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INTRODUCTION 

  A host of studies have sought to develop pharmacotherapies against hearing loss due to 

noise, ototoxicity, and aging (Seidman & Vivek, 2004; Shen, Zhange, Shin, Lei, Du, Gao, Dai, 

Ohlemiller & Bao, 2006; Canlon, Henderson & Salvi, 2007; Le Prell, Yamashita, Minami, 

Yamasoba & Miller, 2007).  One promising strategy seeks to elicit the protective cascades 

underlying preconditioning with therapeutic agents.  In preconditioning, exposure to a non-

damaging or minimally damaging stressor provides protection against later, potentially 

permanently injurious events.  In preconditioning, multiple intrinsic cell defense mechanisms 

may be engaged to help maintain homeostasis and prevent apoptosis.  Cochlear preconditioning 

against noise injury has been shown to be engaged by stressors including hyperthermia 

(Sugahara, Inouye, Izu, Katoh, Katsuki, Takemoto, Shimogori, Yamashita & Nakai, 2003; 

Yoshida, Kristiansen & Liberman, 1999), ischemia (Myers, Quirk, Rizk, Miller & Altschuler, 

1992), hypoxia (Gagnon, Simmons, Bao, Lei, Ortmann & Ohlemiller, 2007), noise exposure 

(Niu, Shao & Canlon, 2003; Yoshida & Liberman, 2000), mild physical restraint (Wang & 

Liberman, 2002), and low-dose kanamycin exposure (Fernandez, Ohlemiller, Gagnon & Clark, 

2010).  Many of these studies have used mouse models which offer the advantage of reduced 

data variance due to genetic uniformity, as well as the possibility of genetic analysis when 

hearing-related phenotypes are found to differ by strain (Ohlemiller, 2006). 

  Recent work in CBA/J and C57BL/6J (B6) mice explored the basis of cochlear 

preconditioning against noise injury by low-dose, sub chronic kanamycin (Fernandez et al., 

2010; Ohlemiller, Rybak Rice, Rosen, Montgomery & Gagnon, In Press).  Protection was found 

to be robust in CBA/J, but appeared not to occur in B6. The present study addresses differences 

in cochlear protein expression after kanamycin (KM) treatment that might help explain these 
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strain differences. 

 

Key mediators of preconditioning 

  A number of key mediators of preconditioning are known, and have often been found to 

overlap with proteins that are directly upregulated by noise and ototoxic exposure.  Among these 

are heat shock proteins (HSPs).  Named according to molecular weight (e.g., HSP70 has a MW 

of 70 kilodaltons), heat shock proteins encompass a family of proteins found in almost all 

organisms.  Their dramatic upregulation is a key part of a cell’s stress response.  Although most 

dramatically upregulated by heat stress, increased HSP production can be triggered by a host of 

stressors, including infection, inflammation, exercise, toxin exposure and hypoxia.  In the 

unstressed cell, heat shock proteins function in protein folding and transport, signal transduction, 

and cell growth and differentiation (Cunningham & Brandon, 2006; Fairfield, Kanicki, Lomax & 

Altschuler, 2002; Taleb, Brandon, Lee, Lomax, Dillmann & Cunningham, 2008).  The induction 

of upregulation of HSPs can inhibit apoptotic proteins, providing overall protection for the cell 

(Cunningham & Brandon, 2006; Taleb et al., 2008).        

  Heat shock proteins are activated by the major transcription factor, heat shock factor-1 

(HSF-1), which functions as a regulator of stress-induced genes for heat shock proteins and other 

stress-responsive proteins that aid repair and restore homeostasis.  HSF-1 is expressed in many 

unstressed tissues, including cerebellum, heart, liver, testis and kidney tissue (Fairfield et al., 

2002; Taleb et al., 2008), but becomes transcriptionally active under stressful conditions 

(Pirkkala, Nykanen & Sistonen, 2001).  Found to be activated by ischemia and hyperthermia in 

rats (Higashi, Nakai, Uemura, Kikuchi & Nagata, 1995), expression of HSF-1 has been shown in 

inner and outer hair cells, spiral ganglion cells and the marginal and intermediate layers of the 
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stria vascularis in both rat and mouse cochlea (Fairfield et al., 2002).  Previous studies have 

suggested that HSP70 and HSF-1 are both necessary for hyperthermia to cause protection against 

aminoglycoside-induced death (Taleb et al., 2008).  

    HSP70, which has been shown to be induced in the inner ear in response to cisplatin and 

aminoglycoside exposure, hyperthermia and cochlear ischemia, is the most widely studied heat 

shock protein.  Cisplatin exposure has been found to increase HSP70 expression in the rat 

cochlea, specifically in the spiral limbus, basilar membrane, lateral wall and supporting cells 

(Garcia-Berrocal, Nevado, Gonzalez-Garcia, Sanchez-Rodriguez, Sanz, Trinidad, Espana, 

Citores & Ramirez-Camacho, 2010) and the outer hair cells and stria vascularis (Oh, Yu, Song, 

Lim, Koo, Chang & Kim, 2000).  Increased expression of HSP70 after heat shock in the hair 

cells and supporting cells of mouse utricles has been shown, and heat shock inhibition of 

neomycin-induced hair cell death has been demonstrated (Cunningham & Brandon, 2006; Taleb 

et al., 2008).  Cochlear ischemia has been found to induce HSP70 expression in the outer hair 

cells of the rat cochlea (Myers et al., 1992).  HSP70 expression has also been found to protect 

outer hair cells in the basal and middle turns of the cochlea, along with inhibiting kanamycin 

induced hearing loss (Taleb, Brandon, Lee, Harris, Dillmann & Cunningham, 2009). 

  Heme oxygenase 1 (HO-1), also known as HSP32, is also upregulated by HSF-1 and is 

involved in providing protection against oxidative stress by degrading heme to produce carbon 

monoxide, bilirubin and iron. Expression of HO-1 has been shown in the modiolus and organ of 

Corti of the unstressed rat cochlea, and an increase in expression has been demonstrated in the 

outer hair cells and marginal and intermediate cells of the stria vascularis after heat shock 

(Fairfield, Kanicki, Lomax & Altschuler, 2004), which correlates with previous findings of 

HSP70 and HSF-1 localization. Noise exposure has also been shown to increase expression of 
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HO-1 in the guinea pig cochlea, where staining was seen in the outer hair cells, more 

specifically, Hensen’s cells (Matsunobu, Saton, Ogawa & Shiotani, 2009). Another study did not 

show expression of HO-1 in the unstressed cochlea but expression was detected in the spleen and 

brain positive controls (Watanabe, Oshima, Kobayashi  & Ikeda, 2003).  

  Along with HSPs, other intrinsic mediators of preconditioning include antioxidants and 

anti-apoptotics (Kawamoto, Sha, Minoda, Izumikawa, Kuriyama, Schacht & Raphael,  2003; Niu 

et al., 2003; Van De Water, Lallemend, Eshraghi, Ahsan, He, Guzman, Polak, Malgrange, 

Lefebvre, Staecker & Balkany, 2004; Darrat, Ahmad, Seidman & Seidman, 2007; Le & 

Keithley, 2007). The mediators of preconditioning vary by tissue (Yoshida & Liberman, 2000; 

Sommers-child & Kirkeboen, 2002;  Das & Maulik, 2003; Dirnagl, Simon & Hallenbeck, 2003; 

Prass, Scharff, Ruscher, Lowl, Musselmann, Victorov, Kapinya, Dirnagl & Meisel, 2003; Eisen, 

Fisman, Rubenfire, Freimark, McKechnie & Tenenbaum, 2004; Pasupathy & Horner-

Vanniasinkam, 2005; Ran, Xu, Lu, Bernaudin & Sharp, 2005; Gidday, 2006). Some mediators 

may play either harmful or beneficial roles, depending on where, and in what quantities, they are 

produced.  Among these is tumor necrosis factor-α (TNF-α), a cytokine that functions as a 

regulator of inflammation which can induce both cell damage and protection against apoptosis.  

TNF-α expression in the cochlea has been shown  in both noise and otototoxic injury (Hess, 

Block, Huverstuhl, Su, Stennert, Addicks & Michel, 1999; Zou, Pyykko, Sutinen & Toppila, 

2005; Scherer, Yang, Canis, Reimann, Ivanov, Diehl, Backx, Wier, Strieth, Wangemann, 

Voigtlaender-Bolz, Lidington & Bolz, 2010).  As a known mediator of inflammation, TNF-α is 

known to affect lipid metabolism, coagulation, insulin resistance and the function of endothelial 

cells lining blood vessels. TNF-α production has been shown to be significantly increased 

through bacterial endotoxin lipopolysaccharide (LPS) treatment, which activates the release of 

4 
 



Rellinger 

pro-inflammatory cytokine TNF-α (Zhao, Brooks & Lurie, 2006). Expression of TNF-α has been 

shown in the lateral cochlear wall and organ of Corti (Hess et al., 1999). Vibration has been 

found to induce TNF-α expression in numerous areas, including the reticular lamina, outer hair 

cells, Dieter’s cells, Hensen’s cells, Claudius’ cells, internal sulcus cells, spiral ligament, spiral 

vascular prominence, cochlear vasculature, and the spiral ganglion cells (Zou et al., 2005). 

Excess TNF-α has been shown to alter cochlear blood flow and cause ischemic related hearing 

loss through studies observing rodent and human spiral modiolar arteries and spiral ligament 

capillaries, which supply blood to the stria vascularis. A rapid reduction of blood was shown 

shortly after TNF-α was infused and a correlation between TNF-α and decreased capillary 

diameter was found (Scherer et al., 2010). Treatment with keyhole limpet hemocyanin (KLH) in 

the inner ear of mice revealed an increase in TNF-α expression and the presence of inflammatory 

cells in scala tympani, which suggested that TNF-α plays a role in the localized cochlear immune 

response (Satoh, Firestein, Billings, Harris & Keithley, 2002).   

 

Cochlear preconditioning by kanamycin 

 Aminoglycosides, which include streptomycin, gentamicin, neomycin, kanamycin, 

tobramycin and amikacin, are routinely used for the treatment of bacterial infections.  While they 

are cost-effective and efficient, they can be ototoxic and nephrotoxic (Rizzi and Hirose, 2007; 

Taleb et al., 2008; Taleb et al., 2009).  Aminoglycosides have been shown to remain in the inner 

ear for over 30 days in a serum with a half-life of approximately 3 to 5 hours, which may 

increase ototoxic effects since aminoglycosides lead to the activation of apoptotic signaling 

cascades (Taleb et al., 2008; Tran Ba Huy, Bernard & Schacht, 1986).  Most research on 

aminoglycosides has explored the basis of its ototoxicity and its possible remediation (Matz, 
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1993; Schacht, 1993; Priuska and Schacht, 1997; Schacht, 1999; Perletti, Vral, Patrosso, Marras, 

Ceriani, Willems, Fasano  & Magri, 2008; Yu, Jiang, Zhou, Tsang, Yu, Chung, Zhang, Wang, 

Tang & Chan, 2011).  However, recent work has shown that kanamycin applied at low doses can 

engage a form of preconditioning against cochlear noise injury in CBA/J mice.  Fernandez et al. 

(2010) found that repeated subclinical doses of kanamycin have a protective effect against noise 

induced cochlear injury (Fig. 1).  In that study, 20 day old CBA/J mice received injections of 

kanamycin or saline (300 mg/kg) every 12 hours for 10 consecutive days and were then exposed 

to 30 seconds of 110 dB SPL broadband noise on the eleventh day.  Ten days later, auditory 

brainstem response (ABR) testing revealed normal hearing thresholds in kanamycin treated mice, 

compared to substantial threshold shifts in saline controls. 

 
Figure 1: Mice receiving 
Saline + Noise showed 
significantly elevated ABR 
thresholds versus unexposed 
controls. Thresholds in saline-
treated mice were not 
significantly different from the 
Noise Alone group. Mice 
receiving KM + Noise showed 
ABR thresholds not 
significantly different from the 
unexposed controls. 

Reprinted with permission 
from Fernandez et al., 2010 

Rybak Rice (2009) further investigated the shortest kanamycin dosing interval necessary 

to provide complete protection.  Dosing regimens of once daily, once every other day, and once 

every third day for 10 days all provided protection.  Rosen (2010) examined the effects of 
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genetic background on kanamycin-related protection, comparing young C57BL/6J and CBA/J 

mice.  C57BL/6J (B6) mice were not found to exhibit the protection observed in CBA/J mice.  

Further studies (Ohlemiller et al., In Press), confirmed these findings, and suggested that even 

low-dose kanamycin is more likely to be toxic than protective in B6 (Fig. 2). 

 

 
Figure 2:  ABR thresholds 
of KM treatment paradigm 
(injections twice daily) 
applied to young B6 mice. 
Unlike CBA/J, mice 
receiving KM alone 
exhibited modest (~10 dB) 
but statistically significant 
hearing loss. Also, unlike 
CBA/J, animals receiving 
KM prior to noise fared no 
better against noise than 
did saline controls. The 
small protective effect that 
might be hinted in these 
data may reflect protection 
afforded by an initial 
threshold shift. 
 

Reprinted with permission from Ohlemiller et al., In Press 
   
   
 

 To date, it has remained unclear how broadly applicable a phenomenon kanamycin 

preconditioning represents, since protection was not found in B6 mice.  Such strain differences 

can be exploited, however.  Phenotypic differences can be used to identify key differences in 

protein expression, and ultimately allelic differences in key genes that regulate protective 

pathways.  There may be differences in metabolism, cellular uptake mechanisms, or differential 

expression of antioxidant enzymes between C57BL/6J and CBA/J mice that impact the ability of 
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kanamycin to engage preconditioning.  Wu et al. (2001) have shown that genetic variability 

among strains plays a role in determining sensitivity to aminoglycosides.  Gagnon et al. (2007) 

have also shown that hypoxic preconditioning against cochlear noise injury is protective in 

CBA/J mice, but not in B6.  This raises the possibility that some common factor critical to a 

variety of preconditioning forms differs in form or expression between these two strains. 

 

Purpose of the Present Study 

  The purpose of the present study was to investigate by immunofluorescence 

immunocytochemistry the role of HSP70, HSF-1, and HO-1, along with pro-inflammatory 

cytokine TNF-α, in kanamycin-related protection of CBA/J cochleae, as well as the possible 

identity of one or more of these as the basis of noted differences between CBA/J and C57BL/6J 

mice.  Expression patterns of these prominent proteins from both the preconditioning and 

ototoxicity literature were examined qualitatively.  Our key assumption was that any of these 

showing greater upregulation following kanamycin in CBA/J mice than in B6 were likely to be 

critical to the manifestation of preconditioning.  Conversely, we posited that any of these 

(particularly TNF-α) showing greater upregulation in B6 mice than in CBA/J were likely to be 

involved in the inhibition of preconditioning.  

 

MATERIALS AND METHODS 

Animals 

 All CBA/J and C57BL/6J mice were derived from breeders purchased from The Jackson 

Laboratory (JAX) and housed in the Central Institute for the Deaf animal care facility at 

Washington University in St. Louis School of Medicine.  The mice were housed in the 
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Mechanisms of Cochlear Injury laboratory in the same facility during treatment.  The study used 

a total of 16 CBA/J mice and 17 C57BL/6J mice.  All animal use and care procedures were 

approved by the Animal Studies Committee at Washington University School of Medicine.  

 

Kanamycin and saline dosing 

 Drug administration was randomized and each litter contained control and experimental 

mice of each sex.  Body weight was measured twice daily.  Drug treatment was tolerated, and no 

mice were lost.  Mice received injections of kanamycin or saline vehicle every 12 hours within 

the same hours (+30 minutes) for a total of 10 days.  Injections were administered on postnatal 

day (PND) 21-30.  All mice were weaned on PND 25.  Mice receiving kanamycin sulfate 

received a 300 mg/kg subcutaneous dose (63.93 mg/mL in 0.9% commercial saline solution) 

which was prepared every seven days.  Drug dosage for each mouse was determined with the 

formula body weight (g) x 0.006 = injection volume (µL).  Mice receiving saline received an 

equivalent dose dependent on their weight (300 mg/kg per dose).  No noise exposure occurred; 

rather mice were evaluated at the time when noise would have occurred in the earlier paradigm.  

A total of 8 CBA/J mice received saline injections and 8 CBA/J mice received kanamycin 

injections. A total of 8 C57BL/6J mice received saline injections and 9 C57BL/6J mice received 

kanamycin injections. 

 

Sacrifice and tissue processing for immunocytochemistry 

 Following kanamycin or saline injections, mice were sacrificed for immunocytochemistry 

on PND 31.  Mice were overdosed with sodium pentobarbital (240 mg/kg, i.p.) and surgery 

began when there was no toe-pinch response. Transcardial perfusions were performed using a 
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fixative solution of 4% paraformaldehyde in 0.1 M phosphate buffer.  All mice were decapitated 

and inspected for signs of otitis media.  One animal was excluded from the study due to visible 

signs of middle ear pathology.  Both cochleas were harvested.  Cochleas were quickly removed 

and immersed in fixative for a total of 20 minutes and the stapes and surrounding tissue were 

removed while remaining in fixative.  After 20 minutes, cochleas were placed in a 0.35 M 

Ethylene Diamine-Tetra Acetic Acid (EDTA) in 0.1 M Sodium Phosphate (NaPO4) solution for 

72 hours for decalcification.  Then EDTA was removed and cochleas were gradually immersed 

in a 10% sucrose to 30% sucrose solution and remained in 30% sucrose for 24 hours at 4˚C.  

After 24 hours, sucrose was removed and cochleas were immersed in O.C.T. compound for 24 

hours at 4˚C.  Following 24 hours in O.C.T., cochleas were embedded in O.C.T. (TissueTek) in 

cryomolds for frozen sectioning. Right cochleas were sectioned in the mid-modiolar plane in 

8µm sections utilizing a cryostat.  One section from each animal was placed in random order on 

each slide. 

 

Heat shock protein-70 (HSP70/HSP72) 

  HSP70 is not normally observed in the cochlea by immunocytochemistry (Oh et al., 

2000; Cunningham & Brandon, 2006).  This creates the possibility that an apparent negative 

result could reflect an artifactual failure to detect HSPs that are actually present.  A positive 

control was attempted consisting of two heat shocked CBA/J mice and two CBA/J shams that 

were approximately 8 weeks old.  The two heat-shocked mice were anesthetized with an 

intraperitoneal injection of a ketamine and xylazine solution (80/15 mg/kg). The mice were 

placed on a controlled heating pad and a rectal probe was utilized to maintain a body temperature 

of 41˚C for 30 minutes.  After 15 minutes following the heat shock, the mice were sacrificed 
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utilizing the previously described protocol. Cochlear tissue and brain tissue were harvested and 

embedded for cryosectioning. A dilution series was performed and a dilution of 1:50 was 

determined to be appropriate. 

Sections were soaked and rinsed in phosphate buffered saline (PBS) for 20 minutes and 

then incubated with a blocking solution (500 µL goat serum/50 mg Carageenan/20 µL Triton X-

100/total of 10 mLs with PBS) for 120 minutes at room temperature.  All incubations were 

performed in a humidity chamber. Sections were rinsed in PBS for 15 minutes and then 

incubated with the primary antibody monoclonal anti-mouse HSP70/HSP72 (Enzo Life Sciences, 

Lot 08021046; 1:50) for 120 minutes at room temperature. Sections were rinsed in PBS for 15 

minutes and then the sections were incubated with the secondary antibody, Alexa Fluor 594 goat 

anti-mouse IgG (A11032, Lot 99E2-1, Molecular Probes/Invitrogen, Eugene, OR; 1:1000) for 45 

minutes at room temperature. Controls were prepared with secondary antibody only; the primary 

antibody was replaced with PBS. Sections were then rinsed with PBS for 15 minutes, followed 

by a 15 minute immersion in PBS with 0.1% tween polyoxyethylenesorbitan monolaurate 

(Tween 20, Sigma, Lot 50K0138), and additional rinses in PBS for 10 minutes. Then sections 

were coverslipped with Slow Fade® Gold antifade reagent with DAPI (Invitrogen/Molecular 

Probes, Lot 734008, S36938). All sections were imaged and one section was randomly selected 

to display no immunoreactivity to HSP70 at a dilution of 1:50 in both C57BL/6J and CBA/J 

kanamycin or saline treated mice. DAPI is shown to aid in immunoreactivity localization 

interpretation via nuclear staining.   

 

Heat shock factor-1 (HSF-1) 

  Because HSF-1 can be observed by immunocytochemistry in the normal cochlea 
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(Goodson and Sarge, 1995; Fairfield et al., 2002), no positive control was attempted. The 

previously stated immunocytochemistry protocol was utilized with a blocking solution of 500 µL 

goat serum/50 mg Carageenan/20 µL Triton X-100/total of 10 mLs with PBS, a primary 

antibody monoclonal anti-mouse HSF-1 (MAB88078, Lot LV1376830, Chemicon International, 

Temecula, CA; 1:100), and a secondary antibody Alexa Fluor 488 conjugated goat anti-rat IgG 

(A11006, Lot 52955A, Molecular Probes/Invitrogen; 1:1000).  Controls were prepared with 

secondary antibody only; the primary antibody was replaced with PBS. All sections were imaged 

and one section was randomly selected to display immunoreactivity to HSF-1 at a dilution of 

1:100 in both C57BL/6J and CBA/J kanamycin or saline treated mice.  

 

Heme-oxygenase-1/Heat shock protein-32 (HO-1/HSP32) 

 Positive controls were provided by mid-modiolar sections of noise exposed C57BL/6J 

cochlear tissue and control tissue with no noise exposure and a primary antibody dilution of 1:50. 

The previously stated immunocytochemistry protocol was utilized in the experimental animals 

with a blocking solution of 500 µL goat serum/50 mg Carageenan/20 µL Triton X-100/total of 

10 mLs with PBS, a primary antibody monoclonal anti-mouse HO-1 /HSP32 (OSA-1111, Lot 

09010919, Assay Designs; 1:50), and a secondary antibody Alexa Fluor 594 conjugated goat 

anti-mouse IgG (A11032, Lot 99E2-1, Molecular Probes/Invitrogen 1:1000).  Controls were 

prepared with secondary antibody only; the primary antibody was replaced with PBS. All 

sections were imaged and one section was randomly selected to display no immunoreactivity to 

HO-1 at a dilution of 1:50 in both C57BL/6J and CBA/J kanamycin or saline treated mice. 
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Tumor necrosis factor (TNF-a) 

The use of a positive control was implemented using 10 mid-modiolar sections of 

C57BL/6J cochlear tissue treated with lipopolysaccharide (LPS).  A dilution series was 

performed and revealed optimal staining at 1:100.  The previously stated immunocytochemistry 

protocol was utilized with a blocking solution of 500 µL donkey serum/ 50 mg Carageenan/20 

µL Triton X-100/total of 10 mLs with PBS, a primary antibody monoclonal anti-mouse TNF-α 

(R&D Systems, NQ13, AF-410-NA; 1:100), and a secondary antibody Alexa Fluor 594 

conjugated goat anti-mouse IgG (A11032, Lot 99E2-1, Molecular Probes/Invitrogen, Eugene, 

OR; 1:1000).  Controls were prepared with secondary antibody only; the primary antibody was 

replaced with PBS.  

 

Table 1:  Materials used for immunocytochemistry.  

Protein Primary Antibody Secondary Antibody Serum 
HSP70 Hsp70/Hsp72, mAB 

(C92F3A-5), Lot 
08021046, Enzo Life 
Sciences  

Alexa Fluor 594 goat anti-mouse 
IgG, Lot 99E2-1, A11032, 
Molecular Probes/Invitrogen 

Goat, Lot W1110, 
Vector Laboratories, 
Inc. 

HSF-1 Hsf1, mAB88078, Lot 
LV1376830, Chemicon 
International 

Alexa Fluor 488 goat anti-rat 
IgG, Lot 52955A, A11006, 
Molecular Probes/Invitrogen 

Goat, Lot W1110, 
Vector Laboratories, 
Inc. 

HO-1/HSP32 HO-1/Hsp32, mABOSA-
111, Lot 09010919, Assay 
Designs 

Alexa Fluor 594 goat anti-mouse 
IgG, Lot 99E2-1, A11032, 
Molecular Probes/Invitrogen 

Goat, Lot W1110, 
Vector Laboratories, 
Inc. 

TNF-α TNFα, NQ14, AF-410-NA, 
R&D Systems 

Cy3-conjugated AffiniPure 
Donkey-Goat IgG, Code 705-
165-147, Lot 68618 , Jackson 
Immuno Research Laboratories 

Donkey, Lot 68649, 
Jackson Immuno 
Research 
Laboratories, Inc. 

 

Qualitative Analysis 
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            Experimental                                 Control 

 
 
Figure 3:  Cochlear 
upper basal turn 
images showing 
immunolocalization of 
HSP70.   No 
difference in HSP70 
immunoreactivity 
between saline and 
kanamycin treated B6 
and CBA/J mice was 
observed. (A) Saline 
treated CBA/J (B) 
Saline treated CBA/J 
control with secondary 
antibody only (C) 
Kanamycin treated 
CBA/J (D) Kanamycin 
treated CBA/J control 
with secondary 
antibody only (E) 
Saline treated B6 (F) 
Saline treated B6 
control with secondary 
antibody only (G) 
Kanamycin treated B6 
(H) Kanamycin treated 
B6 control with 
secondary antibody 
only.   
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(Fig. 
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            Experimental                                Control 

 
 
Figure 4: Cochlear 
upper basal turn 
immunolocalization of 
HSF-1. No difference 
in immunoreactivity 
between strain (B6 or 
CBA/J) or condition 
(kanamycin or saline) 
was observed.  
Immunoreactivity was 
seen in the organ of 
Corti, interdental cells 
of spiral limbus, and 
inner sulcus cells. (A) 
Saline treated CBA/J 
(B) Saline treated 
CBA/J control with 
secondary antibody 
only (C) Kanamycin 
treated CBA/J (D) 
Kanamycin treated 
CBA/J control with 
secondary antibody 
only (E) Saline treated 
B6  (F) Saline treated 
B6 control with 
secondary antibody 
only (G) Kanamycin 
treated B6 (H) 
Kanamycin treated B6 
control with secondary 
antibody only. 
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Figure 5: Cochlear 
upper basal turn 
immunolocalization of 
HO-1. No difference 
in immunoreactivity 
between saline and 
kanamycin treated B6 
and CBA/J mice was 
observed. (A) Saline 
treated CBA/J (B) 
Saline treated CBA/J 
control with secondary 
antibody only (C) 
Kanamycin treated 
CBA/J (D) Kanamycin 
treated CBA/J control 
with secondary 
antibody only (E) 
Saline treated B6 (F) 
Saline treated B6 
control with secondary 
antibody only (G) 
Kanamycin treated B6 
(H) Kanamycin treated 
B6 control with 
secondary antibody 
only. 
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Figure 6: Cochlear 
HO-1 positive control 
using noise exposure 
(A & C). Noise 
exposed B6 tissue (B 
& D) Control 
(unexposed) B6 tissue. 
In 4 out of 4 cases, 
increased expression 
of HO-1 was seen in 
the stria vascularis in 
noise exposed animals 
compared to 4 
unexposed animals. 
Two of those cases are 
shown as Set 1 and Set 
2. 
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Figure 7: Cochlear upper basal turn immunolocalization of TNF-α in saline treated CBA/J mice.  
TNF-α was not reliably detected in CBA/J saline treated mice. (A-G) Incubated with 1:100 TNF-
α primary and 1:1000 secondary. (H) Control incubated with secondary only (primary replaced 
with PBS). Similar immunoreactivity was noted between B6 and CBA/J saline treated mice 
(Figs. 7 & 9). 
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Figure 8: Immunolocalization of TNF-α in CBA/J kanamycin treated mice. Cochlear upper basal 
turn images. (A-F) Incubated with 1:100 TNF-α primary and 1:1000 secondary. (G) Control 
incubated with secondary only (primary replaced with PBS). Immunoreactivity was not reliably 
observed. 
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Figure 9:  Immunocytochemistry suggested no reliable expression of TNF-α in B6 saline treated 
mice. Cochlear upper basal turn images. (A-E) Incubated with 1:100 TNF-α primary and 1:1000 
secondary. (F) Control incubated with secondary only (primary replaced with PBS). Equal 
immunoreactivity was noted between B6 saline treated mice (Fig. 9) and CBA/J saline treated 
mice (Fig. 7). Two animals were excluded due to poor cochlear preservation and histology issues 
rendering the sections unable to image or qualitatively analyze. The bright staining in (E) is 
likely due to artifact. 
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Figure 10: Immunocytochemistry for TNF-α in kanamycin treated B6 mice. In the majority of 
cases, there is more TNF-α expressed in the lateral wall (type II region and stria vascularis) of 
the B6 kanamycin treated mice (Fig. 10) than the CBA/J kanamycin treated mice (Fig. 8) (A-H) 
Incubated with 1:100 TNF-α primary and 1:1000 secondary. (I) Control incubated with 
secondary only (primary replaced with PBS).  
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DISCUSSION  

  The present study investigated cochlear expression of the proteins HSP70, HSF-1, HO-1 

and TNF-α in kanamycin and saline treated B6 and CBA/J mice to explore the biochemical bases 

of kanamycin preconditioning.  Since protection is found in CBA/J mice, but not found in B6 

mice, differences in protein expression were examined to reveal possible allelic differences in 

key genes that regulate protective pathways.  These may be differences either within the genes 

whose products were examined, or in upstream regulatory genes.  We hypothesized that any of 

the proteins that showed greater upregulation following kanamycin in CBA/J mice than in B6 

were likely to be critical to the manifestation of preconditioning.  Conversely, we hypothesized 

that any of these showing greater upregulation in B6 mice than in CBA/J mice, especially TNF-

α, were likely involved in the inhibition of preconditioning.  

 

HSP70 

  Our examination revealed no expression of HSP70 in the cochlea following kanamycin 

treatment, raising the possibility that HSP70 does not critically mediate KM preconditioning in 

CBA/J.  No difference in immunoreactivity was seen between saline and kanamycin treated B6 

and CBA/J mice; although, we cannot be sure that HSP70 was in fact critically upregulated, but 

to undetectable levels. Although this finding diverges from previous studies showing HSP70 

expression in mouse and rat cochlea following cisplatin, heat shock, neomycin, and  ischemia 

(Myers et al., 1992; Oh et al., 2000; Cunningham & Brandon, 2006; Taleb et al., 2008;  Taleb et 

al., 2009; Garcia-Berrocal et al., 2010), the effects of low-dose KM have not been tested. 

 

HO-1 

  Our observations revealed no expression of HO-1 as a function of strain (B6 vs. CBA/J) 
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or treatment (kanamycin vs. saline), suggesting that expression of HO-1 does not critically 

mediate KM preconditioning in CBA/J mice.  Positive controls using noise exposure suggested 

that HO-1 is expressed in noise treated cochlear tissue at detectable levels.  HO-1 expression has 

been shown after heat shock in the rat cochlea (Fairfield et al., 2004), but any changes due to 

low-dose KM have not been tested. Our finding of HO-1 in stria vascularis stands in contrast to 

observations in the guinea pig cochlea, where staining was found in outer hair cells, and not the 

stria vascularis following noise exposure (Matsunobu et al., 2009).   

 

HSF-1 

  HSF-1 findings of the present study were consistent with previous studies. Expression of 

HSF-1 in the organ of Corti, interdental cells of spiral limbus, and inner sulcus cells was 

observed; however, no difference in HSF-1 immunoreactivity was indicated by strain (B6 or 

CBA/J) or treatment (kanamycin vs. saline).  This suggested that HSF-1 was present in equally 

detectable quantities in all conditions, in agreement with previous literature (Higashi et al., 

1995), yet does not critically mediate KM preconditioning in CBA/J mice.  Fairfield et al. (2002) 

showed expression of HSF-1 in the inner and outer hair cells, spiral ganglion cells and stria 

vascularis of the rat and mouse cochlea.  Findings from the present study overlapped with regard 

to expression in the inner and outer hair cells, but not in our findings of expression in the spiral 

limbus and inner sulcus cells.  This difference may be attributed to the fact that the animals in the 

present study were not heat shocked, which is known to dramatically upregulate expression of 

heat shock proteins (Higashi et al., 1995; Fairfield et al., 2002; Taleb et al., 2008).  Present and 

previous findings of HSF-1 under normal conditions are expected, given that it is constitutively 

expressed, and becomes transcriptionally active under stressful conditioning (Pirkkala et al., 
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2001).  

  When our results with HSP70, HO-1, and HSF-1 are taken together, there is a 

consistency, since HSF-1 is the single most prominent ‘driver’ of HSP70 and HO-1 transcription. 

Thus, if KM preconditioning in CBA/J mice does not critically involve HSPs, these results 

should all correspond, as we observed them to. Although HSPs are widely activated under stress, 

and as part of preconditioning cascades, not all preconditioning need involve HSPs. For example, 

no prominent role for HSPs has been identified in protection against noise injury conferred by 

restraint (Wang & Liberman, 2002). 

 

TNF-α 

  The present study revealed TNF-α expression in B6 kanamycin treated mice compared to 

CBA/J kanamycin treated mice, specifically in the lateral wall, suggesting that expression of 

TNF-α varies with genetic background.  Overall, no immunoreactivity was observed in saline or 

kanamycin treated CBA/J or saline treated B6 mice.  TNF-α expression has previously been 

found in the lateral wall, along with the reticular lamina, organ of Corti, spiral ligament, spiral 

vascular prominence and cochlear vasculature, and spiral ganglion (Hess et al., 1999; Zou et al., 

2005).  Due to the potential role of TNF-α in promoting cell damage and protection against 

apoptosis, upregulation of TNF-α in B6 mice could contribute to the subtle injury of B6 cochlea 

by KM suggested by earlier experiments. This tipping of the balance toward injury by 

inflammatory processes that involve TNF-α may represent the primary factor in why CBA/J 

mice favor protection by KM, while B6 mice seem to favor injury. 
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CONCLUSIONS 

 The present findings indicate that neither HSP70 nor HO-1 are critical mediators of 

kanamycin preconditioning in CBA/J mice.  It cannot be ruled out, of course, that sub-detectable 

upregulation of HSP70 or HO-1 playing an important role in preconditioning was simply missed. 

The apparent presence of HSF-1 under all conditions, combined with the apparent non-

upregulation of the HSPs we examined, paint an internally consistent picture in arguing that KM 

preconditioning in CBA/J does not require these HSPs. In contrast, the indicated upregulation in 

the cochlea of TNF-α by kanamycin only in B6 mice suggests that differences in TNF-α 

upregulation, an upstream process, or perhaps inflammatory responses to low-dose kanamycin in 

this strain are a major contributor to the apparent net harmful effects of kanamycin in B6. 

Ultimately, gene expression experiments may be required to resolve these issues.  The apparent 

‘non-protectability’ of B6 by kanamycin may point to genes that modulate the risk of hearing 

loss due to environment in animals and humans. 
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Appendix A: Injection Sheet 

 
Date:            AM 

 
 

Ear notch  Animal ID  Treatment  BW (g) 
(x 0.006) 

Injection 
Volume (µL) 

(     )         
(     )         
(     )         
(     )         
(     )         
(     )         
(     )         
(     )         
(     )         
(     )         
(     )         
(     )         

Date:            PM 

Ear notch  Animal ID  Treatment  BW (g) 
(x 0.006) 

Injection 
Volume (µL) 

(     )         
(     )         
(     )         
(     )         
(     )         
(     )         
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(     )         
(     )         
(     )         
(     )         
(     )         
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