the
immunolabeled ZO-1 is restricted
to the junctional plaque and co-
distributed with �8Cx50. Bar, 55
nm. (D) Knock-out �3Cx46
mouse lens. Double-immunola-
beling with antibodies directed
against �8Cx50 (10-nm gold par-
ticles) and ZO-1 (15-nm gold par-
ticles). The fracture has exposed
the EF of a large junctional
plaque. Immunolabeling is re-
stricted to the junctional domain.
Bar, 38 nm. (E) Knock-out �8Cx50
mouse lens. Double-immunola-
beling with antibodies directed
against �3Cx46 (10-nm gold par-
ticles) and ZO-1 (15-nm gold particles). The fracture has exposed a PF displaying loosely packed junctional particles. �3Cx46 and ZO-1 are
codistributed. Bar, 45 nm.
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main in the absence of �8Cx50 (Figure 6C, lane 4). Simi-
larly, �8Cx50 was found to bind to the second PDZ do-
main in the absence of �3Cx46 (Figure 6D, lane 3),
excluding the possibility that the binding was a result of
the presence of �3Cx46 in heteromeric connexons. The
presence of equal amounts of PDZ2-GST fusion protein in
the pull-down assays was demonstrated by Ponceau
staining of the blot (Figure 6, C and D, bottom).

The COOH-Terminal Residues of Lens Connexins
Bind to ZO-1
It has been demonstrated previously that the most COOH-
terminal residue is involved in the interaction of �1Cx43 with
ZO-1, because deleting this residue abolishes binding (Giep-
mans and Moolenaar, 1998). To determine the involvement of
the most COOH-terminal domains of lens connexins in the
interaction with ZO-1, constructs encoding mouse �3Cx46 and
�8Cx50 and mutants of these lacking the most COOH-terminal
isoleucine residues (�3Cx46�I and �8Cx50�I) were generated
and transiently overexpressed in HEK293 cells. Immunofluo-
rescence examination of these cells using anti-connexin anti-
bodies revealed fluorescent spots consistent with the formation
of gap junctions between two adjoining cells at sites of cell–cell
contact of some cell pairs expressing either �3Cx46 (Figure 7A,
arrow) or �3Cx46�I (Figure 7B, arrow). Similar immunofluo-
rescent staining was detected between some cell pairs express-
ing either �8Cx50 or �8Cx50�I (Figure 7, C and D, arrows),
indicating that these mutants retain the ability to traffic and
assemble into what are probably gap junctions in HEK293 cells.
Some cell pairs overexpressing either the wild-type or mutated
connexins showed intense fluorescence spread all over the
plasma membrane and accumulation within cellular compart-

ments, most likely because of high levels of connexin protein
expressed in these cells (Figure 7D).

When homogenates of these cells were analyzed by im-
munoblotting using connexin antibodies, products were de-
tected for all four constructs but not in wild-type HEK293
cells, as expected (Figure 8, A and B, bottom). However,
analysis of homogenates from cells transfected with �3Cx46
and �3Cx46�I indicated the presence of several products,
most of which migrated slightly faster than lens �3Cx46 in
SDS-PAGE (Figure 8A, bottom, lanes 3 and 4, arrow). In
contrast, a single connexin band was observed by SDS-
PAGE in homogenates from cells expressing �8Cx50 and
�8Cx50�I after short exposure. The SDS-PAGE mobility of
this band was similar to the upper, major band of �8Cx50
from lens lysate (Figure 8B, bottom, lanes 3 and 4). Ponceau
staining of the blots showed that equal amounts of lens,

Figure 5. �3Cx46 and �8Cx50 coimmunoprecipitate with ZO-1
from mouse lens lysates. An anti–ZO-1 antibody was used for
immunoprecipitation of lens lysates, and precipitates were analyzed
for �3Cx46 or �8Cx50. (A) Top, immunoblot to detect �3Cx46 in
wild-type (wt) mouse lenses (lane 1), immunoprecipitates of wt
lenses with an irrelevant rat antibody (lane 2), immunoprecipitates
of wt lenses with an anti–ZO-1 mAb (lane 3), and immunoprecipi-
tates of �8Cx50�/� lenses with an anti–ZO-1 mAb (lane 4). �3Cx46
was coprecipitated with ZO-1 in both wt and �8Cx50�/� lenses.
Bottom, immunoblot to detect ZO-1 in immunoprecipitates. Equal
amounts of ZO-1 were detected in the samples containing wt and
�8Cx50�/� lenses. (B) Top, immunoblot to detect �8Cx50 in wt
mouse lenses (lane 1), immunoprecipitates of wt lenses with an
irrelevant rat antibody (lane 2), and immunoprecipitates of wt
lenses (3) and �3Cx46�/� lenses (4) with an anti–ZO-1 mAb.
�8Cx50 was coprecipitated with ZO-1. Bottom, Ponceau staining of
the blot to visualize antibodies. Similar amounts of irrelevant and
anti–ZO-1 antibodies were used in the immunoprecipitations.

Figure 6. The second PDZ domain of ZO-1 binds �3Cx46 and
�8Cx50 independently. Immunoblot analysis of pull-down experi-
ments in which mouse lens homogenates were incubated with ZO-1
PDZ domains. PDZ domains were fused to GST and expressed in
bacteria. Lens homogenates from adult wild-type (wt) C57 mice
incubated with the first, second, and third PDZ domains were
examined for �3Cx46 binding (A) and �8Cx50 binding (B) (tops).
Binding to the second PDZ domain of ZO-1 was observed for both
connexins. Ponceau staining of the membrane showed that equal
amounts of each PDZ domain containing fusion protein had been
used (bottom). (C and D) Lens homogenates from adult mixed
background �3Cx46 and �8Cx50 knockout mice incubated with the
second PDZ domain were examined for �3Cx46 binding (C) and
�8Cx50 binding (D) (top). Binding of �3Cx46 in �8Cx50 knockouts
(A) and of �8Cx50 in �3Cx46 knockouts (B) was observed. Ponceau
staining of the membrane showed that equal amounts of PDZ2
fusion protein had been used (bottoms).
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wild-type HEK293, and transfected HEK293 lysates were
analyzed (Figure 8, A and B, top). Homogenates from
HEK293 cells overexpressing both the wild-type and mutant
connexins were then used in pull-down assays with the
second PDZ domain of ZO-1 fused to GST. These experi-
ments demonstrated that both wild-type �3Cx46 and wild-
type �8Cx50, overexpressed in HEK cells, bound to the
second PDZ-domain as expected (Figure 8, A and B, bottom,
lanes 5). In contrast, neither �3Cx46�I nor �8Cx50�I bound
to the second PDZ-domain (Figure 8, A and B, lane 6).
Ponceau staining of the blot showed that equal amounts of
PDZ2 had been used for the pull-down experiment (Figure
8, A and B, top, lanes 5 and 6, arrowhead).

These results indicated that the most COOH-terminal iso-
leucine residues in both connexins were involved in the
interaction with ZO-1. Interestingly, for �3Cx46, a shorter
exposure of the blot showed that primarily the slowest-
migrating forms of �3Cx46 in SDS-PAGE bound to PDZ2.
These connexin isoforms were thus enriched for in the pull-
down assay, because they could be discerned only in the
total cell lysates on longer exposure (our unpublished re-
sults). In contrast, the fastest-migrating forms, which were
the most abundant forms observed in the cell lysate (Figure
8, bottom, arrow), were underrepresented in the pull-down.
A possible explanation for this could be that most �3Cx46 is
proteolytically cleaved in HEK293 cells, which would ex-
plain the much faster mobility compared with the lens lysate

isoform. This cleavage takes place from the COOH-terminus
of �3Cx46, similar to the proteolytic cleavage observed in
mature layers of older lenses. In this case, the cleaved iso-
forms would be expected to be underrepresented or absent
in the PDZ2 pull-down because of their lack of PDZ binding
domain. Their presence in the pull-down, however, may be
a result of their presence in connexons containing some
proportion of the full-length connexin isoforms.

In contrast to �3Cx46, the amount of the faster-migrating
isoform of �8Cx50 in the PDZ2 pull-down was approxi-
mately similar to the amount present in the cell lysate, as
seen after longer exposure of the blot (our unpublished
results). One possible explanation for this is that the two
isoforms of �8Cx50 differ only in phosphorylation, which
potentially does not affect binding to PDZ2.

Figure 7. Wild-type (wt) �3Cx46 and �8Cx50 and mutants of these
lacking the most COOH-terminal isoleucine residues (�3Cx46��,
�8Cx50��) can form structures resembling gap junctions in cell
culture. Immunoconfocal analyses of transiently overexpressed wt
�3Cx46 (A), �3Cx46�� (B), wt �8Cx50 (C), and �8Cx50�� (D) in
HEK293 cells. Nuclear staining is superimposed on the immunoflu-
orescent staining. Various levels of connexin expression are seen
because of the transient expression. Structures resembling gap junc-
tions are seen between cells for both wt and mutated connexins
(arrows). Bar, 20 �m; all panels are the same magnification.

Figure 8. The most COOH-terminal isoleucine residue of connex-
ins �3Cx46 and �8Cx50 are required for binding to the second PDZ
domain of ZO-1. Lysates from HEK293 cells transiently overex-
pressing �3Cx46, �3Cx46��, �8Cx50, and �8Cx50�� were incubated
with the second PDZ domain of ZO-1 expressed as a bacterial GST
fusion protein. (A) Immunoblot analyses of �3Cx46 and �3Cx46��
binding to PDZ2. Ponceau staining of the blot (top) showed that
comparable amounts of mouse lens lysate (lane 1), wild-type (wt)
HEK293 lysate (lane 2), lysate from HEK cells overexpressing
�3Cx46 (lane 3), and lysate from HEK cells overexpressing �3��
(lane 4) were analyzed. Furthermore, similar amounts of PDZ2
fusion protein were used for the pull-down experiments (lanes 5
and 6, arrowhead). Immunoblotting for �3Cx46 showed that over-
expressed �3Cx46 and �3Cx46�� migrated faster than wt �3Cx46
from lens lysate (arrow). However, overexpressed �3Cx46 bound to
PDZ2, whereas �3Cx46�� did not. (B) Immunoblot analysis of
�8Cx50 and �8Cx50�� binding to PDZ2. The experiment was car-
ried out as described above, with overexpression of �8Cx50 and
�8Cx50�� instead of �3Cx46 and �3Cx46��. Overexpressed �8Cx50
and �8Cx50�� migrated similarly to wt �8Cx50 from mouse lens
lysates. Binding of �8Cx50 but not of �8Cx50�� to PDZ2 was
observed (bottom).
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DISCUSSION

In the present study, ZO-1 was found to be highly expressed
in the lens and was found to associate with lens connexins
�3Cx46 and �8Cx50 via a molecular interaction involving
the second PDZ domain of ZO-1 and the most COOH-
terminal residue of each connexin.

Expression and Topographic Distribution of ZO-1,
�3Cx46, and �8Cx50 in the Lens
Because ZO-1 has been found primarily in association with
tight junctions, which are present in the lens only at the
epithelium–fiber interface, at least in some species
(Zampighi et al., 2000), it was surprising that lens contained
high levels of ZO-1 RNA and protein compared with other
organs.

In the outer cortex, ZO-1 is found primarily at the narrow
faces of fiber cells, whereas in mid to deep cortex, ZO-1 is
translocated to the broad face of fiber cells. In accordance
with this finding, double-immunofluorescence staining re-
vealed that ZO-1 is colocalized with lens fiber cell connexins
�3Cx46 and �8Cx50 to various extents in different regions of
the lens. The colocalization ranged from limited in the outer
cortex to more extensive in the midcortex. The colocalization
was observed primarily at junctional domains on the broad
faces of fiber cells and not on the narrow faces of the fibers,
which contain a limited number of gap junctions. These
findings are consistent with the relatively low amount of
lens connexins that coimmunoprecipitated with ZO-1 in our
experiments, in which whole lenses were used. The extent of
colocalization between �1Cx43 and ZO-1 in cardiac myo-
cytes has also been reported to be limited (Barker et al.,
2002), suggesting that in the lens and heart, a large propor-
tion of the connexin pool does not interact stably with ZO-1,
and vice versa.

It is likely that ZO-1 interacts with other proteins besides
connexins in the lens, as has been demonstrated in other cell
and tissue types. Thus, ZO-1 has been reported to interact
with, e.g., catenin (Rajasekaran et al., 1996), JAM (Bazzoni et
al., 2000), cadherins (Itoh et al., 1993), and actin filaments
(Itoh et al., 1997). Interestingly, the high levels of ZO-1
detected in lens epithelial cells by immunoblot analysis was
found by immunofluorescence to localize primarily to the
apical side of these cells, i.e., at the epithelium–fiber inter-
face. It is a distinct possibility that ZO-1 in these cells inter-
acts with �1Cx43, but ZO-1 probably also interacts with
adhesion molecules that anchor the epithelial cell layer to
the fiber cells. Furthermore, actin is an integral constituent of
the plasma membrane–cytoskeleton complex of lens fibers.
To verify and further examine the presence of ZO-1 in
cortical fiber cells, fiber ghost cell preparations containing
the plasma membrane cytoskeleton (Benedetti et al., 1996)
were stained for ZO-1. ZO-1 was found to show a patchy
distribution along the fiber cell plasma membrane and form-
ing a row of variously sized plaques in the membrane profile
between two adjoining fiber cells (our unpublished results).
These findings demonstrate that ZO-1 remains associated
with the fiber cell ghost preparation after extraction of the
water-soluble fiber constituents, suggesting that ZO-1 may
be part of the plasma membrane–cytoskeleton complex.
ZO-1 is probably not involved in anchoring gap junctions to
the cytoskeleton in the rodent lens, because only primate

and human lenses show association between gap junctions
and actin filament bundles, whereas rodent lenses do not
(Lo et al., 1994).

Potentially, ZO-1 could coordinate the organization of
specialized membrane domains and/or signaling mecha-
nisms, because other members of the MAGUK family are
implicated in the control and assembly of specialized mem-
brane domains (Fanning et al., 1998; Fanning and Anderson,
1999; Baruch and Lim, 2001). In the heart, �1Cx43 connexin
is localized primarily to the intercalated disk in cardiac
myocytes, and it is thought that interaction between �1Cx43
and ZO-1 is needed to localize the connexin to this special-
ized membrane domain (Toyofuku et al., 1998). A similar
localization of gap junctions to unique membrane domains
is also found in, e.g., polarized thyroid epithelial cells (Guer-
rier et al., 1995) and in the lens, in which gap junctions in the
cortex localize primarily to the broad face of lens fiber cells.
It is interesting that we observed only limited colocalization
of ZO-1 with �3Cx46 or �8Cx50 in the outer cortex, which is
the region of the lens in which gap junction plaques are
organized, whereas more extensive colocalization was ob-
served in midcortex, in which mature gap junction plaques
are present. One explanation for this could be that the asso-
ciation of ZO-1 with �3Cx46 or �8Cx50 has diverse roles in
the different regions of the lens. Perhaps only limited
amounts of ZO-1 are necessary to organize and direct the
gap junctional plaques to their correct membrane localiza-
tion in the outer cortex, if ZO-1 is even involved in this
process. In contrast, it is striking that the more extensive
association between ZO-1 and �3Cx46 and �8Cx50 deeper in
the cortex occurs at a stage of lens fiber development that
precedes the proteolytic cleavage of the COOH-terminal of
both �3Cx46 and �8Cx50. One intriguing possibility is that
ZO-1 binding to lens connexins may be involved in coordi-
nating or targeting the activities of proteolytic enzymes or
kinases involved in these posttranslational modifications in
this region of the lens. The molecular mechanisms involved
in this process, including how ZO-1 translocates from the
narrow faces of fiber cells to gap junctions, remain to be
elucidated.

The results of FL experiments provided direct evidence
that ZO-1 is distributed in close topographic association
with �3Cx46 and �8Cx50 connexins. Furthermore, these ex-
periments show that the interaction between ZO-1 and con-
nexins is resistant to mild SDS treatment. Junctional constit-
uents probably form a stable scaffold associated specifically
with sites of initiation and progressive packing of the junc-
tional domains. However, we cannot exclude the presence of
an SDS-soluble pool of ZO-1 that is not revealed by FL and
that could be associated with other membrane domains. This
could explain the apparent discrepancy between our FL and
immunofluorescence results concerning the overall localiza-
tion of ZO-1, because the latter technique, using chemically
fixed sections, showed additional labeling of ZO-1 at non-
junctional membrane domains of fiber cells.

During elongation and terminal differentiation of the lens
fibers, several membrane and cytoskeletal proteins are ex-
pressed, in particular, the major transmembrane protein of
the fibers, MP26 (MIP or Aquaporin 0), which has a dual
function of water transporter and adhesion molecule
(Benedetti et al., 2000). FL experiments have demonstrated
that MP26, during the packing of �3Cx46 and �8Cx50 con-
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nexons, forms a belt of transmembrane-linked pairs around
the junctional plaques. FL of ZO-1 shows that this protein
does not form a crown around the junctional plaque but
rather appears scattered randomly within the plaque sur-
face. This topographic distribution is suggestive of a more
general role in gap junction assembly, such as interacting
with cytoskeletal constituents and/or recruiting of signaling
molecules to the junctional domain.

FL experiments on lens fiber cells of �3Cx46 or �8Cx50
connexin knock-out mice showed that either connexin can
be associated with ZO-1. Hence, in agreement with our
biochemical data, the presence of heteromeric and/or het-
erotypic connexons is not required for the ZO-1–connexin
interaction.

Molecular Interactions between ZO-1 and �3Cx46
and �8Cx50 Connexins
The molecular mechanism of ZO-1 interaction with �3Cx46
and �8Cx50 is apparently similar to the interaction de-
scribed for �1Cx43, involving the second PDZ domain of
ZO-1 and the most COOH-terminal connexin residues
(Giepmans and Moolenaar, 1998; Giepmans et al., 2001). The
consensus motifs for PDZ-binding are the COOH-terminal
sequences E-S/T-X-V/I (type I), �-X-� (type II), �/�-X-�
(type III) (Songyang et al., 1997; Dev et al., 2001), and X-d-
X-V (type IV [Sheng and Sala, 2001]), where � is a hydro-
phobic residue and � is a basic residue. �1Cx43 and mouse
�3Cx46 and �8Cx50 connexins have a potential type II PDZ-
binding domain at their COOH-termini. Furthermore, the
COOH-terminal sequences of these connexins have similar
but not identical residues conserved between species. For
example, the COOH-terminal sequence of �3Cx46 connexin
is d-L-A-I in human and rat, whereas it is d-L-A-V in Cx56,
the chicken orthologue of �3Cx46. The same V-I exchange
can be found in orthologues of �8Cx50, where the human
sequence is d-L-T-V, whereas the mouse sequence is d-L-T-I.
Because both valine and isoleucine residues in position 0 can
bind type I PDZ-domains, we would not expect these se-
quence variations to affect binding to ZO-1.

We have recently shown that �11/Cx31.9 connexin binds
to ZO-1 via a similar mechanism (Nielsen et al., 2002), and
this is likely to be the case for �7Cx45 connexin as well
(Kausalya et al., 2001; Laing et al., 2001). The human con-
nexin family contains 20 members (Willecke et al., 2002), and
alignment study of the COOH-termini revealed that 9 mem-
bers, none of which are from the �-class, contain potential
ZO-1 binding motifs (Nielsen et al., 2001). Because the mo-
lecular mechanism of ZO-1 binding appears similar in sev-
eral connexins, there is a possibility that the biological func-
tion(s) of this interaction could also be similar for the
different connexin isotypes.

Interactions of ZO-1 with Truncated Forms of
�3Cx46 and �8Cx50 Connexins
Our results indicate that the truncated forms of �3Cx46 and
�8Cx50 lacking the ZO-1 binding domains can still traffic
and form structures between adjacent cells when expressed
in nonpolarized HEK293 cells. This is in accordance with
previous reports describing the expression of truncated
forms of connexins.

A truncated form of �8Cx50 lacking the COOH-terminal
domain forms gap junction channels with properties similar
to wild-type channels, except for loss of pHi sensitivity (Xu
et al., 2002). Truncated forms of �1Cx43 are also known to be
able to form functional gap junctions when overexpressed in
nonpolarized cells lines (Fishman et al., 1991; Unger et al.,
1999). In contrast, �7Cx45 mutants lacking the ZO-1 binding
site were reported not to localize to sites of cell–cell contact
in polarized MDCK cells (Kausalya et al., 2001). This discrep-
ancy may be related to differences between polarized and
nonpolarized cells. Another possibility is that the functional
role of the ZO-1 interaction is dependent on the connexin
isotype.

ZO-1 Involvement in Recycling of Connexins
For �1Cx43, mutants that no longer bind ZO-1 have been
shown to exhibit an increased turnover rate (Toyofuku et al.,
2001). Furthermore, it has recently been shown that myocyte
dissociation, which is known to promote gap junction re-
modeling, increased the association of ZO-1 with �1Cx43
(Barker et al., 2002). These results suggest that the interaction
of ZO-1 with �1Cx43 is involved in regulating the recycling
of the connexin. A similar biological function has been as-
cribed to the interaction of the PDZ domain containing
protein EBP50 (ezrinradixin–moesin–binding phosphopro-
tein-50) with �2-adrenergic receptors. Disruption of this in-
teraction inhibits �2-adrenergic receptor recycling at the
plasma membrane and leads to missorting of endocytosed
�2-adrenergic receptors to lysosomes (Hall et al., 1998b). The
lens is characterized by a slow but constant connexin turn-
over rate detected primarily at the equatorial cortical region,
where the fiber junctions are assembled. ZO-1 may have a
similar role in recycling of fiber gap junctions in this region
of the lens.

The lens may serve as an excellent model system for
studying these interactions because of its inherent proper-
ties. These include the possibilities of studying an intact,
nonvital organ that expresses only a limited number of
well-characterized connexins and the availability of knock-
out mice lacking combinations of all connexins expressed in
the lens.
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