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a functional connectivity study
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Abstract

matched controls.

attention to non-auditory tasks.

Keywords: tinnitus, human, MRI, connectivity

Background: The objective was to examine functional connectivity linked to the auditory system in patients with
bothersome tinnitus. Activity was low frequency (< 0.1 Hz), spontaneous blood oxygenation level-dependent
(BOLD) responses at rest. The question was whether the experience of chronic bothersome tinnitus induced
changes in synaptic efficacy between co-activated components. Functional connectivity for seed regions in
auditory, visual, attention, and control networks was computed across all 2 mm? brain volumes in 17 patients with
moderate-severe bothersome tinnitus (Tinnitus Handicap Index: average 53.5 + 3.6 (range 38-76)) and 17 age-

Results: In bothersome tinnitus, negative correlations reciprocally characterized functional connectivity between
auditory and occipital/visual cortex. Negative correlations indicate that when BOLD response magnitudes increased
in auditory or visual cortex they decreased in the linked visual or auditory cortex, suggesting reciprocally phase
reversed activity between functionally connected locations in tinnitus. Both groups showed similar connectivity
with positive correlations within the auditory network. Connectivity for primary visual cortex in tinnitus included
extensive negative correlations in the ventral attention temporoparietal junction and in the inferior frontal gyrus
and rostral insula - executive control network components. Rostral insula and inferior frontal gyrus connectivity in
tinnitus also showed greater negative correlations in occipital cortex.

Conclusions: These results imply that in bothersome tinnitus there is dissociation between activity in auditory

cortex and visual, attention and control networks. The reciprocal negative correlations in connectivity between
these networks might be maladaptive or reflect adaptations to reduce phantom noise salience and conflict with

Background

The objective of the current study was to examine corti-
cal functional connectivity associated with auditory cor-
tex in patients with moderate-severe tinnitus. Networks
associated with the auditory cortex were examined
because idiopathic, non-pulsatile subjective tinnitus
involves hearing noise in the absence of acoustic stimula-
tion [1,2] and particularly affects central auditory proces-
sing [3-5]. Damage to primary auditory inputs often
precedes tinnitus and possibly precipitates changes in the
firing patterns of neurons in the auditory system [4,6-9]
comparable to abnormal activity and altered sensory
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maps noted following deafferentation [10,11]. A better
understanding of functional connectivity in tinnitus is
important because millions experience chronic tinnitus
[1] and the persistent noise disturbs the qualities of life
in ~20% with bothersome tinnitus [7,12,13]. A hypothe-
sized contributory mechanism is that chronic tinnitus
might alter synaptic efficacy [14] leading to reorganiza-
tion in co-activity between cortical auditory and other
sensory networks. Additionally, dealing with the cognitive
distractions caused by phantom noises might conflict
with networks that enable focusing of attention and pre-
vent involuntary switching to salient yet phantom noises.
Thus, tinnitus might deplete cognitive resources [15] and
compromise attending to visual tasks such as reading. A
consequence of a dual-task situation involving thoughts
related to tinnitus and performing other demanding tasks

© 2012 Burton et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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might alter functional connectivity between cortex for
auditory, visual and attention processes. Furthermore,
tinnitus might affect the default mode network (DMN),
which is especially active at rest [16-19] and shows
reduced activity during sensory tasks [20,21]. Tinnitus as
a condition involving sensations of persistent phantom
auditory might then act similarly in reducing DMN
activity.

Prior behavioral evidence indicates that tinnitus dis-
rupts the allocation of attention to non-auditory stimuli
[22]. Thus, phantom noises, like chronic pain, involunta-
rily compete for attention resources [15,22,23]. Demon-
strations of a role for attention in tinnitus include
reductions in experienced tinnitus by training to habitu-
ate tinnitus salience and to focus on other sensations
[24]. Cognitive distraction also diminishes tinnitus and
lowers auditory cortex activity [25]. There is additional
evidence that tinnitus sufficiently conflicts with non-
auditory sensory processes to alter concentration and
focus [26-28], thereby lowering accuracy on attention
demanding tasks [15,22,29,30].

Neural evidence supporting the notion of changes in
non-auditory cortex was transient diminution of tinnitus
in some patients following global reductions in cortical
activity after intravenous lidocaine. In the affected cases,
positron emission tomography showed lower regional cer-
ebral blood flow (rCBF) in the left middle and inferior
temporal cortex [31] and right middle frontal gyrus
(rMFGQ), parietal cortex, and right temporal-parietal junc-
tion (rTPJ) [32]. The latter three regions are of interest
because they include areas involved in attention. The dor-
sal parietal intraparietal sulcus in parietal cortex serves
voluntary focusing of attention; the ventral rTP] responds
when attention involuntarily shifts to a salient, unexpected
stimulus; and the posterior aspect of rMFG links activity
in dorsal and ventral attention networks [33,34]. Thus,
finding that lidocaine induced rCBF reductions in these
regions support the hypothesis that some tinnitus abnorm-
alities might involve components of the attention network.

Previously, interregional temporal correlations of rest-
ing state, low frequency (< 0.1 Hz) blood oxygenation
level-dependent (BOLD) activity have revealed widely
distributed, coherent activity in normal individuals
[16,35,36] and those with neurological pathologies
[37-40]. Utilizing comparable imaging and analysis tech-
niques in tinnitus and age-matched individuals provided
a means of assessing potential differences in cortical
networks in these two groups.

Temporal correlations between a seed region of inter-
est and the rest of the brain can show positive or negative
correlations when analyzed in reference to a global brain
signal [41]. Such correlated intrinsic activity can indicate
directly or indirectly connected distant regions [42]. Con-
sequently, possible differences in functional connectivity
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between tinnitus and controls might include changes
between widely separated cortical areas without direct
structural connections. In the present study, we found
negative correlations reciprocally characterized func-
tional connectivity between auditory and occipital/visual
cortex in the tinnitus group. Negative correlations indi-
cate that when BOLD response magnitudes increased in
auditory or visual cortex they decreased in the linked
visual or auditory cortex, suggesting reciprocally phase
reversed activity between functionally connected loca-
tions in tinnitus. The results implied that in tinnitus
activity suppression might reflect adaptations to reduce
phantom noise salience and aid directing attention to
non-auditory events.

Methods

Participants

Seventeen patients (mean age 53.5 SEM + 3.6 years, 5
female), who participated in a randomized clinical trial of
repetitive transcranial magnitude stimulation (rTMS) for
tinnitus (ClinicalTrials.gov Identifier: NCT00567892), had
tinnitus for an average of 8.3 years (+ 1.9 years, range 0.5-
30 years), with an average loudness of 7.6 + 0.3 (on a 1-10
scale), and an average severity of 53.5 + 3.6 (range 38-76)
based on the Tinnitus Handicap Index (THI) [43]. Based
on the THI score and previously proposed guidelines [44],
10 patients had Moderate (38-56) and 7 Severe (58-76)
tinnitus. Tinnitus was bilateral in 11 and unilateral in 5
patients (4 on the right and 1 on the left). Hearing loss
was minimal for 1-3 kHz tones and > 40 dB for 8 kHz in
12/17 patients (Table 1). No patients had hyperacusis.
Post hoc t-tests of binaural pure tone average thresholds
(PTA) found no significant differences between ears (left
ear: mean 17.5, SEM * 1.9 dB, range 0-65dB; right ear:
mean 35.5 + 3.1 dB, range 0-75 dB). No included patients
had a Beck Depression Inventory-II > 18 [45] or other psy-
chiatric or neurologic disorders. Seventeen individuals
without tinnitus were age-matched to the tinnitus patients
(mean age 50.6 + 2.5 years, 10 female) and had pure tone
average thresholds of < 25 dB HL. All participants pro-
vided informed consent in compliance with the Code of
Ethics of the World Medical Association (Declaration of
Helsinki) and guidelines approved by the Human Studies
Committee of Washington University.

Participants with tinnitus had been in a study that
evaluated the treatment efficacy of rTMS to the left
temporoparietal junction [46]. We obtained baseline
resting state imaging data for the current study prior to
any rTMS treatments.

Image Acquisition

Acquisition of magnetic resonance images was with a
Siemens 3 Tesla TRIO scanner (Erlangen, Germany)
and standard 12 element RF head coil. MRI headphones


http://www.clinicaltrials.gov/ct2/show/NCT00567892

Burton et al. BMC Neuroscience 2012, 13:3
http://www.biomedcentral.com/1471-2202/13/3

Table 1 Tinnitus participant demographics
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1 kHz 2 kHz 3 kHz 8 kHz

Tinnitus Age Sex Ear THI Loud yrs R L R L R L R L
1 54 F B 70 7 2 5 5 0 10 10 10 60 65
2 48 M B 76 8 1 5 5 5 0 0 5 15 15
3 47 M B 38 8 8 10 5 5 0 25 10 55 65
6 53 M R 68 5 3 25 15 30 20 60 45 80 55
7 59 M B 40 7 1 22 18 20 20 25 25 45 50
10 48 M R 40 7 25 10 10 5 0 35 25 55 40
11 57 M L 72 7 10 20 25 20 20 15 30 40 40
15 53 M B 40 8 5 30 25 60 45 75 65 50 35
16 58 M L 70 9 0.5 10 5 10 15 45 30 65 75
17 59 M B 72 8 9 0 5 15 20 45 55 85 85
19 52 F B 40 9 25 15 10 10 10 20 35 30 35
20 52 F R 52 9 9 70 20 70 15 75 15 105 40
21 42 M B 40 7 10 0 0 0 0 10 10 10 10
24 59 M B 52 6 30 25 30 70 65 55 65 45 50
27 58 M R 42 8 20 15 5 55 15 75 55 50 65
37 58 F B 60 8 11 20 15 25 25 25 40 70 85
38 52 F B 38 8 16 5 10 5 5 5 0 15 15
Mean 53.5 5F12M 535 76 83 176 12.7 229 17.1 354 304 529 47.1
SEM 1.2 36 3 19 43 23 6.1 45 59 49 6.3 5.1

and ear plugs dampened sequence noises. A gradient
recalled echo-planar sequence (EPI) captured images of
blood oxygenation level-dependent (BOLD) contrast
responses (Repetition time [TR] = 2200 ms, echo time
[TE] = 27 ms, flip angle = 90°, 4 x 4 x 4 mm voxels).
EPI images of the whole brain involved volume acquisi-
tions across 36 odd-even, contiguously interleaved, axial
slices aligned to the anterior and posterior commissures.
Structural images included a T1-weighted magnetization
prepared rapid gradient echo (MP-RAGE) sequence
acquired across 176 sagittal slices (TR = 2100 ms; TE =
3.93 ms; flip angle = 7°; inversion time [TI] = 1000 ms;
1 x 1 x 1.25 mm voxels). An additional T2-weighted
structural image across 36 axial slices (TR = 8430 ms,
TE = 98 ms, 1.33 x 1.33 x 3 mm voxels)was in-register
with the EPI and aided alignment between axial EPI and
sagittal MP-RAGE image slices [47].

Three 164 frame EPI runs recorded spontaneous brain
activity while participants were awake, performed no
task, and kept their eyes closed in a darkened room. We
spoke to participants during ~ 2 minutes between EPI
runs to make certain they remained awake.

Image Processing

EPI image corrections involved processing to compensate
for systematic time and intensity slice-dependent differ-
ences from interleaved odd-even slice acquisition, to rea-
lign slices into atlas space, to band-pass filter for low
frequencies, and to remove nuisance variables. Processing
started with aligning the time for each slice to the

beginning of each volume acquisition using sinc interpola-
tion. Next, corrections for intensity differences between
slices utilized a whole brain mean signal intensity normal-
ized to mode 1000 across EPI runs. These time and inten-
sity adjusted slices were realigned within and across runs
using rigid body correction for inter-frame head motion
[36,48-50]. The across-run-realigned slices were resampled
to 2 mm? volumes (voxels) and registered to an atlas tem-
plate by computing 12 parameter affine transforms
between an average from the first frames of each EPI run
and the atlas template [47]. An atlas template, created
using MP-RAGE structural images from 12 normal mid-
dle-age individuals (mean 48 yrs., SD + 10.7), conformed to
Talairach atlas space [51] based on spatial normalization
methods [52].

Atlas registered EPI images were spatially smoothed
with a 6 mm full width at half-maximum Gaussian kernel
and temporally band-pass filtered to remove frequencies
> 0.1 Hz. BOLD signal modifications per voxel removed,
through linear regression, 9 sources of nuisance variance
and their associated temporal derivatives. These variables
included previously computed six linear corrections for
head movement, a global whole-brain signal averaged
over all voxels in a fixed region of atlas space, and signals
in the ventricles and white matter. Ventricles and white
matter were identified across successive structural image
slices in each participant using Analyze (Mayo Research
Foundation, Rochester, MN). Individualized identification
of ventricle and white matter structure improved isola-
tion of signals in these regions and improved regression
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of spurious influences [36] from respiration [53] and
non-neuronal effects [49,54].

Correlation Computation

Temporal correlation computations for each participant
per group utilized the time series of spontaneous BOLD
fluctuations across 3 EPI runs (a 17.5 minute time series
after concatenating the runs). Temporal correlations
determined the probability that two seed regions were
active at the same time, (e.g., the time series in the voxels
in each seed region correlated with one another). We
excluded the first 15 volume acquisitions from each run to
assure magnetization equalization and to avoid artifacts
associated with the start of scanner noises.

A first stage exploratory analysis considered temporal
correlations between paired spherical seed regions cen-
tered on coordinates from parts of the brain that tinnitus
might alter (Table 2). These included regions in auditory
cortex and in visual and somatosensory cortex to deter-
mine whether changes in auditory cortex affected other
sensory systems. We additionally selected seed regions in
the attention network [33,34], because behavioral evidence
indicated tinnitus disrupts attention [15,22,24]. These
regions included components of the parieto-frontal dorsal
network for selective, voluntary attention (bilateral poster-
ior intraparietal sulcus, bilateral frontal eye fields, and
right ventral intraparietal sulcus). Two selected ventral
attention regions show activation when focus involuntarily
shifts to salient, but unexpected events (right temporopar-
ietal junction and right superior temporal sulcus). Four
chosen fronto-insula cortex regions (right middle frontal
gyrus, right anterior insula, and bilateral inferior frontal

Table 2 Talairach atlas coordinates for selected seed regions
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gyrus) included those involved in switching between the
dorsal and ventral attention networks [33,34] or generally
between control networks [55,56].

The time series from each seed region was the average
across all voxels within the ~1 cm® spheres. A Fischer’s
computation converted correlation coefficients to
Z-transforms [57]. Post hoc t-tests evaluated group dif-
ferences in the strength of temporal correlations between
paired seed regions using the Z-transforms from each
group of participants.

Group Contrast Analyses of Functional Connectivity Maps
In a second stage analysis, we computed functional con-
nectivity maps for each of those seed regions whose paired
temporal correlations had group differences with probabil-
ities < .05. In the functional connectivity maps computed
in each participant, computed correlations were between
the time series averaged across all voxels in a selected seed
region and the time series in each 2 mm? volume (voxel)
in the brain [36,49,50,58].

All evaluations of the functional connectivity map for a
particular seed region utilized voxel level Fisher’s Z-
transforms in each participant registered to a standard,
population-average, cortical surface-based atlas (PALS-
B12) [59]. The registration process involved creating par-
ticipant-specific surfaces using FreeSurfer. Participant
surfaces were then deformed to the distribution of nodes
in the PALS-B12 atlas using an automated procedure to
align nine anatomical landmarks [60], individually identi-
fied in a participant hemisphere and registered to the
same landmarks in the average PALS-B12 atlas sphere.
The deformation matrices obtained from landmark-based

NETWORK SEED REGION NAME TALAIRACH COORDINATES
X Y z
AUDITORY Right Primary Auditory (RAud) 51 -21 9
Left Primary Auditory Cortex (LAud) -41 -26 7
VISION Right Primary Visual (RV1) 1 -81 5
Left Cuneus (LV2d) -4 -85 19
SOMATOSENSORY Right Postcentral Gyrus (RS1) 51 -18 44
Left Parietal Operculum (LS2) -35 -27 17
DORSAL ATTENTION Left Posterior Intraparietal Sulcus (LplIPS) -23 -66 46
(DAN) Right Posterior Intraparietal Sulcus (RpIPS) 26 -58 52
Left Frontal Eye Fields (LFEF) -25 -8 50
Right Frontal Eye Fields (RFEF) 27 -8 50
Right Ventral Intraparietal Sulcus (RvIPS) 30 -80 16
VENTRAL ATTENTION Right Temporoparietal Junction (rTPJ) 49 -50 28
(VAN) Right Superior Temporal Sulcus (RSTS) 55 -50 1M
ATTENTION CONTROL Right Middle Frontal Gyrus (rtMFG) 39 12 34
Right Anterior Insula (RAI) 36 3 6
Left Inferior Frontal Gyrus (LIFG) -41 6 9
Right Inferior Frontal Gyrus (RIFG) 45 -3 12
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alignments created for each participant guided registra-
tion of Fisher Z-transform-scores from the nodes of each
participant-specific surface to the PALS-B12 atlas nodes.
Data registration between volume and surface space
involved aligning the atlas coordinates of voxels to corre-
sponding nodes with nearest neighbor coordinates in the
PALS-B12 atlas [61]. Separately for each group, determi-
nation of the connectivity map for a seed region utilized
computed means of surface registered Fisher transform
Z-scores. A random effects Student’s t-test [62] evaluated
the null hypothesis of no significant distribution of Z-
transforms across the group connectivity map. Displayed
maps utilized two-tailed t-test results with probabilities
0f 0.05-0.005 (t = + 2.1 and 3.3, 16df).

Next, we computed a ¢ statistic at each surface node
to assess the null hypothesis that the Fisher transform
Z-scores for a seed region were comparable between the
control and tinnitus groups. The ¢ statistic was com-
puted as the mean difference (control group Z-trans-
form score minus tinnitus group Z-transform score)
divided by the SEM difference. Results were visualized
using probability thresholds of 0.05-0.002 (t = + 2.1-3.3
for 32df). Positive t-test results occurred at nodes where
control group connectivity had greater positive correla-
tions and/or the tinnitus group had greater negative cor-
relations. Negative t-test results occurred where control
group connectivity had larger negative correlations or
the tinnitus group had larger positive correlations.

We assessed the significance of clusters observed in
the group contrast ¢-statistic maps with a threshold-free
cluster enhancement (TFCE) method. The analysis eval-
uated whether a cluster in the ¢ statistic map was large
enough to be statistically significant without needing to
specify a cluster size threshold semi-arbitrarily. The ori-
ginal implementation of the TFCE method was for volu-
metric data [63] and was recently adapted to data
registered to surface-nodes [60].

For the current analysis, we first computed 5000 t-maps
with each generated after randomly combining all partici-
pants and then equally dividing them into groups of 17.
After minimal spatial smoothing of the t-maps across
neighboring nodes, a transformation of the ¢ statistic at
each surface node produced a TFCE map for each t-map.
Documentation is available at the following website:
http:///brainvis.wustl.edu/wiki/index.php/Caret:Documen-
tation:Statistics: TFCE_Implementation. The transforma-
tion included information about t map signal intensity, h,
and extent (the number of contiguous nodes (p) with h at
or above threshold). In the computation of a TFCE score
at a node, the weight given to signal intensity and extent
value was fixed using H = 2.0 and E = 1.0. The maximum
TFCE score from each randomized t-map contributed to a
distribution of TFCE scores, each representing a cluster of
contiguous nodes. Clusters in the original ¢ statistic map
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were judged significant at p = 0.05 where they corre-
sponded to the 95 percentile of the TECE maximum
score distribution.

Evaluation of Data Quality

Spurious factors potentially affecting group functional
connectivity results include excessive head movements
and spurious magnetic signals. However, Figure 1 shows
the tinnitus and control groups had comparable head
movements (root mean square, RMS) and whole-brain
variance in MR signal magnitudes. Two-tailed t-tests
found no significant group differences in RMS or stan-
dard deviation of average brain magnetic signal ampli-
tude (SD) (RMS: p = 0.23, SD: p = 0.84 df = 96).

Results

Temporal Correlation Matrix

Table 3 presents t-test probabilities for the differences
between tinnitus and control groups in correlation magni-
tudes. The results were from 136 pairings of 17 different
seed regions. Notably, tinnitus and controls had similar
temporal correlations for nearly all seed pairings made
with components of the dorsal attention network. One
exception was for RvVIPS vs. RTPJ; the tinnitus group had a
greater negative correlation of -0.1 compared to a -0.01
correlation in controls. Only 10 seed region pairings
(Table 3, underlined cells) had p < .05 suggesting possible
group differences. We assessed functional connectivity dif-
ferences between groups only for the 12 different seed
regions making up these temporal correlation pairs. This
second stage analysis included family-wide error correc-
tions [63]. Significant clusters based on group differences
occurred in 7/12 of these seed regions: LAud, RAud,
RSTS, RV1, RAI LIFG, and RIFG. Significant group
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2 90 0.2 0.4 0.6

RMS Movement

Figure 1 Comparison between tinnitus and control participants
for mean brain signals and head movements. Scatter plot of
standard deviation (STDev) of mean whole-brain signals vs. root-
mean square (RMS) of head movements.
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Table 3 Temporal correlation matrix®
DAN VAN Control Sensory
LplPS RpIPS LFEF RFEF RvIPS RTPJ RMFG RSTS LIFG RIFG RAlI LAud RAud RV1 LvV2d RS1 LS2
DAN LplIPS 034 099 097 048 069 031 033 064 077 068 062 062 081 066 082 015
RpIPS 052 090 051 031 045 074 072 047 017 012 044 087 069 021 029
LFEF 025 088 040  0.09 046 039 016 066 026 0.57 071 063 0.18 0.15
RFEF 0.89 049 085 049 059 050 077 050 0.89 044 036 0.88 0.72
RvIPS 004 044 059 071 097 026 100 0.51 023 003 082 057
VAN RTPJ 0.07 083 005 046 006 051 087 028 0.28 083 0.95
Control  RMFG 081 017 028 009 070 044 010 009 001 009
RSTS 007 001 029 043 040 073 042 044 0.84
LIFG 002 002 006 008 012 027 089 007
RIFG 020 091 0.77 086 005 027 010
RAI 0.02 0.09 059 003 087 003
Sensory  LAud 040 054 051 070 055
RAud 002 031 092 070
RV1 0.21 060 0.28
Lv2d 064 087
RS1 0.77
LS2

?See Table 2 for identification of abbreviations

differences in the functional connectivity analysis were
absent for the remaining 5/11 including seed regions from
the attention network: RvIPS and RTPJ, somatosensory
system: RS1 and LS2 and visual system: LV2d. In each of
the latter, the observed clusters found in the group con-
trast between connectivity maps were too small to pass
the stringent error correction requirements of the TFCE
permutation analysis.

Functional Connectivity for Auditory Network Seeds

Functional connectivity based on auditory seed regions
revealed differences between the groups in the network
between auditory and occipital/visual cortex. In the tinni-
tus group, functional connectivity for a left primary audi-
tory cortex seed (LAud) involved significant negative
correlations throughout the medial aspect of bilateral occi-
pital cortex (Figure 2, row 2, columns 3, 4). In the control
group, the functional connectivity map for the LAud seed
contained a few patches of positive correlations in medial
occipital cortex (Figure 2, row 1, columns 3, 4). The TFCE
permutation analysis of the t-test group contrast between
controls compared to tinnitus showed a significant cluster
whose borders extended from the occipital pole to the par-
ietal occipital sulcus, with a slightly greater extent in the
left hemisphere (Figure 2, row 3, columns 3, 4). The clus-
ter centered across the calcarine sulcus, covering upper
and lower banks and the adjoining cuneus and lingual
gyri. The values were positive because of subtracting the
negative correlations in tinnitus in the t-test, leading to
positive values that added to the few positive correlations
in controls. Group functional connectivity differences

were similar for a right primary auditory cortex seed with
the TFCE analysis of the group contrast similarly revealing
a significant bilateral cluster covering the same portion of
medial occipital cortex except for being slightly more
extensive in the right hemisphere (Figure 2, row 4).

The functional connectivity maps also showed signifi-
cant positive correlations between primary auditory cor-
tex and the superior temporal plane, insula, inferior
frontal gyrus, and cingulate cortex (Figure 2, rows 1, 2,
columns 1, 2). The magnitudes and extent of these posi-
tive correlations was greater in tinnitus compared to
controls resulting in negative value clusters in the t-test
group contrast in the inferior frontal gyrus and rostral
insula (Figure 2, rows 3, 4, columns 1, 2). However,
these clusters were not large enough to pass the family-
wide error corrections in the TFCE analysis.

Both groups had functional connectivity based on
negative correlations between auditory seed regions and
components of the default mode system (posterior cin-
gulate, superior frontal, medial prefrontal, and lateral
inferior parietal) and dorsolateral prefrontal. None of
the clusters was significant in the TFCE analysis.

In summary, auditory cortex in participants with tinnitus
had significant functional connectivity with occipital/visual
cortex in which the correlations were negative. Controls
mainly had connectivity based on positive correlations.

Functional Connectivity for a Primary Visual Cortex Seed
Region

Functional connectivity for a right primary visual area
seed (RV1) revealed differences between the groups that
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alpha threshold < .05.

L Aud seed ROI

Controls

Figure 2 Functional connectivity maps for a left primary auditory area (LAud) seed region centered in Heschl’s gyrus. Rows 1 and 2
show, respectively, random effect functional connectivity t-maps [62] for controls and tinnitus displayed on inflated views of the PALS-B12 atlas
surface [59]. The distribution of positive and negative correlations between time courses in the seed vs. other brain locations painted,
respectively, in yellow-orange and blue (scale: p value 0.05-0.005). Row 3 shows map of a t-test assessment per node of group differences in
Fisher Z-transforms of correlations. Significant t-test results marked in yellow-orange for positive and blue for negative (scale: p value 0.05-0.002).
Row 4 shows t-test results for contrast between functional connectivity maps for a right primary auditory area (RAud) seed region. Black borders
surround significant cluster identified with the threshold free cluster extension analysis [63] after 5000 permutations of the t-test analysis and an

1 L1 1
.005 .05.05.005

002) (.002

reciprocated the connectivity distinctions noted for
seeds in auditory cortex. The RV1 seed was located in
calcarine sulcal cortex, within the region of the signifi-
cant clusters discovered with the auditory cortex seed
regions. In the control group, functional connections
included positive correlations in auditory cortex and a
less extensive distribution of negative correlations in the
temporoparietal junction, inferior frontal gyrus, and
components of the default system (Figure 3, row 1). In
the tinnitus group, functional connectivity for the RV1
seed involved significant negative correlations bilaterally

in auditory cortex, temporoparietal junction, inferior
frontal gyrus, and components of the default system
(Figure 3, row 2). Both groups also showed significant
positive correlations throughout occipital/parietal-occipi-
tal cortex and sparser connectivity with pericentral gyral
cortex. The TFCE permutation analysis of the t-test
group contrast between controls compared to tinnitus
showed several significant clusters with borders in left
hemisphere superior temporal gyral and sulcal auditory
cortex, rostral insula, and adjoining inferior frontal
gyrus (Figure 3, row 3, columns 1, 3, and 4).
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analysis and an alpha threshold < .05.

RV1 seed ROI

Controls

1 1 1
.005 .05.05 .005

Figure 3 Functional connectivity maps for a seed region in right primary visual area (RV1) centered within the calcarine sulcus. Rows 1
and 2 show, respectively, random effect functional connectivity t-maps [62] for controls and tinnitus displayed on inflated views of the PALS-B12
atlas surface [59]. The distribution of positive and negative correlations between time courses in the seed vs. other brain locations painted,
respectively, in yellow-orange and blue (scale: p value 0.05-0.005). Row 3 shows map of a t-test assessment per node of group differences in
Fisher Z-transforms of correlations. Significant t-test results marked in yellow-orange for positive and blue for negative (scale: p value 0.05-0.002).
Black borders surround significant cluster identified with the threshold free cluster extension analysis [63] after 5000 permutations of the t-test

(.002)

In summary, negative correlations with auditory cortex
characterized the connectivity associated with visual cor-
tex seed regions in participants with tinnitus. These func-
tional connectivity differences again indicated a phase
reversal in the resting state activity between the visual
and auditory systems in tinnitus. Additionally, this phase
reversal extended to parts of the attention and default
mode networks.

Functional Connectivity for Seed Regions Involved in
Executive Control of Attention

Right Anterior Insula

The network for the right anterior insula (RAI) seed in
both groups involved significant positive correlations
throughout adjoining parts of the auditory cortex along
the superior temporal plane (Figure 4, row 1, 2, columns
1, 2). The RAI functional connectivity maps included
group distinctions in occipital cortex. In the control

group, functional connectivity in occipital cortex was
scarce (Figure 4, row 1). In the tinnitus group, functional
connectivity involved significant negative correlations
bilaterally in medial and lateral occipital cortex (Figure 4,
row 2). The TECE permutation analysis of the t-test group
contrast showed a significant cluster whose borders
extended medially and laterally over the whole of occipital
cortex (Figure 4). Additionally, functional connectivity
with positive correlations in the left inferior frontal gyrus
was greater in the tinnitus group, leading to a cluster with
a negative t-test value (Figure 4, row 3, column 1). This
cluster, however, did not pass the TCFE significance
threshold.

Left Inferior Frontal Gyrus Seed

The functional connectivity maps for the left inferior
frontal gyrus seed (LIFG) partially resembled those for
RAI Thus, both groups had significant positive correla-
tions in auditory cortex along the superior temporal
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Figure 4 Functional connectivity maps for a seed region in right anterior insula (RAI). Rows 1 and 2 show, respectively, random effect
functional connectivity t-maps [62] for controls and tinnitus displayed on inflated views of the PALS-B12 atlas surface [59]. The distribution of
positive and negative correlations between time courses in the seed vs. other brain locations painted, respectively, in yellow-orange and blue
(scale: p value 0.05-0.005). Row 3 shows map of a t-test assessment per node of group differences in Fisher Z-transforms of correlations. Significant
t-test results marked in yellow-orange for positive and blue for negative (scale: p value 0.05-0.002). Black borders surround significant cluster
identified with the threshold free cluster extension analysis [63] after 5000 permutations of the t-test analysis and an alpha threshold < .05.

plane (Figure 5, row 1, 2, columns 1, 2). Furthermore, the
LIFG network included group connectivity distinctions in
occipital cortex. In the control group, functional connec-
tions in occipital cortex were scarce (Figure 5, row 1). In
the tinnitus group, functional connectivity involved sig-
nificant negative correlations bilaterally in medial occipi-
tal cortex (Figure 5, row 2). The TFCE permutation
analysis of the t-test group contrast showed a significant
cluster with borders located in medial occipital cortex
(Figure 5). Both groups also showed significant positive
correlations in the rostral insula cortex. These had
greater correlation magnitudes and spatial extents in the
tinnitus group. The TFCE analysis identified this differ-
ence as a significant cluster in the right anterior insula
cortex (Figure 5, row 3, column 2), thus, reciprocating
the connectivity in the left inferior frontal gyrus observed
for the RAI seed (Figure 4).

In summary, seed regions in the right anterior insula
and left inferior frontal gyrus of the tinnitus group had

significantly greater functional connectivity that posi-
tively correlated with resting state activity in auditory
cortex and negatively correlated with parts of occipital
cortex.

Discussion

The participants with tinnitus also were in a study that
evaluated staged periods of treatment with rTMS [46].
However, the current functional connectivity analysis
focused exclusively on pre-treatment, baseline activity.

Chronic Tinnitus, a Possible Unique Usage Factor

A hypothesized mechanism for changes in functional
connectivity is that altered usage induces changes in
synaptic efficacy [14] that possibly contribute to neural
plasticity in tinnitus [5]. If the underlying cause of tinni-
tus was hearing loss that then leads to persistent bother-
some phantom sounds, the latter might be a usage factor
consistent with connectivity differences in tinnitus. The
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Figure 5 Functional connectivity maps for a seed region in left inferior frontal gyrus (LIFG). Rows 1 and 2 show, respectively, random effect
functional connectivity t-maps [62] for controls and tinnitus displayed on inflated views of the PALS-B12 atlas surface [59]. The distribution of
positive and negative correlations between time courses in the seed vs. other brain locations painted, respectively, in yellow-orange and blue
(scale: p value 0.05-0.005). Row 3 shows map of a t-test assessment per node of group differences in Fisher Z-transforms of correlations. Significant
t-test results marked in yellow-orange for positive and blue for negative (scale: p value 0.05-0.002). Black borders surround significant cluster
identified with the threshold free cluster extension analysis [63] after 5000 permutations of the t-test analysis and an alpha threshold < .05.

(.002)

usage factor might be adaptations to living with persis-
tent endogenous noise that involve attempts to damp-
down or redirect attention away from the salience of
these sounds. This would be a usage factor that could
lead to re-organization of affected synapses connected
through structural or indirect linkages between network
components [42]. Such re-organized synaptic efficacy
whose purpose is to ward-off the distractions from phan-
tom sounds possibly underlies the observed connectivity
differences in participants with tinnitus.

A consideration from the observed different connectivity
patterns was that they arose as a consequence of living
with tinnitus rather than as its cause. Thus, the functional
connectivity differences in tinnitus possibly were in the
affected regions rather than the instigators of phantom
noises. Hypothetically, adaptive compensations to tinnitus
altered functional connectivity. Alternatively (or addition-
ally), the observed functional connectivity differences in

tinnitus were maladaptive manifestations that perpetuated
some associated neuropsychiatric sequelae, if not the ring-
ing itself.

Peripheral auditory deafferentation effects in tinnitus
patients [4,6-9] might be an alternative explanation for the
observed connectivity changes as opposed to cognitive
induced usage factors. Some peripheral damage was prob-
able in the studied tinnitus group because they had mod-
erate to severe hearing loss for the 8 kHz tones. Such a
loss possibly reflected profound peripheral deafferentation
that could have resulted in altered maps in auditory cortex
[64]. Total deafferentation in individuals with complete
blindness show functional connectivity changes [65] and
that also lead to cross-modal activation of visual cortex by
non-visual inputs [66]. These changes, however, occur
where blindness is congenital or present before age 3.
Cross-modal changes are less prevalent in adults with
adventitious, late-onset blindness [66]. Tinnitus is an adult
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onset disease and the studied population still had relatively
normal audiograms for lower frequencies. Although deaf-
ferentation induced plasticity occurs in adults, the changes
frequently result in expanded cortical representation for
the surviving modal specific inputs [10,11] even in tinnitus
patients [64]. Consequently, the suggestion that the
observed functional connectivity differences in tinnitus
directly arose from deafferentation induced changes for
high frequency sounds seems like a less parsimonious
explanation. This speculation particularly does not reflect
that sensory loss in adults leads to more limited, local
changes in modal specific cortex whereas the observed
functional connectivity alterations involved widespread
consequences in several cortical regions. However, partial
hearing loss might be contributory to changes in synaptic
efficacy that then more prominently change from cognitive
factors.

The network changes in the auditory, visual, attention,
and control cortices observed with tinnitus reflected
behavioral disruptions previously noted in patients with a
bothersome tinnitus history. Patients with other chronic
neuropathology also have altered functional connectivity
[37-40]. In each instance, connectivity distinctions were
unique. Thus, the current findings in tinnitus were also
probably unique and distinguishable from connectivity
distinctions in other chronic clinical conditions, like pain
or traumatic stress disorders.

Connectivity Differences based on Positive and Negative
Correlations

Major group differences in functional connectivity
involved the negative correlations in the linkages between
auditory and visual networks. Negative correlations indi-
cate that when resting-state spontaneous BOLD response
magnitudes increased in one location they decreased in
the linked location. In tinnitus, activity in a primary audi-
tory cortex seed region negatively correlated with activity
in occipital/visual regions. Reciprocally in the tinnitus
group, connectivity for the right primary visual cortex
negatively correlated with activity in auditory cortex.
These results imply that increases in activity in auditory
and visual networks reciprocally caused a decrease of
BOLD response magnitudes in each other.

Prior examples of blood flow decreases in sensory sys-
tems occurred in the cortex that normally processed the
modality that was irrelevant to the engaged task
[18,67,68]. These negative responses might reflect activa-
tion of inhibitory circuits through functional connectivity
from the task-relevant modality to the cortical representa-
tion of the non-relevant sensory system [18]. In tinnitus,
the phantom sounds might act to decrease activity in
visual cortex because the visual system is “irrelevant” to
processing the apparition of sounds in tinnitus. However,
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the distribution of negative correlations associated with
the auditory or visual cortex seed regions included non-
sensory cortex. Consequently, the observed differences
between groups might reflect extensive changes in net-
work activity additional to neural processing in an appro-
priate sensory cortex.

Prior functional connectivity studies showed system-
wide differences in the distribution of negative/positive
correlations when analyzing resting-state activity with a
global brain signal regressed out of the computations [41].
Attention and default mode networks showed divergent
fluctuations in spontaneous resting state activities charac-
terized by negative temporal correlations [49]. These
phase reversed BOLD response magnitudes between
attention and default mode networks were labeled “anti-
correlated” [41,49], suggesting that activity dedicated to
events in the outside world (attention) necessarily differed
from endogenous autobiographical references (DMN). In
tinnitus, reciprocal connectivity based on negative correla-
tions between activities in visual and auditory sensory net-
works possibly reflected comparable changes in brain
functions leading to dissociation between the auditory and
visual systems. Thus, a person with tinnitus might need to
dissociate or suppress involuntary attention to the auditory
system when processing visual inputs [26-28].

Observations of blood flow decreases or negative BOLD
signals during tasks initially aided discovery of a default
mode network (DMN) [20,69,70]. DMN is active at rest
[16,19], particularly during self-referential behavior [71],
but shows decreased activity during any task. In the cur-
rent study, DMN was comparable between groups, indi-
cating preservation of normal autobiographical reveries,
recollections, and planning in tinnitus patients despite the
presence of persistent phantom auditory sensations.

Phantom Noises as a Salience or Conflict Feature

Connectivity differences between groups also included
cortex regions important for switching between condi-
tions that conflict or have different salience [34,55,56].
Thus, the differences in tinnitus connectivity between the
RV1 seed region and fronto-insular and attention net-
work components might reflect an adaptation to reduce
the salience of phantom noises in tinnitus and maintain
attention on non-auditory events. Endogenous ringing
sounds involuntarily capture attention in those with
bothersome tinnitus. The hypothesized consequence of
these effects is depletion in cognitive resources [15].
These sounds are not cued and do not require any speci-
fic goal-directed response. The exception is the goal of
not allowing tinnitus to interfere with normal stimulus
and cognitive processing. However, there is an on-going
conflict between the tinnitus and other processing that
partially relates to the salience of the two conditions.
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These factors of conflict and salience might underlie the
connectivity differences noted in the inferior frontal
gyrus and rostral insular cortex [55,56].

The functional connectivity in inferior frontal and right
anterior insula cortex might potentially regulate cognitive
switching in conflict situations [56] or influence switch-
ing on the basis of salience for conditions that capture
attention selectively compared to involuntarily [33,34,55].
Connectivity with fronto-insular cortex involved negative
and positive correlations, respectively, from visual and
auditory cortex. In one hypothetical model, the fronto-
insular cortex is part of a salience network that drives
switching by a central executive control network impor-
tant to maintaining and adjusting attention [55]. In refer-
ence to tinnitus, the issue concerns the salience of
phantom noise in contrast with some task-based condi-
tion. In this context, fronto-insular cortex might initiate
resolution of conflicts between the salience of phantom
noises and the more important non-tinnitus conditions
that involve task specific, possibly visual processing. Con-
sistent with the latter notion is evidence of activation of
inferior frontal gyral and anterior insular regions during
visual Stroop tasks with conflicts between congruent vs.
incongruent or neutral conditions [56]. Phantom tinnitus
noises might then represent the incongruent condition
that conflict with processing visual inputs that represent
congruent conditions. However, how fronto-insular cor-
tex acts through phase-reversed resting-state visual cor-
tex activity in tinnitus is unknown. In participants with
tinnitus, negative correlations dominated the functional
connectivity with the visual system for RAI and IFG. RAI
and IFG had stronger positively correlated connectivity
with primary auditory cortex, suggestive of a reinforced
suppression of visual processes in tinnitus, which is an
opposite effect from resolving conflicts that arise from
tinnitus.

In another model, the rostral insula, inferior frontal,
and posterior middle frontal cortex on the right act as
executive control components in the attention system
that regulate dorsal and ventral attention networks,
which lack direct interconnections [33,34,72]. Activity in
these control components might affect connectivity with
the dorsal and ventral attention networks in the tinnitus
group. However, the current results only showed connec-
tivity distinctions between RV1 and rTPJ.

The right TPJ is a component of the salience, stimulus-
driven ventral attention network [33,34]. Prior studies
reported activation of rTPJ] when attention reoriented to
unexpected yet behaviorally noticeable stimulation
[73-75]. However, suppresion of rTP] happened during
stimulation that was not relevant to the goals of a task
[76,77] or was a cued reorientation of attention [72]. In
the current study, rTPJ showed a greater spatial extent of
negative correlations in the tinnitus compared to the
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control group with the RV1 seed. Tinnitus is definitely
irrelevant to all behavioral and cognitive searches. Goal-
directed cognitive effort to examine some visual input
and ignore tinnitus might thus necessitate spatially more
extensive phase-reversed activity in rTPJ to prevent reor-
ienting of attention to the tinnitus percept. This hypoth-
esis was supported by previous work showing that goal-
directed behavior, such as participating in visual search
[76,77], suppressed r'TPJ activity. Functional connectivity
through negative correlations between RV1 and rTP]
might instantiate deactivation in tinnitus to prevent reor-
ientation to distracting endogenous phantom sounds,
which are not behaviorally relevant.

Connectivity for components of the dorsal attention
system was similar in tinnitus and control groups, indi-
cating that the presence of tinnitus did not affect the
ability to voluntarily focus attention, a factor critical to
behavioral treatment strategies for tinnitus [2,24,25].

Technical Factors

Two reviews of the neurobiology of tinnitus expressed
concerns that divergent results amongst prior neuroima-
ging studies possibly reflected varied demography of tinni-
tus patients including differences in age and/or hearing
loss, case studies or sample sizes of < 10 and only fixed as
opposed to random effect statistics, non-equivalent data
that also lacked spatial resolution, lack of data from con-
trol groups, and theoretical comparisons between micro-
scopic measurements in animals and macroscopic imaging
data from humans [3,7]. Many of these issues were not
present in the current study. The sample was 34, equally
divided into participants with and without bothersome tin-
nitus. Although the tinnitus group contained more males
than the control group, this difference was not great.
Furthermore, gender differences are not known to influ-
ence tinnitus symptoms or be a factor in the cortical
regions found to show connectivity differences, although
gender differences possibly can influence processing noise
stimuli in primary auditory cortex [7]. Age, which influ-
ences hearing thresholds, closely matched between the
two groups. The pure tone average threshold for both
groups was ~25 dB HL for frequencies between 1 and 3
kHz. The tinnitus group, however, had hearing deficits for
tones > 8 kHz, but hearing loss is a known precipitating
factor leading to tinnitus, and having tinnitus was an
inclusion factor in the current study. Because hearing loss
in the studied tinnitus group was not extreme, we suggest
that the most parsimonious basis for connectivity differ-
ences was the experienced persistent phantom noises as
opposed to hearing deficit differences between the groups.
Participants with tinnitus were similar in having bother-
some symptoms with moderate to severe THI scores and
loudness that varied from 5 to 9, all lacked hyperacusis,
and they were free of severe depression.
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Within and between group comparisons benefited from
optimized spatial resolution of the imaging data. Surface
rendering of the cortical surfaces respected the fiduciary
anatomy of each hemisphere. Additionally, identification
of standard anatomical landmarks in each hemisphere
enabled spatial registration of data within and across
groups with < 3% distortion to a common atlas space
wherein statistical comparisons were executed [59]. Our
analyses also included assessment of each case followed by
random effect statistics of group data and family-wide
error corrected statistics of group contrasts. The strin-
gency of the TFCE permutation analysis might have been
prone to Type II errors [63], suggested by evidence of
clusters in the default mode system and temporoparietal
junction that did not pass the cluster size significance
threshold.

Conclusions

Tinnitus patients showed altered functional connectivity
for auditory and visual networks compared to age-
matched controls. The connectivity differences between
tinnitus and controls concerned negative correlations in
tinnitus, indicating that when resting-state spontaneous
BOLD response magnitudes increased in auditory cortex
they decreased in visual cortex. Reciprocally in the tinnitus
group, connectivity for the right primary visual cortex
negatively correlated with activity in auditory cortex.
These results imply that increases in activity in auditory
and visual networks reciprocally decreased BOLD
response magnitudes in each other. The functional con-
nectivity in inferior frontal and right anterior insula cortex
negatively correlated with the right primary visual cortex
and positively correlated with auditory cortex. The fronto-
insular cortex potentially provides executive control over
switching attention between conflicting salient phantom
noises and other conditions [33,34,55,56]. The differences
in tinnitus connectivity might reflect an adaptation to
reduce the salience of phantom noises in tinnitus and
maintain attention on non-auditory events. Thus, goal-
directed cognitive efforts to examine visual inputs and
ignore tinnitus might necessitate phase-reversed activity to
block reorienting of attention to the salient, but irrelevant
tinnitus percept. These differences in tinnitus were consis-
tent with the hypothesis that chronically accommodating
to persistent bothersome phantom sounds induced
changes in synaptic efficacy between functionally con-
nected network components.
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