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Cellular/Molecular

Interdependent Roles for Accessory KChIP2, KChIP3,
and KChIP4 Subunits in the Generation of Kv4-Encoded IA

Channels in Cortical Pyramidal Neurons

Aaron J. Norris, Nicholas C. Foeger, and Jeanne M. Nerbonne
Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110

The rapidly activating and inactivating voltage-dependent outward K � (Kv) current, IA , is widely expressed in central and peripheral
neurons. IA has long been recognized to play important roles in determining neuronal firing properties and regulating neuronal excit-
ability. Previous work demonstrated that Kv4.2 and Kv4.3 �-subunits are the primary determinants of IA in mouse cortical pyramidal
neurons. Accumulating evidence indicates that native neuronal Kv4 channels function in macromolecular protein complexes that con-
tain accessory subunits and other regulatory molecules. The K � channel interacting proteins (KChIPs) are among the identified Kv4
channel accessory subunits and are thought to be important for the formation and functioning of neuronal Kv4 channel complexes.
Molecular genetic, biochemical, and electrophysiological approaches were exploited in the experiments described here to examine
directly the roles of KChIPs in the generation of functional Kv4-encoded IA channels. These combined experiments revealed that KChIP2,
KChIP3, and KChIP4 are robustly expressed in adult mouse posterior (visual) cortex and that all three proteins coimmunoprecipitate
with Kv4.2. In addition, in cortical pyramidal neurons from mice lacking KChIP3 (KChIP3 �/�), mean IA densities were reduced mod-
estly, whereas in mean IA densities in KChIP2 �/� and WT neurons were not significantly different. Interestingly, in both KChIP3 �/� and
KChIP2 �/� cortices, the expression levels of the other KChIPs (KChIP2 and 4 or KChIP3 and 4, respectively) were increased. In neurons
expressing constructs to mediate simultaneous RNA interference-induced reductions in the expression of KChIP2, 3, and 4, IA densities
were markedly reduced and Kv current remodeling was evident.

Introduction
The rapidly activating and inactivating voltage-dependent out-
ward K� (Kv) current, IA, is widely expressed in central and
peripheral neurons (Rogawski, 1985). IA has long been recog-
nized to play important roles in determining neuronal firing
properties (Connor and Stevens, 1971a,b) and regulating neuro-
nal excitability under normal (Aghajanian, 1985) and pathologic
conditions, such as epilepsy (Bernard et al., 2004). Recent studies
have also demonstrated that alterations in the functional expres-
sion of IA in dendritic compartments is important for regulating
the backpropagation (into dendrites) of action potentials, synap-
tic potentiation, and dendritic integration (Cai et al., 2004;
Makara et al., 2009). Recognition of the many important roles
that IA plays in neuronal processing has focused considerable

effort on understanding the mechanisms that determine the
functional expression of IA channels.

Substantial progress has been made in understanding the roles
of Kv pore-forming (�) subunits in the generation of IA. In hip-
pocampal pyramidal and dorsal horn neurons, Kv4.2 �-subunits
encode IA (Chen et al., 2006; Hu et al., 2006), whereas in dorsal
root ganglion neurons and hippocampal interneurons, Kv4.3 has
been suggested to generate IA (Bourdeau et al., 2007; Phuket and
Covarrubias, 2009). In mouse cortical pyramidal neurons, how-
ever, IA is encoded by Kv4.2, Kv4.3, and Kv1.4 �-subunits (Norris
and Nerbonne, 2010). Considerable evidence indicates that neu-
ronal Kv4 channels function in macromolecular complexes that
contain accessory subunits and other regulatory molecules
(Schulte et al., 2006; Covarrubias et al., 2008; Marionneau et al.,
2009). Multiple putative Kv4 accessory subunits have been iden-
tified including the following: Kv� subunits (Aimond et al.,
2005), dipeptidyl peptidase (DPP) family members (DPP6 and
DPP10) (Nadal et al., 2003; Jerng et al., 2005), MinK/MiRP fam-
ily members (Roepke et al., 2008), as well as K� channel interact-
ing proteins (KChIP1, KChIP2, KChIP3, and KChIP4) (An et al.,
2000; Morohashi et al., 2002).

Several previous studies in heterologous expression systems
have demonstrated that coexpression of one or more of these Kv
channel accessory subunits dramatically alters the properties and
functional expression of Kv4-encoded currents (Martens et al.,
1999; Radicke et al., 2006; Maffie and Rudy, 2008). Coexpression
with one of the KChIPs, for example, results in Kv4 currents that
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inactivate more slowly and recover from inactivation more
quickly than the currents generated by Kv4 �-subunits expressed
alone (An et al., 2000). Also, the coexpression of KChIPs mark-
edly increases Kv4-encoded current densities (Shibata et al.,
2003). Interestingly, heterologous coexpression of other acces-
sory subunits, such as the DPPs and Kv�s, with Kv4 �-subunits
also alters densities and properties of Kv4-encoded currents
(Yang et al., 2001; Jerng et al., 2005). Although the many studies
conducted in heterologous cells have informed our understand-
ing of the interactions of accessory subunits with Kv4 �-subunits,
little is presently known about the functional roles played by
accessory subunits in the generation of native neuronal Kv4
channel complexes. A combination of biochemical and molecu-
lar genetic tools was exploited in the studies described here to
examine directly the functional roles of the KChIPs in regulating/
modulating Kv4-encoded currents in (mouse visual) cortical py-
ramidal neurons.

Materials and Methods
DNA constructs. Plasmids containing the coding sequences for mouse
Kv4.2, KChIP2, KChIP3, and KChIP4 were obtained from Open Biosys-
tems. The KChIP4 clone used here encodes the same amino acid se-
quence as the variant termed KChIP4b (Holmqvist et al., 2002).

Plasmids encoding human microRNA30 (miR30) with substitutions
made in the targeting sequence region (miRNA) and a fluorescent pro-
tein (see below) were constructed following a previously described ap-
proach (Du et al., 2006). Briefly, the miR30 sequence was placed between
splice donor and acceptor sequences in an artificial intron. This arrange-
ment allows the miRNA sequence to be spliced away from the transcript,
so that a single transcript can be processed to mediate RNA interference
(RNAi) and be used for translation to generate the encoded fluorescent
protein. The miRNA intron plasmid was assembled by combining the
human miR30 sequence from the pPrime system described by Stegmeier
et al. (2005) with the chimeric intronic sequence taken from the Promega
PCI-Neo vector. The miR30 sequence was placed in the branch region
between the 5� donor site and the 3� acceptor site of the first intron of the
human �-globin gene (Bothwell et al., 1981; Brondyk, 1995). The se-
quence containing miR30, as well as the exon and intron components,
was synthesized to order by CelTek and subsequently cloned into the
multicloning site of Clontech N-1 vectors, encoding either the enhanced
yellow florescent protein (YFP) or the enhanced cyan florescent protein
(CFP) at the Nhe1 and HindIII sites. To generate a red fluorescent ver-
sion of the vector, the coding sequence was replaced with the sequence
coding for the red fluorescent protein tdTomato (Shaner et al., 2004).
Individual targeting sequences specific for KChIP2, 3, or 4 were obtained
from Open Biosystems in pSM2C vectors or were designed using the
RNAI Codex algorithm and shRNA designer tool (Olson et al., 2006) and
synthesized (Sigma-Aldrich). Specific targeting hairpins were subse-
quently cloned into the XhoI and EcoRI sites in the miR30. Multiple
targeting sequences for KChIP2, KChIP3, and KChIP4 were screened for
effectiveness in reducing the expression of cotransfected target (mouse
KChIP2, 3, or 4) when transfected at ratios of 1:1 in HEK-293 cells.

The targeting sequences that proved effective in reducing the expres-
sion of the targets were then used in subsequent experiments in neurons.
The targeting 22-mer sequences used were as follows: for KChIP2, ATC-
CATGCAACTCTTTGATAAT, for KChIP3, TCCATGCAGCTGTTT-
GAGAAC, and for KChIP4, CCCAGAGCAAATTCACCAAGAA. BLAST
searches confirmed that none of the targeting sequences for individual
KChIPs had sequence homology to the other KChIPs or other known
genes. The targeting sequence used for KChIP4 is complementary to both
the KChIP4a and 4b splice variants. For control experiments, nontarget-
ing (not complementary to any cDNA sequences in the mouse genome)
hairpin sequences were used in the intron miRNA vector in place of the
specific targeting hairpins. One control sequence targeted luciferase
(Stegmeier et al., 2005) and the other was a scrambled sequence. For
experiments, equal amounts of DNA for nontargeting and targeting vec-
tors were transfected into neurons.

Isolation, maintenance, and transfection of cortical pyramidal neurons.
Neurons were isolated from the primary visual cortices of postnatal day
6–8 mice using previously described methods (Huettner and Baughman,
1986; Nerbonne et al., 2008). Briefly, each animal was anesthetized with
isoflurane and rapidly decapitated. The brain was then removed and the
posterior cortex dissected. The tissue containing the full thickness of the
visual cortex was then dissected, chopped into small pieces, and incu-
bated at 37°C in Neurobasal medium (Invitrogen) containing papain (66
U/ml) (Worthington Biochemicals) under 95% O2/5% CO2 for 30 min.
Subsequent to the enzyme treatment, tissues pieces were triturated using
fire-polished Pasteur pipettes. Isolated neurons were recovered by cen-
trifugation for 15 min through a bovine serum albumin gradient. Cells
were resuspended in Neurobasal medium and plated on previously pre-
pared monolayers of rat cortical astrocytes (Huettner and Baughman,
1986). One hour after plating, Neurobasal medium was replaced with
Minimum Essential Medium (Invitrogen) supplemented with 10% fetal
bovine serum, 0.3% glucose, and 0.14 mM L-glutamine. Cell cultures were
maintained in an incubator with 5% CO2 at 37°C.

Neurons were transfected using the Amaxa Nucleofector II and the
Amaxa mouse hippocampal kit (Lonza) according to the directions from
the manufacturer. For transfections, isolated neurons obtained by cen-
trifugation through a bovine serum albumin gradient were resuspended
in the solution included in the nucleofection kit plus the miRNA plas-
mids, subjected to electroporation, and resuspended in medium imme-
diately before plating. Based on fluorescent protein expression, 48 h after
transfections �10 –30% of cells were transfected (data not shown).

Human embryonic kidney-293 cell culture and transfection. Human em-
bryonic kidney-293 (HEK-293) cells were maintained in DMEM supple-
mented with 5% fetal bovine serum, 5% horse serum, and penicillin/
streptomycin (Invitrogen) in a 5% CO2 37°C incubator. HEK-293 cells
were transfected using Lipofectamine 2000 (Invitrogen) and were main-
tained in Opti-MEM (Invitrogen) during the 8 h transfection period.

Electrophysiological recordings. Recordings of whole-cell Kv currents
were obtained from pyramidal shaped neurons on the second and third
day in culture (�48 –72 h after plating) at room temperature (22–23°C).
Process growth was limited during the first 3 d in culture, thereby allow-
ing for adequate voltage clamp. Pyramidal shaped neurons expressing
the microRNA constructs, as determined by fluorescent protein expres-
sion, were selected for recordings. Data were collected using an Axon 1D
amplifier (Molecular Devices) interfaced to a personal computer (Dell),
using a Digidata 1322 (Molecular Devices) analog-to-digital converter.
Pipettes were fabricated from borosilicate glass (WPI) with a Sutter
model P-87 horizontal puller (Sutter Instrument). For recordings, the
bath solution routinely contained the following (in mM): 140 NaCl, 4
KCl, 2 CaCl2, 2 MgCl2, 10 HEPES, 5 glucose, 0.001 TTX, and 0.1 CdCl2,
pH 7.4 and 300 mOsM. The recording pipette solution contained the
following (in mM): 135 KCl, 10 HEPES, 5 glucose, 1.1 CaCl2, 2.5 BAPTA,
3 MgATP, and 0.5 NaGTP, pH 7.4 and 300 mOsM. The calculated free
Ca 2� in this BAPTA-buffered pipette solution was 100 nM (MaxChela-
tor) (Patton et al., 2004). Using this pipette solution, pipette resistances
were between 2 and 4 M�. All reagents were from Sigma-Aldrich unless
otherwise noted.

For all experiments, junction potentials were zeroed before forming
pipette–membrane seals. Signals sampled at 100 kHz and low-pass fil-
tered at 10 kHz. Whole-cell Kv currents were evoked in response to 4 s
depolarizing voltage steps to potentials between �40 and �40 mV (in 10
mV increments) from a holding potential of �70 mV. Also, a prepulse
paradigm, which included a 60 ms step to �10 mV before steps to test
potentials from �40 to �40 mV (in 10 mV increments), was used to
facilitate the isolation of the rapidly inactivating currents in each cell.
Subsequent off-line subtraction of the current records obtained with the
prepulse from the current records obtained without the prepulse (in the
same cell) allowed the isolation of the rapidly inactivating outward K �

currents (see Fig. 1).
Data analysis. Data were compiled and analyzed using ClampFit (Mo-

lecular Devices), Microsoft Excel, and Prism (GraphPad). Only data
from cells with input resistances �300 M� and access resistances �15
M� were included in the analyses. Membrane capacitances were deter-
mined by analyzing the decay phases of capacitive currents elicited by
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short (25 ms) voltage steps (�10 mV) from the
holding potential (�70 mV). Consistent with
the limited outgrowth of processes during the
first 3 d in culture, a single exponential was
sufficient to describe the decay phases of the
capacitive transients. Whole-cell membrane
capacitances (Cm ) were calculated for each cell
by dividing the integrated capacitive transients
by the voltage. Input resistances were calcu-
lated from the steady-state currents elicited by
the same �10 mV steps (from the holding po-
tential of �70 mV). For each cell, the series
resistance was calculated by dividing the time
constant of the decay of the capacitive transient
by the Cm ; the mean (�SEM) series resistance
was 5.8 � 0.1 M� (n 	 155). Series resistances
were compensated electronically by �80% in
all cells. Voltage errors resulting from uncom-
pensated series resistances, therefore, were
small (�2 mV) and were not corrected. The
inactivation phases of the Kv currents were
analyzed using the following equation: y 	
A1e-t/�1 � A2e-t/�2 � A3e-t/�3 � C, where
A1, A2, and A3 are the amplitudes of individual
current components (see text), each with a
characteristic time constant of decay (�1, �2,
and �3), and C is the non-inactivating compo-
nent (ISS) of the total Kv current (Locke and
Nerbonne, 1997a). Statistical analyses were
conducted using Prism. The statistical signifi-
cance of observed differences in current–voltage plots (IV plots) was
calculated using repeated-measurement ANOVA. The Mann–Whitney
test was used to examine the statistical significance of the differences of
the mean � SEM of results from Western blot and quantitative real-time
PCR (QRT-PCR) data. The column t test was used for statistical analyses
of results obtained in the experiments that examined the expression lev-
els of heterologously expressed Kv4.2 and KChIPs.

Immunoprecipitation and Western blots. For the isolation of tissue for bio-
chemical analyses, mice were anesthetized with isoflurane and rapidly decap-
itated, and the brains were removed. The posterior (�1 mm) cortex, which
contains visual areas, was dissected and flash frozen in liquid nitrogen. Tissue
samples were collected from wild-type (WT) C57BL/6 mice and mice
(Kv4.2�/�, Kv4.3�/�, KChIP2�/�, and KChIP3�/�) harboring targeted
disruptions of the genes encoding Kv4.2 (Kcnd2) (Guo et al., 2005; Ner-
bonne et al., 2008), Kv4.3 (Kcnd3) (Niwa et al., 2008), KChIP2 (Kcnip2)
(Kuo et al., 2001), and KChIP3 (Kcnip3) (Alexander et al., 2009). Also, sam-
ples from mice (Kv4.2�/�/Kv4.3�/�) generated by breeding Kv4.2�/� and
Kv4.3�/� animals were used (Norris and Nerbonne, 2010).

For experiments focused on examining the expression of the KChIP
and Kv4 proteins, total protein samples from posterior cortices collected
from adult (WT, Kv4.2�/�, Kv4.2�/�, Kv4.3�/�/Kv4.3�/�, KChIP2�/�,
and KChIP3�/�) mice were prepared using previously described methods
(Brunet et al., 2004). Protein concentrations were determined for each sam-
ple using a Bio-Rad protein assay kit (Bio-Rad) following the directions from
the manufacturer. Equal amounts of proteins were then fractionated by
SDS-PAGE and transferred to polyvinylidene fluoride (PVDF) membranes.
For immunoblotting, PVDF membranes with bound proteins were incu-
bated in blocking buffer (PBS, 1% Tween, and 5% dry milk) for 1 h at room
temperature. Membranes were then incubated overnight at 4°C with pri-
mary antibodies against Kv4.2, Kv4.3, or the individual KChIPs (KChIP2,
KChIP3, and KChIP4). All primary antibodies were from the University of
California, Davis/National Institutes of Health NeuroMab Facility with the
exception of the goat anti-KChIP4 antibody from Santa Cruz Biotechnol-
ogy. Bound primary antibodies were detected using horseradish peroxidase-
conjugated rabbit anti-mouse IgG (GE Healthcare) or rabbit anti-goat IgG
(Bethyl Labs) and the Durawest chemiluminescence reagent (Pierce). Sig-
nals were detected and quantified using the Bio-Rad Chemidoc system and
the Quantity One software (Bio-Rad). Blots were then reprobed with pri-
mary antibodies against glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) (Abcam), transferrin receptor (Invitrogen), or �-tubulin (Sigma-
Aldrich) to verify equal protein loading in each lane. For quantification, the
signals from the anti-GAPDH, the anti-transferrin receptor, or the anti-�-
tubulin antibodies were used to normalize the anti-Kv4 or anti-KChIP sig-
nals for each lane on the same blot, as described in the text.

For immunoprecipitations, posterior cortical tissue samples from
adult WT and Kv4.2 �/� mice were processed, and immunoprecipita-
tions were conducted using previously described methods (Marionneau
et al., 2009). Briefly, the tissues pieces were homogenized in ice-cold lysis
buffer: PBS [containing the following (in mM): 136 NaCl, 2.6 KCl, 10
NaH2PO4, 1.7 KH2PO4, pH 7.4] plus one protease inhibitor mixture
tablet (Roche) and Triton X-100 (1%). After 15 min rotation at 4°C, 4 mg
of the soluble protein fractions from the WT and Kv4.2 �/� brains were
used for immunoprecipitations with 5 �g of an anti-Kv4.2 rabbit poly-
clonal antibody (Millipore). Protein A-magnetic beads (Invitrogen) were
incubated with the protein samples and antibodies for 2 h at 4°C. Mag-
netic beads and bound antibodies were then collected and washed four
times with ice-cold lysis buffer, and isolated protein complexes were
eluted from the beads in 1
 NuPAGE LDS sample buffer (Invitrogen).
Samples were then fractionated by SDS-PAGE gels and transferred to
PVDF membranes for immunoblotting as described above.

Protein lysates were prepared from HEK-293 cells harvested 24 h after
transfections using ice-cold PBS containing 1% Triton and protease in-
hibitor (Complete mini EDTA ad libitum protease inhibitor mixture
tablet from Roche) and processed for Western blot analysis described
above for cortical samples.

Quantitative real-time PCR. For QRT-PCR experiments, posterior
cortical samples were collected from WT, Kv4.2�/�, Kv4.3�/�, Kv4.2 �/�/
Kv4.3 �/�, and KChIP3 �/� mice as described above. RNA was isolated
from cortical samples and cDNA was produced using standard methods
(Mullis and Faloona, 1987). Briefly, RNA was isolated by using the
RNeasy mini kit from QIAGEN according the directions from the man-
ufacturer, and RNA concentrations were determined by optical density
measurements. Single-stranded cDNA was produced from 2 �g of total
isolated RNA using the High Capacity cDNA Archive kit from Applied
Biosystems. The expression levels of KChIP2, 3, and 4 were determined
using sequence specific primers (see below) and SYBR Green (Applied
Biosystems) for QRT-PCR; experiments were conducted on a 7900HT
Fast Real-Time PCR System (Applied Biosystems). Data were analyzed
using the threshold cycle relative quantification method, with GAPDH as
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Figure 1. IA density is reduced in KChIP3 �/� cortical pyramidal neurons. A, B, Whole-cell Kv current recordings were obtained
from cortical pyramidal neurons isolated from WT and KChIP3 �/� mice. Representative recordings from WT (A) and KChIP3 �/�

(B) neurons are illustrated. In each cell, Kv currents were elicited by depolarizing voltage steps ranging from �40 to �40 mV in 10
mV increments from a holding potential of �70 mV (a). Recordings were then obtained from the same cell using a prepulse
paradigm in which the same depolarizing steps, preceded by a prepulse of 60 ms to �10 mV to selectively inactive IA, were
presented (b). The paradigms are illustrated in the insets. For each cell, currents recorded with the prepulse (b) were subtracted
off-line from the control records (a) to isolated IA (a � b). Similar recordings were obtained from WT (n 	 22) and KChIP3 �/�

(n 	 24) neurons. C, IA densities were calculated from the subtracted records, and mean � SEM IA densities are plotted. Mean �
SEM IA densities were modestly, but significantly (*p � 0.05), lower in KChIP3 �/�, compared with WT, neurons.
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the endogenous control. Primer sequences used to detect KChIP expres-
sion were as follows: KChIP2, forward, GGCTGTATCACGAAGGAG-
GAA; reverse, CCGTCCTTGTTTCTGTCCATC; KChIP3, forward,
GGAGATCCTGGGCGCATAC; reverse, GTGAACCGTGGCCTTTGC;
and KChIP4, forward, TGATCGTCATTGTGCTTTTTGTT; reverse,
GCTGTCTTCTAAACCTGCTTCAATC.

Results
Disruption of KChIP3 expression decreases IA density in
cortical pyramidal neurons
The finding that expression of KChIP3 protein was markedly
decreased in the cortices of mice harboring a targeted disruption
of the Kcnd2 (Kv4.2) locus (Nerbonne et al., 2008) suggested that
KChIP3 may play an important role in the generation of func-
tional Kv4-encoded IA channels in cortical neurons. To explore
this hypothesis, whole-cell Kv currents, evoked in response to
steps to depolarized potentials (�40 through �40 mV in 10 mV
increments) from a holding potential of �70 mV, were examined
in cortical pyramidal neurons isolated from WT and KChIP3�/�

mice. The waveforms of the Kv currents recorded from WT (Fig.
1A) and KChIP3�/� (Fig. 1B) neurons were similar, with prom-
inent rapidly inactivating current components (IA). To facilitate
the quantification of IA, Kv currents were also recorded from each
cell using a prepulse paradigm (Fig. 1A, b; B, b) to inactivate IA
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prepared from the posterior (�1 mm) cortices of WT, KChIP2 �/�, and KChIP3 �/� mice
(n 	 6 animals for each genotype) were fractionated, transferred to PVDF membranes,
and probed with a specific anti-KChIP2, anti-KChIP3, or anti-KChIP4 antibody. All three
KChIPs were detected in samples from WT mice. Confirming the specificities of the anti-
KChIP2 and anti-KChIP3 antibodies, no signal was detected with the anti-KChIP2 or the
anti-KChIP3 antibody in samples from KChIP2 �/� or KChIP3 �/� cortices, respectively.
Blots were also probed with antibodies against �-tubulin to confirm equal loading of
proteins. In each lane, anti-KChIP antibody signals were quantified and normalized to the
anti-�-tubulin antibody signals. B, In KChIP2 �/� cortices, the mean � SEM expression
levels of KChIP3 and KChIP4 proteins were significantly ( �p � 0.01) higher than in WT
cortices. Similarly, the mean � SEM expression levels of the KChIP2 and KChIP4 proteins
were significantly (*p � 0.05 and �p � 0.01, respectively) higher in KChIP3 �/� corti-
ces. C, QRT-PCR analysis revealed that the mean � SEM expression level of KChIP2 tran-
script was not significantly different in WT (n 	 6) and KChIP3 �/� (n 	 6) cortices,
whereas the mean � SEM expression level of KChIP4 transcript was slightly, but signifi-
cantly (*p � 0.05), higher in cortices from KChIP3 �/�, compared with WT, mice. Molec-
ular masses are indicated on the blots in kilodaltons.
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selectively (Norris and Nerbonne, 2010); an additional 60 ms step
to �10 mV was included before the depolarizing voltage steps
(see paradigm illustrated in Fig. 1). Off-line subtraction of the
records obtained using the prepulse paradigm from the control
records (obtained from the same cell) allowed the isolation of IA

(Fig. 1A, a � b; B, a � b).
Analysis of IA amplitudes in these subtracted records revealed

that the mean � SEM IA density was modestly, but significantly
( p � 0.05), lower in KChIP3�/� (n 	 24), compared with WT
(n 	 22), cortical pyramidal neurons (Fig. 1C). The voltage de-
pendence of activation and the mean � SEM � of inactivation of
the residual IA in KChIP3�/� neurons were not significantly dif-
ferent from the values determined for IA in WT neurons (data not
shown). Technically, changes in the voltage dependence of inac-
tivation could also result in changes in IA density. As described
previously (Andreasen and Hablitz, 1992; Song et al., 1998;
Wickenden et al., 1999), however, the presences of Cd 2� in the
bath solution (to block Ca 2� channels) shifts the voltage depen-
dence of activation and of steady-state inactivation of native IA to
more depolarized voltages. At �70 mV, the holding potential
used in the experiments here, all of the IA channels are available to
be activated. The reduced IA density in KChIP3�/� pyramidal
neurons, therefore, likely does not reflect a shift in IA channel
availability.

In addition to the rapidly inactivating IA, previous studies
(Locke and Nerbonne, 1997a,b; Yuan et al., 2005; Nerbonne et al.,
2008; Norris and Nerbonne, 2010) have identified the presence of
additional Kv currents in cortical pyramidal neurons: ID, which
inactivates more slowly than IA (� inactivation, �250 ms); IK,
which inactivates very slowly (� inactivation, �2 s); and the non-
inactivating current, ISS. Analysis of the decay phases of Kv cur-
rents in WT and KChIP3�/� neurons revealed that, unlike IA, the
mean � SEM amplitudes/densities of ID, IK, and ISS were not
significantly affected by the loss of KChIP3 (data not shown). The
selective reduction of IA in KChIP3�/� cortical pyramidal neu-
rons suggests that KChIP3 plays an important role in the gener-
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KChIP2 �/�, and KChIP3 �/� mice (n 	 6 of each genotype) and fractionated by SDS-PAGE.
After transfer, membranes were probed with a monoclonal anti-Kv4.2 or anit-Kv4.3 antibody
and, subsequently, with an anti-GAPDH antibody, to verify equal loading of proteins in each
lane. Signals from the anti-Kv4.2 and anti-Kv4.3 antibodies in each lane were quantified and
normalized to signals from the anti-GAPDH antibody in the same lane. Molecular masses are
indicated on the blots in kilodaltons. B, Mean � SEM levels of Kv4.2 and Kv4.3 proteins are not
significantly different in either KChIP2 �/� or KChIP3 �/�, compared with WT, cortices.
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miR30, with substituted targeting sequences and a fluorescent protein (YFP, CFP, or tdTomato)
on a single transcript, were generated. A, The miR30 sequence was placed on an intron down-
stream of the CMV promoter and upstream of the sequence coding for the fluorescent protein
(CFP, YFP, or tdTomato). B, Transfections of these plasmids into neurons allowed for visual
identification of neurons expressing one or all three of the plasmids for subsequent electrophys-
iological recording. C, Specific sequences targeting KChIP2, KChIP3, and KChIP4 were screened
in HEK-293 cells. The targeted KChIP (KChIP2, 3, or 4) was coexpressed with either a control
(nontargeting) miRNA construct or with a miRNA construct containing sequence complemen-
tary to the sequence of the targeted KChIP. Lysates were prepared from transfected HEK-293
cells, fractionated by SDS-PAGE, transferred to membranes, and probed for KChIP2, KChIP3, or
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ation and/or functioning of Kv4 channel complexes. The
magnitude of IA remaining in KChIP3�/� cortical pyramidal
neurons (Fig. 1C) also suggests that other KChIPs likely contrib-
ute to the generation of functional Kv4 channels. To examine the
possible role of KChIP2, Kv current recordings were obtained
from neurons isolated from mice (KChIP2�/�) harboring a tar-
geted disruption of the gene (Kcnip2) encoding KChIP2 (Kuo et
al., 2001). Analysis of the Kv currents using the prepulse para-
digm described above, however, revealed that the mean � SEM IA

density in KChIP2�/� neurons (n 	 19) was not significantly
different from WT cells (n 	 22) (not illustrated).

Coregulated expression of KChIP2, 3, and 4 in visual cortex
Previous studies have suggested that expression of KChIP1 is
restricted to nonpyramidal interneurons in the cortex (Rhodes et
al., 2004; Lein et al., 2007). As a result, KChIP1 was not consid-
ered in the analysis here. As illustrated in Figure 2A, mRNA
transcripts encoding KChIP2, KChIP3, and KChIP4 were readily
detected in RNA samples collected from the posterior (�1 mm)
cortices of WT mice (see Material and Methods) consistent with
previous reports examining KChIP expression in rodent brain
(Rhodes et al., 2004; Xiong et al., 2004). Immunoprecipitation
experiments using a rabbit anti-Kv4.2 antibody revealed that
Kv4.2 was readily detected in fractionated protein samples from
WT cortices, but not in samples from Kv4.2�/� cortices. Also
consistent with previous reports (Guo et al., 2002; Rhodes et al.,
2004; Marionneau et al., 2009), Kv4.3 coimmunoprecipitated

with Kv4.2 from WT cortical samples
(Fig. 2B). No Kv4.3, however, was de-
tected (Fig. 2B) in the samples from
Kv4.2�/� cortices, indicating that the
anti-Kv4.2 antibody does not immuno-
precipitate Kv4.3 in the absence of Kv4.2
and does not, therefore, cross-react with
Kv4.3. KChIP2, KChIP3, and KChIP4
also coimmunoprecipitated with Kv4.2
from WT, but not Kv4.2�/�, cortical sam-
ples (Fig. 2C). The finding that KChIP2,
KChIP3, and KChIP4 coimmunoprecipi-
tate with Kv4.2 further suggests a role for
each of these KChIPs in the generation of
Kv4.2 channel complexes in cortical pyra-
midal neurons.

In parallel experiments, fractionated
protein samples prepared from WT and
KChIP3�/� cortices (n 	 6 animals for
each genotype) were probed with specific
anti-KChIP2, anti-KChIP3, and anti-
KChIP4 antibodies (Fig. 3A). The signals
from each anti-KChIP antibody were
measured and normalized to the signal
from the anti-�-tubulin antibody in the
same lane. Quantitative analysis of multi-
ple blots revealed that the mean � SEM
expression levels of both KChIP2 and
KChIP4 were significantly ( p � 0.02)
higher in the KChIP3�/�, relative to the
WT, samples (Fig. 3B). Parallel experi-
ments on KChIP2�/� cortical lysates re-
vealed that the mean � SEM protein levels
of both KChIP3 and KChIP4 were signif-
icantly ( p � 0.002) higher in KChIP2�/�

compared with WT, samples (Fig. 3A,B).
To explore the role of transcriptional remodeling, RNA was iso-
lated from the (posterior) cortices of KChIP3�/� and WT mice
(n 	 6 for each genotype), and KChIP2 and KChIP4 transcript
expression levels were examined. As illustrated in Figure 3C, the
mean � SEM expression level of the transcript encoding KChIP2
was similar in KChIP3�/� and WT samples. The mean � SEM
level of KChIP4 transcript expression was significantly ( p �
0.05) higher in KChIP3�/�, relative to WT cortices, although the
magnitude (�30%) of the increase was much smaller than the
twofold increase in KChIP4 protein expression.

Parallel experiments were completed to examine the expression
levels of the Kv4.2 and Kv4.3 proteins in KChIP2�/� and
KChIP3�/� cortices. In contrast to the marked changes in KChIP
protein expression, analyses of Western blots on fractionated pro-
tein lysates prepared from the (posterior) cortices of KChIP2�/�,
KChIP3�/�, and WT mice (n 	 6 for each genotype) probed with
specific antibodies against either Kv4.2 or Kv4.3 (Fig. 4A) revealed
that the mean � SEM expression levels of the Kv4.2 and Kv4.3 pro-
teins were not significantly different in samples from KChIP2�/� or
KChIP3�/�, relative to WT, cortices (Fig. 4B).

miRNA-mediated RNAi knockdown of KChIP2, 3, and
4 expression
The biochemical experiments presented above suggest that the
KChIPs are able to compensate for one another. An RNAi-based
strategy was developed, therefore, to allow for the simultaneous
knockdown of KChIP2, 3, and 4 expression in cortical pyramidal
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Figure 6. Knockdown of KChIP4 in KChIP3 �/� cortical pyramidal neurons results in decreased IA density and upregulation of
IK and ISS. A, B, Whole-cell Kv currents, elicited in response to depolarizing voltage steps, were recorded from transfected cortical
pyramidal neurons isolated from KChIP3 �/� mice. Neurons were transfected by electroporation using the Amaxa Nucleofector
system at the time of isolation with a miRNA construct containing either sequence targeting KChIP4 or a control nontargeting
sequence; whole-cell recordings were obtained on the second and third days after transfections. IA was isolated and quantified
using the prepulse paradigm and off-line subtraction method described in the legend to Figure 1. C, Analysis of the subtracted
records (a � b) revealed that mean � SEM IA densities were significantly (*p � 0.05) lower in KChIP3 �/� neurons expressing
miRNA targeting KChIP4 (n 	 16) compared with KChIP3 �/� neurons expressing control miRNA (n 	 37). D, Analysis of the
inactivation phases of the Kv currents also revealed that, in neurons expressing KChIP4 targeting miRNA, the mean � SEM
densities of IK and ISS were significantly ( �p � 0.01) higher than in control miRNA-expressing neurons.
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neurons. Briefly, using a previously de-
scribed approach (Du et al., 2006), plas-
mids encoding a targeting miRNA and a
fluorescent protein (CFP, YFP, or tdto-
mato) were designed such that both com-
ponents are present in a single transcript
that is spliced apart and the components
are processed separately (as illustrated in
Fig. 5A). Separation of the miRNA and the
fluorescent protein coding sequences by
RNA splicing enhances the expression the
fluorescent protein because the coding re-
gion is not degraded during the process-
ing of the miRNA (Du et al., 2006),
allowing for robust expression of the flu-
orophore as a faithful reporter of miRNA
expression in transfected neurons. The
miRNA plasmids described here allowed
for the visual identification of transfected
neurons expressing multiple miRNA con-
structs (as illustrated in Fig. 5B) for subse-
quent electrophysiological recordings.

Constructs containing individual se-
quences targeting KChIP2, KChIP3, or
KChIP4 were cotransfected into HEK-293
cells with a plasmid encoding the targeted
KChIP to identify sequences able to sup-
press the expression of each of the
KChIPs. The effectiveness of each target-
ing sequence in reducing the expression of
the targeted KChIP, compared with non-
targeting control sequence, was assayed
using Western blots performed on lysates
prepared from transfected (HEK-293)
cells. Of the individual sequences tested,
those listed in Materials and Methods
markedly suppressed the expression of
KChIP2, KChIP3, or KChIP4 (Fig. 5C)
and were used in subsequent experiments in neurons. Each of
the miRNA sequences was specific to the targeted KChIP (i.e.,
none was complementary to mRNA sequences encoding
KChIPs other than the targeted KChIP).

Knockdown of KChIP4 expression in KChIP3 �/� neurons
decreased IA density
The finding that the KChIP4 protein is upregulated in KChIP3�/�

(and in KChIP2�/�) neurons (and may compensate for the loss of
KChIP3 or KChIP2) was initially surprising because previous
reports have suggested that KChIP4 acts to suppress, rather than
promote, the surface expression of Kv4 channels (Shibata et al.,
2003; Schwenk et al., 2008). To test directly the hypothesis that
KChIP4 plays a role in the expression of functional Kv4-encoded
IA channels, Kv current recordings were obtained from
KChIP3�/� neurons transfected with a plasmid encoding either
the control (nontargeting) miRNA (Fig. 6A) or the miRNA tar-
geting KChIP4 (Fig. 6B). Parallel recordings were obtained from
neurons expressing one (of the two) control nontargeting plas-
mids. One of these contained a scrambled targeting sequence
(n 	 17), and the other contained a control sequence targeting
luciferase (n 	 20). Analysis of the current records revealed no
differences and the results were pooled.

Analysis of subtracted records (Fig. 6A,B, a � b) from
KChIP3�/� neurons transfected with control (n 	 37) or

KChIP4 targeting (n 	 16) plasmids revealed that mean � SEM
IA density was significantly ( p � 0.05) lower in neurons express-
ing the KChIP4 targeting miRNA, compared with cells trans-
fected with control miRNA (Fig. 6C). As illustrated in Figure 6B,
the knockdown of KChIP4 in KChIP3�/� neurons resulted in
marked changes in the Kv current waveforms, changes reminis-
cent of those previously described in Kv4.2�/� cortical pyramidal
neurons (Nerbonne et al., 2008; Norris and Nerbonne, 2010).
Analysis of the inactivation phases of the Kv currents revealed
that the mean � SEM amplitudes of the delayed rectifier cur-
rents, IK and ISS, were significantly ( p � 0.01) larger in
KChIP3�/� neurons expressing the KChIP4 targeting miRNA,
compared with KChIP3�/� neurons transfected with control
miRNA (Fig. 6D). In contrast, the mean �SEM densities of ID

were not significantly different in control and KChIP4 targeting
miRNA-expressing cells (Fig. 6D).

Attenuation of Kv4-encoded currents and remodeling of Kv
currents with simultaneous knockdown of KChIP2, 3, and 4
in Kv1.4 �/� neurons
The results of the experiments described above suggest that
KChIP2, KChIP3, and KChIP4 all contribute to the generation of
functional of Kv4 channels and, in addition, that the KChIPs
functionally compensate for one another. Experiments were un-
dertaken, therefore, to examine the effects of concurrently
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Figure 7. Concurrent knockdown of KChIP2, KChIP3, and KChIP4 in Kv1.4 �/� cortical pyramidal neurons results in marked
reductions in Kv4-encoded IA densities and KV current remodeling. To examine the combined role(s) of the KChIPs in the generation
of Kv4-encoded IA channels, cortical pyramidal neurons were isolated from Kv1.4 �/� mice and transfected with the validated
miRNA constructs targeting KChIP2, KChIP3, and KChIP4 or with plasmids containing control (nontargeting) sequences. Because
each KChIP miRNA construct also encoded for a distinct fluorescent protein (CFP, YFP, or tdTomato), cells expressing all three KChIP
targeting miRNA constructs could be identified. A, B, Recordings were obtained from neurons expressing control plasmids (A) or all
three targeting plasmids (B). Surprisingly, no prominent rapidly inactivating component was observed in approximately one-half
(11 of 20) of the neurons expressing the KChIP targeting miRNA constructs and delayed rectifier currents were increased. In all cells,
IA was isolated and quantified using the prepulse paradigm described in the legend to Figure 1. Analyses of subtracted records (a�
b) revealed residual Kv4-encoded IA in all neurons expressing the three KChIP targeting miRNAs simultaneously. The mean � SEM
IA density was significantly ( ‡p � 0.001) lower (C) in neurons expressing the three KChIP targeting miRNA constructs (n 	 20)
than in neurons expressing control constructs (n 	 21). D, Consistent with the upregulation of delayed rectifier currents, analysis
of the peak current (IPeak) revealed no significant reduction in mean � SEM IPeak density in neurons expressing KChIP targeting
miRNA compared with those expressing control constructs, despite the marked reduction in IA densities (c).
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knocking down the expression of KChIP2, 3, and 4 on Kv4-
encoded IA. These experiments were performed in neurons iso-
lated from mice (Kv1.4�/�) harboring a targeted disruption of
the gene (Kcna4) encoding for Kv1.4 to allow for the analysis of
effects on Kv4-encoded IA without contamination from the
Kv1.4-encoded component of IA (Norris and Nerbonne, 2010).
Whole-cell Kv current recordings were obtained from Kv1.4�/�

neurons (n 	 20) visually identified to be expressing the three
miRNA constructs targeting KChIP2, 3, and 4 or neurons (n 	
21) transfected with control plasmids (Fig. 7A,B). Analyses of the
subtracted current records revealed residual Kv4-encoded IA in
all Kv1.4�/� neurons expressing the three KChIP targeting
miRNA constructs. In addition, the voltage dependence of acti-
vation and the mean � SEM � of inactivation of the residual IA

(data not shown) were similar to values determined in WT neu-
rons (see Discussion). The mean � SEM IA density, however, was
significantly ( p � 0.001) lower in Kv1.4�/� neurons expressing
all three of KChIP targeting miRNA compared with Kv1.4�/�

neurons expressing control constructs (Fig. 7C).
In addition to the marked reductions in IA densities in the

subtracted current records (a � b), the Kv current waveforms in
Kv1.4�/� neurons expressing the KChIP targeting miRNAs were
quite heterogeneous. In approximately one-half (11 of 20) of the

Kv1.4�/� neurons expressing the KChIP
targeting miRNAs, no prominent rapidly
inactivating current component was evi-
dent and delayed rectifier Kv currents
were increased (Fig. 7B) reminiscent of
the Kv current waveforms in Kv4.2�/�

neurons, in which upregulated IK and ISS

mask the residual IA (Nerbonne et al.,
2008; Norris and Nerbonne, 2010). In the
remaining Kv1.4�/� neurons expressing
the KChIP targeting miRNAs (9 of 20), a
rapidly inactivating component was
clearly evident in the macroscopic Kv cur-
rent waveforms (not illustrated). The
marked alteration in the Kv current wave-
forms and the masking of the residual IA

component in many of the Kv1.4 �/�

neurons expressing the KChIP targeting
miRNAs (Fig. 7B) suggests a greater up-
regulation in the amplitudes of IK and ISS

than in KChIP3�/� neurons expressing
the KChIP4 targeting miRNA (Fig. 6D).
Consistent with remodeling of IK and ISS,
mean � SEM peak Kv current densities
were not significantly different in neurons
expressing the three KChIP targeting
miRNA constructs, compared with those
expressing control miRNA constructs
(Fig. 7D), despite the marked decrease in
mean IA densities (Fig. 7C).

Expression of KChIP2, 3, and 4 proteins
depends on the expression of Kv4
�-subunit proteins
The observed decreases in KChIP protein
expression in Kv4.2�/� cortices (and
other brain regions) suggest that KChIP
protein expression is directly linked to
Kv4.2 expression (Menegola and Trim-
mer, 2006; Nerbonne et al., 2008). To test

this hypothesis directly, HEK-293 cells were transfected with
DNA constructs encoding Kv4.2 alone, one of the KChIPs alone,
or Kv4.2 and one of the KChIPs. As illustrated in Figure 8A,
coexpression of Kv4.2 with KChIP2 (n 	 6), KChIP3 (n 	 9), or
KChIP4 (n 	 6) resulted in significant ( p � 0.05) increases in
mean � SEM Kv4.2 protein levels (Fig. 8B) compared with cells
(n 	 9) expressing Kv4.2 alone. In addition, expression of Kv4.2
increased KChIP protein expression (Fig. 8C), and mean � SEM
KChIP2, KChIP3, and KChIP4 protein levels were significantly
( p � 0.05) higher with coexpression of Kv4.2 compared with
cells expressing each of the KChIPs alone (Fig. 8D).

To explore the hypothesis that the expression of the KChIP2,
KChIP3, and KChIP4 proteins is linked to expression of the Kv4
�-subunit proteins in cortical neurons, Western blots on frac-
tionated proteins from the posterior cortices of adult WT (n 	 6),
Kv4.2�/� (n 	 6), Kv4.3�/� (n 	 6), and Kv4.2�/�/Kv4.3�/�

(n 	 3) mice were probed with antibodies specific for KChIP2,
KChIP3, or KChIP4 (Fig. 9). Blots were subsequently probed
with an anti-�-tubulin antibody to confirm equal loading of pro-
teins in each lane. Quantitative analysis revealed that the mean �
SEM expression levels of the KChIP2, KChIP3, and KChIP4 pro-
teins were significantly ( p � 0.01) lower in Kv4.2�/� samples,
compared with WT samples (Fig. 9B). Also, relative to WT sam-
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Figure 8. Coexpression of Kv4.2 with KChIP2, KChIP3, or KChIP4 results in the costabilization of both the Kv4.2 and KChIP
proteins. HEK-293 cells were transfected with DNA constructs encoding Kv4.2 alone (n 	 9), one of the KChIPs (KChIP2, n 	 6;
KChIP3, n 	 9; KChIP4, n 	 6) alone, or Kv4.2 in combination with KChIP2 (n 	 6), KChIP3 (n 	 9), or KChIP4 (n 	 6). A, Western
blots on lysates prepared from transfected HEK-293 cells were probed with the monoclonal anti-Kv4.2 antibody. Blots were also
probed with anti-transferrin receptor antibody (Transferrin R) to verify equal loading of proteins in each lane. The anti-Kv4.2
antibody signals were measured and normalized to the signals from the anti-transferrin receptor in the same lane. B, Quantitative
analyses revealed a significant (*p � 0.05) increase in Kv4.2 protein in cells expressing Kv4.2 plus one of the three KChIPs,
compared with cells expressing Kv4.2 alone. C, Western blots conducted on HEK-293 cell lysates using the anti-KChIP2, anti-
KChIP3, or anti-KChIP4 antibody also revealed that KChIP protein expression was increased in cells coexpressing Kv4.2, compared
with cells expressing KChIP2, 3, or 4 alone. D, Mean � SEM levels of KChIP2, 3, and 4 protein expression were significantly (*p �
0.05; �p � 0.01) higher in cells coexpressing Kv4.2 compared with cells expressing either of the KChIP proteins alone.
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ples, the mean � SEM expression levels of the KChIP2, KChIP3,
and KChIP4 proteins were significantly ( p � 0.01) lower in
Kv4.3�/� samples. In addition, when samples from Kv4.2�/�/
Kv4.3�/� animals were examined, the KChIP2, KChIP3, and
KChIP4 proteins were barely detectable (Fig. 9).

In contrast, QRT-PCR analysis of RNA samples from posterior
cortices of Kv4.2�/� (n 	 6), Kv4.3�/� (n 	 6), and Kv4.2�/�/
4.3�/� (n 	 3) mice revealed that the mean expression levels of
the KChIP2, KChIP3, or KChIP4 transcripts were not lower in
any of the genotypes relative to WT cortices. In fact, the only
significant ( p � 0.05) changes observed were increased (mean �
SEM) KChIP4 transcript expression in both the Kv4.3�/� and
Kv4.2�/�/Kv4.3�/� samples (Fig. 9C). In contrast to the near-
complete loss of the KChIP2, KChIP3, and KChIP4 proteins in
the Kv4.2�/�/Kv4.3�/� cortices, there were no significant
changes in mean � SEM KChIP2 or KChIP3 transcript expres-
sion levels. The dramatic decreases in the expression levels of the
KChIP proteins resulting from the disruption of Kv4.2 and/or
Kv4.3 without corresponding decreases in mRNA levels are con-
sistent with an important role for posttranscriptional mecha-
nisms in the coupling between the expression of the KChIPs and
the expression of the Kv4.2 and Kv4.3 �-subunits.

Discussion
KChIP2, KChIP3, and KChIP4 are critical components of
functional Kv4 channel complexes in cortical pyramidal
neurons
The results of the biochemical, molecular genetic, and electro-
physiological experiments described here suggest that KChIP2,
KChIP3, and KChIP4 are critical for the formation of functional
Kv4 channel complexes in (mouse visual) cortical pyramidal
neurons. All three KChIPs are robustly expressed in posterior
cortex and, in addition, coimmunoprecipitate with Kv4.2 (Fig.
2). The results of the experiments completed here further indicate
that the KChIPs can functionally compensate for one another.
Specifically, the protein expression levels of the unperturbed
KChIPs were upregulated in the cortices of KChIP2�/� and
KChIP3�/� mice (Fig. 3), and IA densities were either not
(KChIP2�/�) or only modestly (KChIP3�/�) affected (Fig. 1).
Additional experiments revealed, however, that the simultaneous
RNAi-mediated reduction in the expression of KChIP2, KChIP3,
and KChIP4 resulted in marked reductions in Kv4-encoded IA

densities (Fig. 7). Perhaps not surprisingly, IA was not completely
eliminated in the Kv1.4�/� neurons expressing the three KChIP
targeting miRNA constructs, consistent with residual KChIP
protein, likely reflecting incomplete knockdown of KChIP2, 3,
and/or 4 expression.

Expression of KChIP proteins is dependent on the expression
of Kv4 �-subunits
The results of the experiments detailed here also revealed that the
expression of the KChIP2, KChIP3, and KChIP4 proteins is de-
pendent on the expression of Kv4 �-subunits in cortical tissue.
Consistent with previous reports that KChIP2 and KChIP3 ex-
pression is decreased in Kv4.2�/� hippocampal neurons
(Menegola and Trimmer, 2006), the results here demonstrate
that protein expression levels of KChIP2, KChIP3, and KChIP4
are decreased in the cortices of Kv4.2�/�mice. Reduced expres-
sion of the KChIP2, 3, and 4 proteins was also observed in cortical
samples from Kv4.3�/� mice. Additionally, all three KChIP pro-
teins were barely detectable in Kv4.2�/�/Kv4.3�/� cortices (Fig.
9). Importantly, the marked reductions in the expression levels of
KChIP proteins do not reflect changes in transcript levels (Fig.
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Figure 9. Endogenous KChIP2, KChIP3, and KChIP4 protein expression is dependent on
the expression of Kv4 �-subunits. A, Representative Western blots of fractionated lysates
prepared from posterior (�1 mm) cortices of WT (n 	 6), Kv4.2 �/� (n 	 6), Kv4.3 �/�

(n 	 6), and Kv4.2 �/�/Kv4.3 �/� (n 	 3) mice were probed with the anti-KChIP anti-
bodies. KChIP protein levels were differentially affected by the loss of Kv4.2 or Kv4.3,
although drastic reductions in all three proteins were evident with the loss of both Kv4.2
and Kv4.3. For quantification, blots were also probed with an anti-�-tubulin antibody to
confirm equal protein loading, in each lane, and signals from the anti-KChIP2, 3, or 4
antibodies were normalized against the signals from the anti-�-tubulin antibody in the
same lane. B, Analysis of mean (�SEM) normalized data revealed that the expression
levels of KChIP2, KChIP3, and KChIP4 proteins in Kv4.2 �/� and Kv4.3 �/� cortices were
significantly (*p � 0.05, �p � 0.01, or ‡p � 0.001) lower than in WT cortices. In
Kv4.2 �/�Kv4.3 �/� cortices, KChIP2, KChIP3, and KChIP4 protein expression levels were
extremely low. C, QRT-PCR of analysis of RNA isolated from the posterior cortices of WT
(n 	 6), Kv4.2 �/� (n 	 6), Kv4.3 �/� (n 	 6), and Kv4.2 �/�/Kv4.3 �/� (n 	 3) mice
revealed no reductions in KChIP transcripts. The mean � SEM transcript expression level
of KChIP4 was, however, significantly ( p � 0.05) higher in Kv4.3 �/� and in Kv4.2 �/�/
Kv4.3 �/�, compared with WT, cortices.
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9C), suggesting that posttranslational mechanisms are responsi-
ble for the loss of KChIP proteins in Kv4.2�/�, Kv4.3�/�, and
Kv4.2�/�/Kv4.3�/� neurons.

Previous reports indicate that the KChIPs interact with Kv4
�-subunits early during channel biogenesis (Hasdemir et al.,
2005; Flowerdew and Burgoyne, 2009). The results of experi-
ments presented here suggest that, when the KChIP and Kv4
�-subunits bind, the proteins are stabilized, leading to increased
levels of both the Kv4 �-subunit and accessory KChIP proteins
(Fig. 8). The observed increases in the protein expression levels of
the remaining KChIP proteins in KChIP2�/� and KChIP3�/�

cortices (Fig. 3) suggest that, when the expression of an individual
KChIP is disrupted, the remaining KChIP proteins are stabilized
by binding to available Kv4 �-subunits, resulting in net increases
in the nondisrupted KChIP proteins. Interestingly, the codepen-
dence of the expression of Kv �- and accessory subunit proteins
has been previously reported in studies using Caenorhabditis el-
egans (Bianchi et al., 2003) and Drosophila (Wu et al., 2010),
suggesting that the mechanisms linking accessory and �-subunits
expression are highly conserved.

Functions of KChIP2, 3, and 4
Interestingly, results from several recent studies suggest that in-
dividual KChIPs may interact with specific signaling molecules
(e.g., PKA or PKC) to regulate the modulation of Kv4 channels by
specific signaling pathways (Schrader et al., 2002; Lin et al., 2010).
Additional diversity of KChIP function may originate from splice
variants of the individual KChIP genes. Splice variants of KChIP2
and KChIP4, for example, have been described to promote sur-
face expression of heterologously expressed Kv4 �-subunits, and
other variants have been reported to have inhibitory effects on the
surface expression of Kv4 �-subunits (Shibata et al., 2003; Decher
et al., 2004). It was also recently reported that KChIP3 (but not
other KChIPs) functions as a Ca 2� sensor to modulate the volt-
age dependence of inactivation of Kv4-encoded IA in response to
the entry of Ca 2� through Cav3-encoded voltage-gated Ca 2�

channels (Anderson et al., 2010a,b). The findings presented here
raise the interesting possibility that KChIP2 and KChIP4, in ad-
dition to KChIP3, also participate in the generation and func-
tioning of distinct Kv4 channel complexes in cortical pyramidal
neurons. Future experiments designed to explore this hypothesis
are necessary to determine the unique roles of each of the indi-
vidual KChIPs.

The results presented here, which indicate that multiple
KChIPs are concurrently involved in the generation and function
of Kv4 channels, highlight the molecular diversity that likely ex-
ists in Kv4 channel complexes in neurons. One Kv4 channel com-
plex could, for example, be formed by a heterometric complex of
Kv4.2 and Kv4.3 �-subunits bound simultaneously to multiple
different KChIPs. In the same cell, another Kv4 channel complex
could be formed by a homomultimer of Kv4.2 �-subunits with a
single type of KChIP. As suggested previously, considerable evi-
dence supports the additional inclusion of DPP6 and/or DPP10
subunits, as well as Kv� subunits in the generation and/or func-
tioning of Kv4 channel complexes (Nadal et al., 2003; Aimond et
al., 2005; Jerng et al., 2005; Marionneau et al., 2009), thus expo-
nentially diversifying the possible protein combinations that may
be present in native neuronal Kv4 channel complexes. This mo-
lecular diversity may provide for high-resolution regulatory
mechanisms for fine-tuning neuronal excitability and neuronal
computations.

In addition to playing crucial roles as Kv4 channel accessory
subunits, KChIPs have been shown to play important roles in

other cellular processes (Buxbaum, 2004; Sours-Brothers et al.,
2009). Notably, KChIP3, also called calsenilin (Buxbaum et al.,
1998) and downstream regulatory element antagonist modulator
(DREAM) (Carrión et al., 1999), has also been shown to modu-
late �-secretase activity (Lilliehook et al., 2003), to alter gene
transcription, and to function in apoptosis (Jo et al., 2001). Re-
cently, it was reported that KChIP3/DREAM also modulates the
NMDA class glutamate receptors in hippocampal neurons
(Zhang et al., 2010). It is not clear how these (or other possible)
functions of the KChIPs can be reconciled with the results pre-
sented here or with previously published results (Menegola and
Trimmer, 2006), which clearly suggest that the expression of the
KChIP proteins depends directly on the expression of Kv4 chan-
nel �-subunits. The possibility the KChIPs, particularly KChIP3,
may coordinate the regulation of channel function with other
cellular processes is an intriguing possibility that merits addi-
tional consideration and direct evaluation.

Remodeling of Kv currents after the disruption of
KChIP expression
Remodeling of Kv currents was evident in KChIP3�/� neurons
expressing KChIP4 targeting miRNA (Fig. 6) and in Kv1.4�/�

neurons expressing miRNAs targeting KChIP2, 3, and 4 (Fig. 7).
The upregulation of the IK and ISS components observed when
the expression of multiple KChIPs was simultaneously disrupted
is similar to the remodeling evident in Kv4.2�/�, Kv4.3�/�, and
Kv4.2�/�/Kv4.3�/� cortical pyramidal neurons previously re-
ported (Nerbonne et al., 2008; Norris and Nerbonne, 2010). In-
terestingly, no remodeling of Kv currents was evident in response
to the loss of Kv4-encoded IA by the expression of a dominant-
negative Kv4 construct in (rat) cortical pyramidal neurons (Yuan
et al., 2005), suggesting that the mechanisms mediating the re-
modeling of ionic currents are based on protein expression rather
than changes in the electrical properties of the neurons. A similar
conclusion was reached in previous studies on lobster pyloric
neurons, in which it was demonstrated that the overexpression of
wild-type Kv4 �-subunits (which increased Kv4-encoded IA) or
expression of a inactive Kv4 mutant protein resulted in increased
density of the hyperpolarization activated current, Ih (MacLean
et al., 2003). Together, the remodeling of Kv currents evident in
response to the disruption of the expression of multiple KChIPs
and the finding of decreased expression levels of KChIP proteins
in samples from Kv4.2�/� mice suggests that the KChIPs,
through direct or indirect effects, may play important roles in
balancing the expression of ionic conductances in cortical pyra-
midal neurons. Clearly, future experiments aimed at exploring
this possibility will be of considerable interest.
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