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ABSTRACT

The eukaryotic RecA homologs Rad51 and Dmc1 are
essential for strand exchange between homologous
chromosomes during meiosis. All members of the
RecA family of recombinases polymerize on DNA
to form helical nucleoprotein filaments, which is
the active form of the protein. Here we compare
the filament structures of the Rad51 and Dmc1
proteins from both human and budding yeast.
Previous studies of Dmc1 filaments suggested that
they might be structurally distinct from filaments of
other members of the RecA family, including Rad51.
The data presented here indicate that Rad51 and
Dmc1 filaments are essentially identical with respect
to several structural parameters, including persis-
tence length, helical pitch, filament diameter, DNA
base pairs per helical turn and helical handedness.
These data, together with previous studies demon-
strating similar in vitro recombinase activity for
Dmc1 and Rad51, support the view that differences
in the meiotic function of Rad51 and Dmc1 are more
likely to result from the influence of distinct sets of
accessory proteins than from intrinsic differences in
filament structure.

INTRODUCTION

During meiosis, recombination ensures the proper segre-
gation of chromosomes by establishing a physical
connection between homologs, thus providing the tension
required by the meiotic spindle to accurately separate
paired chromosomes. The process of meiotic recom-
bination is initiated by the programmed formation of
double-strand breaks (DSBs) in DNA. These DSBs are
sites of assembly for the two RecA homologs present in

most eukaryotes, the Rad51 recombinase, which functions
during mitosis and meiosis and the meiosis-specific recom-
binase, Dmc1. The RecA homologs form helical filaments
on overhanging 3’ single-strand DNA ends produced by 50

nucleolytic resection at DSBs. These nucleoprotein fila-
ments then catalyse strand invasion and exchange between
homologous chromosomes during meiosis (1).
During recombination in diploid cells, a nucleoprotein

recombinase filament can recombine with either a sister
chromatid or one of the two homologous chromatids.
During mitosis, when Rad51 is the only recombinase
expressed, recombination occurs predominantly between
sisters. In contrast, during meiosis when both Rad51 and
Dmc1 are expressed, the majority of recombination occurs
between homologs (2,3).
The in vivo activities of Rad51 and Dmc1 are regulated

by distinct sets of accessory factors. The ability of Dmc1
to contribute to meiotic recombination is influenced by its
interactions with accessory factor proteins, including
Mei5-Sae3, Hop2-Mnd1 and Tid1/Rdh54. While some
of these proteins may interact with Rad51, the primary
Rad51 accessory factors include Rad52, Rad55-Rad57
and Rad54. In addition to the unique regulation of Dmc1
by accessory factors during meiosis, a meiotic block to
intersister recombination is established by abundant
chromosome-associated structural proteins such as Red1
and Hop1 and by the meiosis-specific kinase Mek1 (4–9).
A comparison of joint molecule formation by 2D gel

analysis of dmc1 and rad51 mutants provided evidence
that Dmc1 specifically promotes interhomolog recombi-
nation (6). This study used a red1 background in which the
block to intersister recombination is defective and in
which Dmc1-independent joints form. In the red1 back-
ground, deletion of RAD51 had no effect on the yield of
interhomolog interactions but deletion of DMC1 elimi-
nated such interactions, leaving only intersister connec-
tions. These findings indicate that Dmc1 protein possesses
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an interhomolog-specific activity that Rad51 lacks. It is
unclear to what extent, if any, the observed difference in
interhomolog activity results from an intrinsic difference
between Rad51 and Dmc1 proteins.
Rad51 and Dmc1 share 54% amino acid identity in

humans and 45% amino acid identity in yeast (10). Both
Rad51 and Dmc1 have been found to be capable of
catalyzing the key steps of recombination, as detected by
the strand exchange and strand assimilation (D-loop)
assays (11–14). The optimal conditions for Dmc1 activity
appear to be slightly different than those for Rad51
although overall the activities are strikingly similar. On the
other hand, previous studies led to the suggestion that
Dmc1 and Rad51 forms polymers that are structurally
distinct.
Dmc1 differs from Rad51 in that it has a strong ten-

dency to form octomeric rings in vitro and can bind DNA
as stacked rings (15–17). This led to the proposal that
Dmc1 might promote recombination by a unique ring-
based mechanism dramatically different from that of
Rad51 and RecA (17). However, it was subsequently
shown that conditions which stimulate Dmc1 recombinase
activity also stimulate its ability to form filaments that are
similar to those formed by Rad51 and RecA (18–21).
These findings strongly support the view that the
functional form of Dmc1, at least for in vitro recombina-
tion reactions, is the helical filament. Whether or not the
toroid form of Dmc1 plays a role in vivo remains to be
determined.
Two recent papers suggested that helical nucleoprotein

filaments formed by the budding yeast Dmc1 (ScDmc1)
differed from those formed by other members of the RecA
family including Rad51 (20,22). These two studies used
atomic force microscopy (AFM) to generate images of
ScDmc1 filaments. Analysis of these images indicated that
filaments had a helical pitch of 13.4� 2.5 nm and a
filament width of 13.5� 0.8 nm (20). A second study by
the same group reported a helical pitch of 16.3� 0.8 nm
with a width of 14.9� 1 nm for filaments formed by the
same protein as that used in the first study (22). These
values are in contrast to those reported for Rad51 and
RecA filaments, which have respective average pitches of
9.9 nm and 9.2 nm and widths of �10–11 nm (23,24). In
the first of the two AFM studies, a determination of the
number of striations for apparently full-length filaments
on an 872 bp linear DNA substrate resulted in an estimate
of 24� 2 nucleotides per helical turn of the ScDmc1
filament (20). Assuming that each protomer in the filament
binds three nucleotides, this finding suggested that there
could be eight protomers per helical turn in the filament.
Alternatively, if Dmc1 binds with six protomers per turn
like RecA and Rad51, the value of 24� 2 nucleotides per
turn would indicate a DNA binding ratio of 1:4 monomers
per nucleotide. The second of the two AFM papers on
ScDmc1 also reported that the protein can form left-
handed helical filaments on DNA (22), in contrast to
previous reports on RecA and Rad51 (23,25). In addition
to the reported differences between Dmc1 and Rad51,
published AFM images of Dmc1 (20,22,26) raised the
possibility that the meiosis-specific protein forms straigh-
ter, more rigid, filaments than those seen by AFM of

Rad51, RadA or RecA (27–31). The possibility that Dmc1
might form more rigid filaments than Rad51 was of
interest to us because intrinsic or imposed structural rigi-
dity of recombinase filaments could cause those filaments
to extend away from the axial elements that organize sister
chromatids into loops (32). Such extended structures
could act to prevent intersister recombination and pro-
mote interhomolog recombination.

In order to better characterize the structure of Dmc1
filaments and compare them to Rad51 filaments we
used transmission electron microscopy (TEM) following
negative staining with uranyl acetate to compare the
structural features of filaments side-by-side. We analyzed
Rad51 and Dmc1 filaments from both the budding yeast
Saccharomyces cerevisiae and human. We also generated a
reconstruction of the human Dmc1 (HsDmc1) filament as
well as collecting measurements of persistence length,
helical pitch, diameter and base pairs per turn for Dmc1 in
parallel with Rad51. The helical handedness of Dmc1 was
also determined. The data presented indicate the filaments
formed by Dmc1 and Rad51 from either yeast or human
are strikingly similar to one another and to those formed
by their bacterial relative, RecA. Possible explanations for
the unusual characteristics of the previously reported
AFM images of ScDmc1 filaments are discussed.

MATERIALS AND METHODS

DNA substrates

Single-stranded DNA substrates were created by purifica-
tion of denatured PCR products. A 1 kb PCR product was
prepared using two primers, 50-biotinylated GAGTTTT
ATCGCTTCCATGAC-30 and 50-AATTTATCCTCAA
GTAAGGGG-30, and PhiX174 New England Biolabs
(NEB) as a template. The PCR reaction product was
purified using a PCR purification column (Qiagen,
Valencia, CA, USA) and then allowed to bind 250 ml of
streptavidin magnetic beads (Dynabeads, Carlsbad, CA,
USA) at room temperature in buffer containing 10mM
Tris pH 7.5, 1mM EDTA and 1M NaCl. The beads were
then washed in the same buffer and resuspended in 0.4M
NaOH to denature the double-stranded DNA (dsDNA).
The supernatant containing the 1000 nt single-stranded
DNA (ssDNA) oligo was collected and neutralized by the
addition of 5.75ml of 3.25M NaOAc, pH 4.9 followed by
ethanol precipitation.

Supercoiled plasmid was converted to the nicked circular
form by digestion with deoxyribonuclease I (Amersham,
Buckinghamshire, UK) in buffer containing 50mM Tris
HCl, pH 7.5, 10mM MgCl2, 50 mg/ml BSA. For 10 mg of
the pNRB252 plasmid, 3� 10�5U/ml DnaseI was added
and incubated at 378C for 15min. The reaction was
stopped with the addition of 500mM EDTA, purified with
phenol/chloroform and subsequently ethanol precipitated
and resuspended in dH2o.

The 1312 bp plasmid pNRB252 was constructed by
inserting the 429 bp EcoRV-BsrBI fragment from pRS306
(33) into the HincII site of piAN7 (34).

4058 Nucleic Acids Research, 2008, Vol. 36, No. 12

 at W
ashington U

niversity S
chool of M

edicine Library on July 17, 2011
nar.oxfordjournals.org

D
ow

nloaded from
 

http://nar.oxfordjournals.org/


Protein purification

Yeast Dmc1 (ScDmc1) was purified using a modified
version of the previously published method (14). Briefly,
the plasmid containingHIS6-DMC1 under a T7 promoter,
was expressed in beta-lactam region (BLR) (DE3)/pLysS
Escherichia coli cells (Novagen, Darmstadt, Germany).
The cells were lysed by French press (Amicon, Billerica,
MA, USA) in the presence of protease inhibitors (5 mg/ml
antipain, 2 mg/ml aprotinin, 100 ng/ml leupeptin, 100 mg/ml
pefabloc SC) and cleared by ultracentrifugation. The lysate
was passed over a Talon column (Clontech, Mountain
View, CA, USA) and the eluted protein was then applied to
a heparin column (Amersham). The heparin-eluted protein
was then applied to a final Q sepharose (Amersham)
column. The eluted His6-Dmc1 was dialyzed into storage
buffer and kept at �808C.

The yeast Rad51 (ScRad51) FL/MBP expression strain,
plasmid and purification protocol were generously sup-
plied by the Rice lab (University of Chicago). Rad51 was
expressed in the Rosetta (DE3) pLysS cell line (Novagen)
using a PET3 vector, sonicated in the presence of protease
inhibitors (Complete Mini tablets from Roche, Basel,
Switzerland) and cleared by ultracentrifugation.
Ammonium sulfate was added to the cleared lysate for a
final concentration of 0.24 g/ml and centrifuged again.
The pellet was resuspended in buffer containing 20mM
Tris HCl pH 7.5, 0.5mM EDTA, 1MNaCl, 1M urea, 5%
glycerol, 1mM dithiothreitol (DTT) and then dialyzed
into buffer P (50mM NaPhos pH 7.5, 1M NaCl, 5%
glycerol, 1mM DTT). The dialyzed protein solution was
applied to a nickel column (Amersham), washed with
buffer P and eluted with an imidazole gradient. The
appropriate eluate fractions were pooled and incubated
with 10mM ATP and 10mM MgCl2 for 15min at 378C
and then at room temperature for 1 h. The protein was
applied again to the nickel column, washed with buffer P
containing 10mM ATP and 10mM MgCl2 and eluted
with an imidazole gradient as before. The appropriate
fractions were then applied to an amylose (NEB) column,
washed with buffer P and eluted with buffer P+10mM
maltose (Sigma), pH 7.5. The fractions containing Rad51
were then pooled and digested with tobacco etch virus
(TEV) protease at a Rad51 to TEV ratio of 30:1.
The protein was applied again to the nickel column and
eluted with steps of 10mM, 15mM, 20mM and 25mM
imidazole. The fractions containing Rad51 were pooled,
concentrated and dialyzed into Rad51 storage buffer
(20mM Tis HCl pH 7.5, 0.5mM EDTA, 50mM NaCl,
30% glycerol, 1mM DTT). The HsDmc1 protein was
purified from High-Five insect cells as previously
described (18) and the human Rad51 (HsRad51) protein
was generously provided by Phillip P. Connell (University
of Chicago).

Helical reconstructions

The HsDmc1 filaments were reconstructed using the
IHRSR (iterative helical real space reconstruction)
method (35). Filament images were cut into 26 745 small
overlapping segments and the relative orientations of
these segments were determined by projection mapping.

Each segment was 80 pixels long, with a sampling of 3.9 Å
per pixel. Multiple reference models, having different
pitches, were used to sort the segments by pitch. The
largest bin, corresponding to a pitch of �10 nm, contained
9781 segments. Back projection was used to produce a 3D
structure upon which the helical symmetry was imposed.

Persistence length calculations

Dmc1 and Rad51 filaments were formed on ssDNA in the
presence of adenylyl-imidodiphosphate (AMP-PNP) and
1mM Mg2+ as described below. RecA filaments were
formed using RecA protein (NEB) and identical condi-
tions and substrates as used for Rad51 and Dmc1, except
that ATPgS replaced AMP-PNP.
Filaments were measured for end-to-end distance (R)

and for contour length (L). The critical parameter describ-
ing filament stiffness in this model is persistence length (�).
Lower � indicates greater flexibility. The persistence length
may be determined experimentally by the equation:
R2 ¼ 2�2ðL=�� 1þ e�L=�Þ. Once L and R are determined
experimentally, this equation may be used to derive � by
an iterative method (36). This analysis was done using
data from Rad51 filaments (n=34), Dmc1 filaments
(n=36) and RecA filaments (n=38). Only filaments
greater than 250 nm in length were scored. The calcula-
tions were done using R: A Language and Environment
for Statistical Computing (version 2.4.1).

Filament preparation

Single strand nucleoprotein filaments were prepared by
incubating ssDNA oligos at 10 mM with respect to
nucleotide with the specified recombinase protein at
3.33mM in the appropriate reaction buffer. The ScDmc1
buffer contained 20mMHEPES (pH 7.5), 1mM DTT and
1mM MgOAc with 0.5mM AMP-PNP or 1mM CaCl2
with 0.5mM ATP. The ScRad51 buffer is the same with
the exception of 20mM Tris-HCl (pH 7.5) used in place of
HEPES. The HsDmc1 buffer contained 25mM triethano-
lamine-HCl (pH7.2), 200mM KCl and 2mM MgOAc
with 2.5mM AMP-PNP or 1mM CaCl2, with 0.5mM
ATP. The HsRad51 buffer contained 20mM Tris-HCl
(pH 8), 1mM DTT and 1mM MgOAc with 0.5mM
AMP-PNP or 1mM CaCl2 with 0.5mM ATP. Filaments
were formed on nicked plasmid DNA by incubating
20 mM DNA with 6.67mM recombinase protein in the
appropriate buffer. Incubations were done at 378C for
5min for the yeast proteins and 20min for the human
proteins. Samples prepared for persistence length, stoi-
chiometry and pitch length calculations were spread on
carbon coated grids and negatively stained with 1%
uranyl acetate.
For the determination of the helical handedness of

ScDmc1 filaments, 2 ml samples were first adsorbed to
small glass coverslips at 378C for 5min, in preparation for
freeze-drying and platinum replication. The glass was then
rinsed vigorously with 10ml of buffer solution to remove
unattached proteins, passed briefly through dH2O to
remove buffer and salts and quick-frozen by impact
against a copper block cooled to 48K with liquid helium.
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The frozen samples were stored in liquid nitrogen until
mounting in a Balzers 301 vacuum evaporator, where they
were freeze dried for 20min at �808C and then rotary-
replicated with 2 nm of platinum deposited from an
electron-beam gun mounted at 158 above the horizontal.
The replica was then stabilized with a carbon film
deposited from a 708 angle. Replicas were floated off the
glass onto concentrated hydrofluoric acid, then trans-
ferred through several rinses of dH2O and picked up on
formvar-coated copper grids.

EM imaging

Images taken for the determination of persistence length,
stoichiometry and pitch length were recorded at a
magnification of 25 000� –49 000�with a GATAN digital
camera on a Tecnai F30 transmission electron microscope
operated at 300 kV. The collection method employed
for imaging involved an initial scan at 19 500� to locate
a region of the grid with visible filaments or coated
plasmids, followed by higher magnification imaging
(25 000� –49 000�). Pitch length measurements were
taken using the program Digitalmicrograph 3.10.1
(GATAN). Images taken of replicas for determining
the helical handedness of ScDmc1 filaments were examined
in a JEOL 100CX electron microscope and photographed
at 150 000�with an AMT digital camera.

RESULTS

Persistence length

To determine the relative rigidities of ScDmc1 and
ScRad51 filaments we employed a method previously
used to determine the persistence length of RecA filaments
(36). The structures of ScDmc1- and ScRad51-ssDNA
complexes were examined by TEM after negative staining
with 1% uranyl acetate. These recombinase-coated DNA
molecules were measured for end-to-end distance (R) and
for contour length (L). The parameter used to describe
filament stiffness is persistence length (�); a lower value for
� indicates a more flexible filament. The persistence length
of filaments observed by TEM was calculated as described
in MATERIALS AND METHODS section. To avoid misunder-
standing, we note that different definitions of persistence
lengths have been used in different studies. The equation
used here and in some previous studies gives a value of the
persistence length twice that given by the method used by
Rivetti et al. (37) for polymers in equilibrium on a 2D
surface).
Helical filaments of ScRad51 and ScDmc1 were formed

on 1000 nt ssDNA in the presence of AMP-PNP and
Mg2+. RecA filaments were formed under the same con-
ditions with the exception of using ATPgS as the
non-hydrolyzable ATP analog in place of AMP-PNP.
The persistence length of ScDmc1 was determined to be
507� 45.2 nm and that of ScRad51 543� 45.3 nm
(Figure 1). The persistence length of RecA was also quite
similar to the two eukaryotic proteins, 464� 42.2 nm. The
relative values of Rad51 and Dmc1 persistence length
indicate that there is no significant difference in filament
stiffness between these recombinase filaments under

the conditions examined. A recently reported HsRad51
persistence length value of 190� 12 nm, while lower than
the values we have determined for the yeast proteins, is still
consistent with our findings due to the fact that the
filaments examined by magnetic tweezer analysis do not
fully saturate the DNA substrate on which they were
formed (38).

The persistence length values obtained here for the three
recombinases are slightly lower than the previously
determined value of �600 nm for RecA (36). This
modest difference is likely to reflect different size distribu-
tions in filaments included in the measurements. We
emphasize that the most significant conclusion from this
study is that analysis of the three recombinases did not
reveal a significant difference in filament rigidity.

Pitch and width of ScDmc1 and HsDmc1 filaments

As discussed above, a previous AFM study determined the
helical pitch of ScDmc1 filaments to be substantially
larger than the range of values obtained by TEM analysis
of RecA, Rad51 and HsDmc1 filaments (18,23,24,39).
Additionally, the two measurements of filament diameter
are larger than the published diameters of RecA and
Rad51 filaments (23,24). To further examine these
parameters, we conducted a side-by-side comparison of
Rad51 and Dmc1 using both yeast and human protein,
with respect to filament pitch and diameter. As shown in
Figure 2, the measurements of Dmc1- and Rad51-ssDNA
filaments formed in the presence of AMP-PNP and Mg+2

indicate that the distributions of pitch values are the same
for all four proteins. The average pitch values for the yeast
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Figure 1. Persistence length of ScRad51 and ScDmc1 filaments.
Persistent lengths were determined for negatively stained filaments as
described in Materials and Methods section. (A) Distribution of
persistence lengths for each recombinase protein. (B) Mean persistence
length values and standard errors for data from (A).
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proteins were 10.2� 0.8 nm for Rad51 and 10.4� 0.8 nm
for Dmc1. The average pitch values for the human
proteins were 10.1� 0.7 nm for Rad51 and 10.1� 0.7 nm
for Dmc1. All four nucleoprotein filaments have pitch
values of �10 nm in agreement with previous analyses of
ScRad51 and both human recombinases (18,24,40). These
measurements demonstrate striking similarity between
Dmc1 and Rad51 filaments.

The average filament diameters for the yeast proteins
are 11.9� 0.8 nm for Rad51 and 11.2� 0.7 nm for Dmc1.
The average filament diameters for the human proteins are
11.8� 0.8 nm for Rad51 and 11.9� 0.9 nm for Dmc1.
The values for Dmc1 and Rad51 diameter are similar
to, though slightly larger than the published values of
10–11 nm for RecA and Rad51 filaments (23,24). These
data also indicate structural conservation between the
helical filaments formed by RecA-like proteins.

Base pairs per helical turn of ScDmc1
andHsDmc1 filaments

The previous analysis of Dmc1 DNA-binding stoichio-
metry had been conducted using linear DNA molecules
(20). This analysis was based on the assumption that the
observed filaments contained intact DNA molecules that
were fully saturated. Under this assumption, the results
indicated that Dmc1 formed filaments with a stoichiome-
try of �24 nucleotides per helical turn in contrast to
previous measurements of Rad51 and RecA filaments
which yielded values of �19 bp per helical turn (23,24).
To clarify the stoichiometry of DNA binding by the

helical filament we analyzed HsDmc1 filaments formed
on relaxed circular dsDNA molecules and compared
them to HsRad51 filaments formed on the same substrates
(Figure 3). Our results show that for a fully coated a
1312 bp plasmid pNRB253 (see MATERIALS AND METHODS

section) there is an average of 67.7� 0.8 striations
(n=6) for HsRad51 filaments and an average of
68.8� 0.8 striations (n=6) for HsDmc1 filaments. These
values correspond to a DNA binding stoichiometry of
18.9–19.3 bp/turn for HsDmc1. A comparison of ScRad51
filaments on the 1312 bp circular relaxed plasmid (n=4) to
the human protein filaments was also performed demon-
strating that the helical stoichiometry of ScRad51
(65.8� 1.5 striations/1312 bp or 19.5–20.4 bp/turn) is simi-
lar to the human protein (24).
Due to difficulties in obtaining ScDmc1 filaments of

sufficient length to completely coat a 1312 bp plasmid, we
used short linear dsDNA substrates of 100, 140 and 180 bp
to compare the DNA binding of yeast Rad51 and Dmc1.
The canonical helical stoichiometry of six protomers per
turn predicts �9 turns/180 bp, �7 turns/140 bp and
�5 turns/100 bp (indicated by the black arrows in

Rad51 and Dmc1 Helical Pitch

0
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200

250
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350

80–85 85–90 90–95 95–100 100–105 105–110 110–115 115–120 120–125 125–130

Pitch (angstroms)

ScRad51

ScDmc1

HsRad51

HsDmc1

Figure 2. Helical pitch values. Pitch length comparison of 1000
individual striations from ScDmc1, ScRad51, HsDmc1 and HsRad51
ssDNA filaments. Filaments were formed in the presence of 1–2mM
Mg2+ and 0.5–2.5mM AMP-PNP, as indicated in Materials and
Methods section.

A

B

C

Figure 3. Base pairs per helical turn of HsDmc1, HsRad51 and ScRad51 filaments. Sample of micrographs of (A) HsDmc1, (B) HsRad51 and
(C) ScRad51 filaments on relaxed 1312 bp plasmids.
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Figure 4) while a stoichiometry of 24 bp/turn predicts
�7.5 turns/180 bp, �5.8 turns/140 bp and �4.2 turns/
100 bp (indicated by grey arrows in Figure 4). The samples
of ScRad51 and ScDmc1 filaments formed on these three
linear substrates were used to compare the distribution of
striation number and filament lengths of each protein,
allowing for a relative comparison of helical stoichiome-
try. The striation number averages for ScDmc1 filaments
(7.6� 2.4 turns/180 bp, 6.0� 1.9 turns/140 bp and
4.5� 1.7 turns/180 bp) were lower than the ScRad51
striation numbers (9.2� 2.7 turns/180 bp, 7.2� 1.5 turns/
140 bp, 6.1� 2.7 turns/bp). This appears to be due to a
tendency of our preparations of ScDmc1 to form shorter
filaments that do not saturate the substrate. Importantly,
the distributions displayed in Figure 4 have identical peaks
for both ScRad51 and ScDmc1 on all three substrates
(9 turns/180 bp, 7 turns/140 bp, 5 turns/100 bp). We inter-
pret the filaments having the peak value to be those in
which the DNA substrate is saturated. This conclusion is
supported by concordance of the �19 bp/striation value

obtained from ScRad51 filaments formed on all three
small linear DNAs and the circular DNA substrate.
Interestingly, the detection of a small number of very long
filaments raises the possibility that the recombinase fila-
ments may be capable of extending beyond the end of the
DNA substrate. Regardless, all filaments formed were of
the predicted length for the given filament’s striation
number, providing further support of conserved pitch
length as evidenced by the linear distribution of each
sample (Supplementary Figure 1). The helical stoichio-
metry of ScDmc1 binding at saturation to each of the
three linear molecules gives the predicted values for
filaments with �19 bp/turn. These numbers indicate that
ScDmc1 filaments unwind the DNA substrate to which
they are bound to the same extent as ScRad51, HsDmc1
and all other RecA-like protein filaments.

ScDmc1 filament helicity

Chen et al. (22) presented TEM images that they
interpreted as showing recombinase filaments with left-
handed helicity on DNA. Although negatively stained
TEM images can appear to reveal helical handedness, the
depth of focus of TEM is larger than the height of the
filaments precluding reliable determination of handedness
by negative staining or cryo-EM (41,42). In addition,
Chen et al. (22) included an AFM image that appears to
show a left-handed helix of ScDmc1 on DNA formed in
presence of Ca+2 and ATP (Supplementary Figure 1A of
ref. 22). This is of particular interest since RecA and
Rad51 have been observed to form only right-handed
filaments on DNA (23,25). Further interest stems from the
finding that RadA can be crystallized in a left-handed
form, albeit in the absence of DNA (22).

To characterize the handedness of Dmc1-DNA, we used
quick-freeze/deep-etch EM with shadowing to examine
filaments formed on either ssDNA or dsDNA. The
filament samples were prepared using 1000 nt ssDNA
oligos or linear dsDNA in the presence of buffer contain-
ing Ca+2 and ATP (Figure 5). Absorbed samples were
overlaid with F-actin filaments, as an internal standard
(data not shown). For the Dmc1-dsDNA filaments we
collected a sample size of n=86 filaments. All of the
observed filaments displayed a clear right-handed helicity.
We repeated this same experiment but replaced the
dsDNA substrate with a 1000 nt ssDNA linear fragment.
For this condition we collected a sample size of n=61
filaments. Again, all the filaments that we observed
displayed a clear right-handed helicity. These data suggest
that under the conditions examined, ScDmc1 predomi-
nantly or exclusively forms right-handed filaments, as has
been observed for both Rad51 and RecA (23,25).

Three dimensional reconstruction of a Dmc1-DNA
helical filament

To further examine the structure of the HsDmc1 filament,
the IHRSR method (35) of EM image analysis was used to
reconstruct a HsDmc1-dsDNA filament formed in the
presence of AMP-PNP and Mg+2. Based on the deter-
mination of helicity described above, the model assumes
that the helix was right handed. Different initial helical
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Figure 4. Distribution of helical turns for ScDmc1 and ScRad51
filaments. Number of striations per filament. ScDmc1 and ScRad51
filaments formed on linear fragments of (A) 180 bp, (B) 140 bp and
(C) 100 bp. Filaments were formed in the presence of 1mM Mg2+ and
0.5mM AMP-PNP. Black arrows indicate predicted turns based on
19 bp/turn, grey arrows indicate predicted turns based on 24 bp/turn.
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symmetries (six through nine subunits/turn) were used for
the IHRSR approach with a convergence to a symmetry
of �6.4 subunits per turn providing the best fit to the
crystal structure of the Dmc1 ATP-binding core (43).

The reconstructed HsDmc1 filament structure is
remarkably similar to the previously published structure
of the HsRad51 filament (40). The HsDmc1 filament
image (Figure 6A) indicates that, as with the HsRad51
reconstruction, the protomers of HsDmc1 are composed
of a large lobe located along the helical screw and a
smaller lobe that extends into the helical groove of the
filament. The reconstruction of the HsRad51 filament
provided evidence, based on the fit of the crystal structure
(44) that this small lobe represents the N-terminus of the
protein (40). In the present reconstruction, the larger lobe
(Figure 6B) is the size predicted by the volume of the
previously published crystal structure of the ATPase
domain of HsDmc1 (43) implying that the small lobe is
very likely to represent that N-terminal region of the
protein. While the data presented here indicates that
the consensus helical symmetry is about six protomers,

we note that HsDmc1 helical turns display considerable
variation in pitch and width, properties likely to reflect
filament elasticity.

DISCUSSION

Structural conservation of the eukaryotic recombinases

The data presented in this report and summarized in
Table 1 demonstrate the high degree of structural con-
servation between the eukaryotic recombinase filaments.
This conservation of structure indicates that the Dmc1
filament is comparable to that of other members of the
RecA family including Rad51. Reports on the structures
of Thermus aquaticus RecA (45), archeal RadA (27) and
T4 bacteriophage UvsX (46) indicate that all of these
proteins form helical filaments with characteristics that are
very similar to those of filaments formed by E. coli RecA
as well as ScRad51 and HsRad51. An interesting excep-
tion to the overall conservation of these structures appears
to be the C. elegans Rad51 filaments, which reconstruc-
tion experiments indicate contain eight protomers per
turn (47).
The helical reconstruction of the HsDmc1 filament is

striking in its similarity to the previously published
HsRad51 reconstruction and supports numerous observa-
tions of structural conservation (40). The molecular
structure of the ATPase domain of HsDmc1 is accom-
modated by the volume of the large lobe of protomers in
the filament reconstruction. In light of similarity to the
Rad51 filament, the HsDmc1 reconstruction suggests that
the smaller lobes are N-terminal domains. Both the
HsRad51 and HsDmc1 reconstructions suggest they
have an average of �6 protomers per helical turn. In the
case of HsDmc1 this finding is supported by the fact that
alternate reconstructions, including one that assumed
eight protomers per turn, cannot accommodate the
volume of the ATPase domain crystal structure.

A

B

ScDmc1 + dsDNA

ScDmc1 + ssDNA

Figure 5. Right-hand helicity of ScDmc1 filaments on single and
double strand DNA. Filaments were formed on ssDNA (n=61) or
dsDNA (n=86) in the presence of calcium and ATP and then
examined by deep-etch shadowing EM as described in the Materials
and Methods section.

A B

Figure 6. Helical reconstructions of HsDmc1 filaments. The filament
was reconstructed using the iterative helical real space reconstruction
method. (A) Filament formed on dsDNA in the presence of KCl and
AMP-PNP. (B) The large lobe of the HsDmc1 protomer can
accommodate the atomic structure of the C-terminal region of
HsDmc1.
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Although the consensus structure appears to be �6
protomers per turn, the pitch and twist of Dmc1 filaments
are quite variable. This finding makes it likely that regions
of the coil can contain either more or fewer than six
protomers per turn.
The helical stoichiometry of both yeast and HsDmc1

filaments has been shown here to be approximately 19 bp/
helical turn. This comparison demonstrated the same base
pair per helical turn ratio for each protein and therefore
suggests the same monomer to DNA binding ratio. By
extension, these data indicate that all four proteins,
including ScDmc1, bind to DNA with the same helical
stoichiometry. Although the current data do not represent
a direct determination of the stoichiometry of DNA
binding per protomer, the observation of filaments with
�19bp/turn and goodness of fit of the six-protomer-per-
turn reconstruction makes it highly likely that Dmc1 binds
to DNA at a ratio of 1 protomer to 3 bp.
Our investigation of the helicity of yeast Dmc1 detected

only right-handed filaments RecA and Rad51 as has been
previously reported (23,25). Two previous AFM studies of
RadA proteins reported different results on filament
helicity with one study finding only right-handed filaments
(27) and a second reporting both right- and left-handed
filaments (48). As mentioned above, another report
included an AFM image that appears to be a left-
handed filament of Dmc1 on DNA (22). An explanation
for the apparent discrepancy is provided below.

Comparison with observations by AFM

In the published images of ScDmc1 from AFM studies
(20,22), filaments are particularly straight, in contrast to
virtually all EM analyses of other recombinase proteins,
including HsDmc1, HsRad51, ScRad51 and RecA
(18,19,23,24,39) and in contrast to AFM images of
Rad51, RadA and RecA (27–31). However, our persis-
tence length calculations for long ScDmc1 and ScRad51
filaments showed no difference in the rigidity of these
filaments. An examination of the previously published
Dmc1 AFM images reveals what appears to be irregula-
rities in the mica upon which the filaments were deposited
and the parallel alignment of multiple filaments within a

single field (20). It is possible that these irregularities are
the result of lattice steps in the mica substrate acting to
trap filaments along straight lines (C. Wyman, personal
communication).

The alignment of filaments may also be due to the
movement of the air–liquid interface (meniscus) along the
mica surface during preparation of samples for AFM
analysis (49–55). Large pitch values obtained by AFM
could have resulted from the stretching of the filaments by
meniscus movement or they could reflect tip diameter as
has been previously reported (27). We therefore suspect
that, if the striations seen by AFM reflect helical turns,
such striations were from a subset of filaments that were
stretched during sample preparation. It is possible, there-
fore, that the unusual properties of the filaments seen in
these images reflect filament elasticity rather than struc-
tural differences between ScDmc1 and other members of
this protein family.

Although tip diameter and sample deposition effects
might explain most discrepancies between previous AFM
analyses and the present TEM study, they do not explain
the observation of left-handed helical filaments. We
examined the helicity of over 60 ssDNA filaments and
more than 80 dsDNA filaments formed in the presence of
calcium and ATP, the same conditions in which Chen
et al. report left-handed helices of Dmc1. Our observa-
tions indicate that if Dmc1 can form left-handed helices, it
does so only rarely under these conditions. An alternative
explanation for the source of the AFM image interpreted
as showing left handedness (Supplementary Figure S1A in
ref. 22 for Dmc1 and Figure 3 of ref. 48 for SsoRadA) is
filament bundling. Filament bundling results in formation
of both left- and right-handed structures (56,57). We
therefore argue that there is no clear evidence at present
for left-handed nucleoprotein filament formation of any
RecA-like recombinase. In this context it is important to
note that one member of this protein family has been
crystallized as a left-handed helix with four protomers per
turn (22). However, this form was obtained in the absence
of DNA and its biological relevance remains to be
determined. The ability of RadA to form right- and left-
handed helices as well as toroids demonstrates the
structural flexibility of this class of proteins (22,27,58).

Table 1. Helical parameters for budding yeast and human recombinases

RecA ScDmc1 ScRad51 HsDmc1 HsRad51

Persistence length (nm) 464� 42.2 (630a) 507� 45.2 543� 45.3 – (190� 12f)
Helical pitch (Å) 96b 101� 7.0 101� 6.5 (99c) 103� 7.5 (100e) 102� 7.7 (99g)
Filament diameter (Å) 110b 119� 9.1 118� 7.8 120� 7.3 119� 8.2

Helical stoichiometry (bp/turn) 18.6b �19 19.9� 0.5 (18.6c) 19.1� 0.2 19.2� 0.4 (18.6h)
Helical handedness Rightb Right Rightd – –

aRef. (36).
bRef. (23).
cRef. (24).
dRef. (25).
eRef. (18).
fRef. (38).
gRef. (40).
hRef. (39).
Values determined in this study are indicated in bold. Previously reported values are given in non-bold font with sources indicated by footnote.
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Implications of structural and functional conservation

The helical structure of the RecA-like recombinases is very
highly conserved. These proteins significantly underwind
and extend the DNA substrate within the filament. It is
this distortion of the DNA that has been proposed to be
the essential structural condition for the pairing and
exchange reactions (46). All available data, including
those presented here indicate that this requirement is met
by the meiosis-specific Dmc1 filament.

As mentioned earlier, there is little difference between
the biochemical activities of Rad51 and Dmc1. Both
recombinases can promote strand assimilation and
exchange. While there are some distinctions in optimal
in vitro reaction conditions, it is not clear to what extent
these differences are biologically relevant.

In light of the conserved filament structure and the
growing body of data indicating conserved intrinsic
biochemical activity for Dmc1 and Rad51, it seems
likely that the factors that differentiate these proteins
in vivo are their distinct protein–protein interactions. In
particular, these data provide no evidence for any intrinsic
difference in filament rigidity between Rad51 and Dmc1.
This result argues against the possibility that this intrinsic
rigidity underlies the difference in the ability of Rad51 and
Dmc1 to promote interhomolog as opposed to intersister
recombination. Nonetheless, it is still possible that Dmc1’s
interhomolog preference involves projection of filaments
away from axial elements. For example, projection from
axial element may require Dmc1-specific interactions with
one or more accessory factor (32). Further study of the
structure of recombination complexes in vivo will be
required to determine how interhomolog recombination
preference is achieved.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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