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Abstract: The notion that the default telecoil (t-coil) frequency response should 
match the programmed microphone frequency response to provide optimal 

telephone understanding for hearing aid patients has received little attention. 
This study addresses differences in the average frequency response of the two 
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copyright by 

Daniel B. Putterman 

May 2011  

 

 

 

 

 

 



     Putterman 

ACKNOWLEDGEMENTS 

I would like to thank the following contributors to this study, without whom this project would 
not have been possible: 
  
Dr. Michael Valente, Director of the Division of Adult Audiology, Center for Advanced 
Medicine, Washington University in St. Louis School of Medicine, for the vast amount of 
personal time and energy he invested in this endeavor as capstone project advisor; 
 
Dr. A.U. Bankaitis of Oaktree Products, Inc. for her professional insight as the second reader for 
this capstone paper; 
 
Karen Steger-May of the Department of Biostatistics, Washington University in St. Louis School 
of Medicine, for her assistance with statistical analyses. 
 
  

 
 

 

 

 

 

 

 

 

 

 

This publication was made possible by Grant Number UL1 RR024992 from the National Center 

for Research Resources (NCRR), a component of the National Institutes of Health (NIH) and 

NIH Roadmap for Medical Research. Its contents are solely the responsibility of the authors and 

do not necessarily represent the official view of NCRR or NIH. 

 ii



     Putterman 

TABLE OF CONTENTS 

Acknowledgements...........................................................................................................(ii) 

Table of Contents..............................................................................................................(1) 

List of Figures....................................................................................................................(2) 

Introduction.......................................................................................................................(4) 

Methods...........................................................................................................................(14) 

Results.............................................................................................................................(26) 

Discussion and Conclusion.............................................................................................(34) 

References.......................................................................................................................(51) 

Appendix A.....................................................................................................................(54) 

Appendix B.....................................................................................................................(55) 

Appendix C.....................................................................................................................(56) 

Appendix D.....................................................................................................................(58) 

 

 

 

 

 

 

 

 

 

 

 1



     Putterman 

LIST OF FIGURES 

Figure 1: “Data” and “graph” views of the hearing aid analyzer....................................(15) 

Figure 2: Fast Fourier Transform (FFT) with ANSI-weighted digital speech signal.....(15) 

Figure 3: Hearing aid frequency responses to pure-tone sweep and digital speech........(16) 

Figure 4: Coronal view of dummy ear with probe tube..................................................(18) 

Figure 5: Sagittal view of dummy ear with real-ear assembly and hearing aid..............(19) 

Figure 6: Hearing aid and dummy ear situated for real-ear microphone measurement..(20) 

Figure 7: Hearing aid and dummy ear situated for real-ear telecoil measurement.........(21) 

Figure 8: “Graph” view of real-ear frequency responses with digital speech.................(22) 

Figure 9: Hearing aid situated in test chamber for coupler microphone measurement...(23)  

Figure 10: “Graph” view of coupler frequency responses with pure-tone sweep...........(23) 

Figure 11: “Graph” view of coupler frequency responses with digital speech...............(24) 

Figure 12: Hearing aid situated for coupler telecoil measurement.................................(25) 

Figure 13: ANSI-weighted and flat-weighted digital speech signal...............................(26) 

Figure 14: Mean coupler output of the microphone and telecoil....................................(27) 

Figure 15: Mean coupler output by frequency averaged across transducers..................(28) 

Figure 16: Mean coupler output by frequency for microphone and telecoil...................(29) 

Figure 17: Mean difference in coupler output by frequency between transducers.........(30) 

Figure 18: Mean real-ear output of the microphone and telecoil....................................(31) 

Figure 19: Mean real-ear output by frequency averaged across transducers..................(32) 

Figure 20: Mean real-ear output by frequency for microphone and telecoil..................(33) 

Figure 21: Mean difference in real-ear output by frequency between transducers.........(34) 

Figure 22: Example of microphone and telecoil frequency response (Ross, 2006)........(35) 

 2



     Putterman 

Figure 23: Coupler frequency responses with ANSI and flat-weighted digital speech..(46) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3



     Putterman 

INTRODUCTION 

In 1936 Joseph Poliakoff patented a communication device called a magnetic induction 

loop that transmitted electromagnetic (EM) signals to nearby antennae.  In the subsequent year, 

an induction coil acting as an antenna for EM signals was inserted into the British Multitone 

hearing aid for use on the telephone, representing the first documented use of the telecoil (t-coil) 

(Levitt, 2007).  Sam Lybarger, however, is heralded for implementation of the t-coil in hearing 

aids in the United States in 1947, reporting that unintended EM leakage from a telephone 

receiver results in a field immediately adjacent to the telephone receiver embedded in the hearing 

aid.  This EM field contains the source signal from the telephone receiver with the EM signal 

proportional to the intended electrical signal (Lybarger, 1947; Ross, 2005; Levitt, 2007).  The 

EM signal is detected by the t-coil, a wire coiled about a permeable metal core, and transduced 

by the hearing aid into an acoustic signal (Yanz and Preves, 2003).  Specifically, successful 

induction requires that the signal must pass through the metal core while an electric current flows 

through the coiled wire (Ross, 2005).  The result is a technology that provides several distinct 

advantages over the microphone setting when a hearing aid user listens on the telephone. 

One advantage is that, unlike microphone of the hearing aid, the t-coil will only detect 

EM signals and not any undesired nearby acoustic signals, providing the hearing aid wearer with 

a more ideal listening situation for achieving maximum speech understanding.  A second 

advantage is that the t-coil allows the telephone receiver to be positioned in close proximity to 

the hearing aid and ear without the occurrence of feedback.  Feedback will naturally occur with 

the hearing aid microphone activated due to the telephone receiver proximity to the ear and the 

microphone of the hearing aid (Takahashi, 2005).  A third advantage is that reliance on the 

microphone alone when communicating on the telephone is associated with the potential 
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attenuation of low frequency energy as the user attempts to eliminate the feedback by distancing 

the hearing aid from the EM telephone receiver (Goldberg, 1975).  In addition, the t-coil can 

receive EM signals from sources other than the telephone such as neckloops as well as inductive 

loop systems that have been installed in educational settings, homes, and clinics.  Inductive loop 

systems transmit an EM signal to hearing aid via a wire that “loops” around a room.  This 

arrangement provides a high signal-to-noise ratio (SNR), whereby the acoustic signal of interest 

can effectively circumvent distance and background noise as it is transmitted electromagnetically 

from the loop to the t-coil.   

While the t-coil offers specific advantages, optimal performance of a t-coil is directly 

influenced by several device characteristics.  First, the strength of the t-coil is based on the 

number of coil turns and overall size; the larger the size of the t-coil, the greater sensitivity it will 

have to detect an EM signal.  Second, the sensitivity, or input-output characteristics of the t-coil 

can provide as much as 20-25 dB less gain than the microphone.  As a result, an internal 

preamplifier is required to improve the sensitivity of the t-coil in order to achieve gain equivalent 

to the microphone (Yanz and Pehringer, 2003).  The t-coil is referred to as “passive” if it does 

not have a preamplifier and “active” if the t-coil is integrated with a preamplifier (Thompson, 

2002; Ross, 2005).  Third, in order for the t-coil to perform optimally, its axis must be oriented 

parallel to the axis of the EM field and should be positioned within the axial region of the field 

(Thompson, 2002; Kozma-Spytek, 2003).  For telephone use, the t-coil would best be oriented 

perpendicular to the face of the hearing aid case (horizontal), but for an inductive loop system 

the t-coil should be oriented parallel (vertical) to the face of the case.   

Of the three aforementioned t-coil characteristics, optimal performance as a function of t-

coil orientation has led to general industry indecision as to the most effective t-coil position for 
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achieving optimal communication via the telephone and the induction loop.  At least one hearing 

aid manufacturer has taken the approach of installing two t-coils with opposing orientations (one 

horizontal and one vertical) to provide quality input for both listening conditions (Sinks and 

Duddy, 2002), but this design has not continued to be implemented. The relatively small size of 

hearing aids paired with the consumer preference for cosmetically appealing hearing aid designs 

are likely to be reasons why hearing aid manufacturers to be resistant to installing two t-coils. 

While researchers are designing a digital multi-axis t-coil that could be immune to the orientation 

issue (Yanz and Pehringer, 2003; Yanz and Preves, 2003), their availability and use does not yet 

appear to have penetrated the hearing aid industry.  As a result, this has left hearing aid 

manufacturers with the decision of positioning the t-coil in one of two positions whereby the end 

result will yield less than desirable performance for either the telephone or inductive loop 

listening situations (Ross, 2005).  They may also elect to compromise and position the t-coil at a 

45˚ angle that may be more desirable, but not optimal, for the telephone and inductive loop.  

Beyond the issue of orientation, t-coils are inherently susceptible to several different 

sources of interference that can negatively influence optimal performance.  In general, when in 

the t-coil setting one may experience interference (typically low-frequency buzzing) from 

unwanted signal sources such as fluorescent lights, video monitors, power lines, and digital 

wireless telephones (cell phones).  This interference is enhanced for any user having an 

automatic t-coil.  The automatic t-coil has a circuit that can “sense” a nearby EM field and 

automatically switch the hearing aid to t-coil mode (Agnew, 2002).  While this eliminates the 

need for the user to manually activate the t-coil, the automatic t-coil can also be accidentally 

activated by these extraneous signals when in close proximity.  Cell phones can also be most 

problematic for t-coils because they use high frequency signals (in the gHz range) that can 
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become amplified by metal and wire of short length (Victorian and Preves, 2004).  Efforts are 

underway for cell phone manufacturers to specify EM interference as well as hearing aid 

manufacturers to specify their immunity to these signals.  For example, American National 

Standards Institute (ANSI) C63.19 (2006) assists hearing aid users and clinicians to identify cell 

phones that are less likely to cause interference (Levitt et al., 2005).  Unfortunately, the 

implementation of standards specific t-coil use has been historically slow and limited.   

For decades, electroacoustic measurement of the t-coil frequency response has received 

substantially less attention than the microphone frequency response (Ross, 2005; Takahashi, 

2005).  In fact, the 1976 ANSI standard (S3.22- 1976) only required a test-field strength of 10 

mA/M and an output measure at only 1000 Hz (Teder, 2003).  Twenty years later, ANSI-1996 

(ANSI S3.22- 1996) mandated that t-coil performance be evaluated with a test-field strength of 

31.6 mA/M. This is accomplished with a test transducer called a telephone magnetic field 

simulator (TMFS) which is a hand-held device designed to generate a 31.6 mA/M EM field, 

simulating the average EM leakage of a conventional telephone.  Furthermore, the high 

frequency average (HFA) (1000, 1600, and 2500 Hz) in sound pressure level of the inductive 

telephone simulator (SPLITS) is compared to the HFA of the microphone response using a 60 

dB SPL input signal with the volume control set at reference test position (RTP) (Teder, 2003).  

Formerly known as the simulated telephone sensitivity (STS) in ANSI S3.22-1996, this 

difference between the microphone HFA and t-coil HFA has recently been renamed the relative 

simulated equivalent telephone sensitivity (RSETS) per ANSI S3.22-2003.  The closer the 

RSETS is to 0 dB, the closer the t-coil frequency response matches the microphone frequency 

response that has been programmed to a validated prescribed target (Teder, 2003). 
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Prescriptive fits are typically based on the microphone frequency response to average 

conversational speech presented at an input level of 65 dB SPL at a distance of one meter.  This 

is conventionally deemed to be an appropriate representation of a “real-life” one-on-one listening 

condition.  There is, however, no accepted protocol for verification of t-coil performance because 

the listening condition is more of a challenge to emulate (Yanz and Pehringer, 2003).  Despite 

the fact that the conventional telephone’s bandwidth ranges from about 300 Hz to 3300 Hz, not 

all telephones are identical in terms of how much EM leakage is released from the handset 

(Kozma-Spytek, 2003; Yanz and Preves, 2003).  This creates an inconvenience whereby the 

hearing aid user must manually adjust the volume control of the hearing aid while in the t-coil 

mode at the beginning of a telephone conversation.  Also, the distance from the telephone 

receiver is only centimeters from the t-coil, which makes the appropriate input level for creating 

a prescribed target even more difficult to identify.   

Furthermore, not all hearing aid t-coil frequency responses are programmable; of those 

that are, not all allow frequency specific adjustment to the gain of the frequency response.  Even 

if clinicians have the ability to program the t-coil frequency response it has not been determined 

whether the t-coil frequency response should be the same as the microphone frequency response 

when the bandwidth of the telephone is narrower than the bandwidth of average conversational 

speech arriving at the microphone (Rodriguez et al, 1993).  Therefore, investigators have made 

an effort in the last several decades to address this issue.   

Previous studies comparing microphone and t-coil sensitivity are inconsistent. For 

example, Sung et al (1974) measured the microphone and t-coil frequency responses using 14 

body-worn and 11 behind-the-ear (BTE) hearing aids in a hearing aid test chamber and sound-

treated room with the volume control full-on.  These investigators concluded that, in general, the 
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t-coil provided greater gain than the microphone, especially in the low frequencies, although they 

found this to be dependent upon the individual hearing aid.  These results conflict with Tannahill 

(1983) who reported less output of the t-coil when compared to microphone sensitivity in both 

the low and high frequencies.  The reported difference between the studies was believed to be 

because Sung et al (1974) used an inductance loop rather than a telephone receiver to transmit 

the signal.   

 In an attempt to clarify this issue and further elaborate on microphone and t-coil 

performance characteristics, Gary Rodriquez and Alice Holmes conducted a series of research 

projects in the 1980s and early 1990s.  Rodriguez et al (1985) explored the possibility that low-

frequency average inputs (500 and 800 Hz) and high-frequency average inputs (1000, 1600, and 

2500 Hz) could have different frequency responses for microphone and t-coil settings.  Thirty 

hearing aids were randomly selected and tested with a 60 dB SPL input and an induction coil 

tester with a test-field strength of 10 mA/M.  At full-on-gain (FOG), findings indicated that the 

microphone coupling produced consistently greater gain than the t-coil coupling for both low and 

high frequency averages.  Therefore, the performance could be noticeably different to the 

individual when changing settings between the two transducers.  These results necessitated 

verification measures to determine the level of gain arriving to the ear in the acoustic and t-coil 

conditions. 

 Rodriguez et al (1991) measured the real-ear insertion response (REIR) for microphone 

and t-coil settings on five normal hearing subjects with 15 hearing aids all set to the reference 

test gain (RTG) position.  An audiometer telephone interface (ATI) designed to match a 

conventional telephone was used under the t-coil condition.  The average gain across the 15 

hearing aids was higher for the microphone condition at all frequencies less than 4500 Hz.  
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Similar to previous findings, these results indicated that switching to the t-coil setting could have 

a negative effect on user performance.   

In another study Rodriguez et al (1993) measured the preferred real-ear aided response 

(REAR) of 30 subjects with sensorineural hearing loss (SNHL) under acoustic and t-coil 

listening conditions using the ATI.  Prior to REAR measures, the users were required to select 

their preference of 12 pre-programmed hearing aid responses in each of the two coupling 

conditions as they listened to a taped passage.  The results suggested that listeners preferred more 

low frequency gain and a flatter frequency response than would be predicted from their hearing 

loss, for both the microphone and t-coil conditions.  This was evident in the comparison of the 

average REAR selected by the patients to the average National Acoustics Laboratory (NAL) 

frequency response that would be prescribed.  The narrower frequency response of the telephone 

could be responsible for this preference.  No coupler measures were provided, but the t-coil 

frequency response was about 5 dB less than the microphone across the frequency response.  

This may have been due to limited output of the t-coil circuitry.  Nevertheless, the user 

preferences for both conditions indicated a desire for increased gain from 250-3000 Hz.  Because 

these aforementioned studies reported that differences exist between these two listening 

conditions in both 2-cc coupler and real ear measures, other investigators chose to analyze how 

different coupling modes would affect user performance in word recognition testing. 

A study by Holmes (1985) reported that microphone and t-coil coupling strategies were 

not significantly different for word recognition concluding that the actual amplified telephone 

represented the main factor in effecting user performance.  Nineteen subjects with bilateral 

SNHL ranging from mild to severe were administered word recognition tests in two conditions; 

the hearing aid microphone setting and the hearing aid t-coil setting.  While overall word 

 10



     Putterman 

recognition scores differed between the two listening conditions, these differences were minimal 

and not statistically significant. Plyler et al (1998) documented similar word recognition 

performance results in a study of acoustic versus EM coupling with in-the-ear (ITE) hearing aids.  

These investigators suspected that telephone performance may be poorer than has been reported 

with BTE hearing aids.  The investigators reported no significant differences in word recognition 

scores between acoustic and EM coupling strategies when users were allowed to adjust the 

volume of the ITE hearing aids in both conditions.  However, neither of these previous two 

studies chose to measure changes in word recognition ability as distance is increased.  

A study by Upfold and Goodair (1997) investigated the impact of noise and distance on 

speech recognition for microphone and t-coil responses.  REAR measures were used to match 

the frequency responses of both transducer modes at 1000 Hz.  Again, an induction loop situated 

under the seat of the subject was used rather than a telephone.  Participants were ten monaurally 

fit BTE users seated at one meter and then four meters from the signal source.  The study 

provides evidence that, unlike the microphone response, the inductive loop to t-coil coupling 

method is capable of maintaining speech intelligibility over a distance of four meters.  Also, 

there was low and high frequency roll-off as was reported in the Tannahill (1983) study.  It is 

also problematic that investigators used an induction loop instead of a telephone receiver or ATI.   

In summary, despite comparisons of the microphone and t-coil conditions using word 

recognition measures that include distance, real ear measures, and 2-cc coupler measures, the 

appropriate fit for the t-coil frequency response remains ambiguous.  Teder (2003) reports that 

there is little evidence addressing what t-coil frequency response condition is most satisfactory 

for “real-life” telephone use.  Specifically, should the t-coil sensitivity be based on the 
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microphone frequency response, and if so, should the overall gain of the t-coil frequency 

response be equal to the overall gain of the microphone frequency response? 

Most clinicians do not consider the role of the overall gain and frequency response of the 

t-coil because they are primarily concerned with matching the microphone response to a valid 

prescriptive target; unfortunately many clinicians fail in this effort as well.  Further, during the 

hearing aid fitting it is probably typical for the clinician to accept the manufacturer default t-coil 

setting.  If the patient then reports poor performance on the telephone, the clinician may suggest 

an amplified telephone or counsel on the importance of correct telephone receiver position.  The 

clinician might also explain there is a poor history of telephone to hearing aid communication, as 

well as poor reliability in the coupling success between and across telephones.  None of these 

strategies, however, take into account that the problem could be an inappropriately programmed 

t-coil.   

Due to the lack of t-coil consideration, little has been published to support the idea that 

the t-coil frequency response should match the microphone frequency response to provide 

optimal performance on the telephone.  Until this data becomes available, however, it seems 

reasonable to assume that the t-coil frequency response should match the microphone frequency 

response.  If the audiologist’s goal were to match both frequency responses, it would be useful to 

know the relative differences that exist between these transducers.  The primary purpose of this 

project was to address differences in the average frequency response between the programmed 

microphone and default t-coil hearing aid settings through 2-cc coupler and real-ear analysis of 

programmed BTE hearing aids.   

Primary effects on the dependent variable (output in dB SPL at 11 discrete frequencies in 

the 2-cc coupler condition when a pure-tone signal was used and 15 discrete frequencies as 
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measured on a dummy ear with real-ear equipment when an ANSI-weighted randomly 

interrupted digital speech signal referred to as “DigiSpeech” was used) include: a) transducer 

type (microphone or t-coil), and b) measurement frequencies (11 and 15 discrete frequencies 

from 200-6300 Hz).  Fewer discrete frequencies (11) were measured across the pure-tone 

frequency response because the test equipment provided less detailed output for standard 2-cc 

coupler analysis.  Further explanation for this is described in the methods section.  Real-ear 

measures were taken on a dummy ear to record frequency responses more representative of the 

amplification that actually arrives at the tympanic membrane of a hearing aid user.  DigiSpeech 

was used instead of the pure-tone signal with the belief that the frequency response would be 

reduced when using DigiSpeech.  This reduction is expected because DigiSpeech negates an 

artifact known as “blooming” (Frye, 2002).  DigiSpeech is also more representative of “real-

world” speech stimuli, and may be more useful in determining the “real-life” frequency response 

of both transducers. Based on these factors, the following null hypotheses were developed for 

both the coupler and real-ear test conditions: 

1. There will be no significant difference in the measured output (dB SPL) of the frequency 

response between microphone and t-coil transducers averaged across 11 (coupler) or 15 

(real-ear) frequencies. 

2. There will be no significant difference in the measured output (dB SPL) between the 11 

(coupler) or 15 (real-ear) frequencies averaged across the two transducers. 

3. There will be no significant difference in measured output (dB SPL) of the two-factor 

interaction of the transducers and frequencies. 
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METHODS 

Real-ear and HA-2 2-cc coupler measures were completed to determine possible 

differences between the programmed microphone and non-programmed default t-coil frequency 

response of BTE hearing aids. The output (in dB SPL) was measured at 15 discrete frequencies 

(200, 300, 400, 500, 600, 800, 1000, 1200, 1600, 2000, 2500, 3200, 4000, 5000, and 6300 Hz) 

for real-ear measures using the DigiSpeech ANSI-weighted speech-shaped noise signal (Frye 

Electronics, Inc.).  This is a speech-weighted signal that is randomly interrupted.  In addition, a 

pure-tone sweep (200-8000 Hz) signal was used to measure the frequency response of the 

programmed microphone and non-programmed default t-coil in the HA-2 2-cc coupler in 

accordance with ANSI S3.22-2003.  In the pure-tone sweep condition, the output (dB SPL) of 

the frequency response was measured at 11 discrete frequencies (200, 400, 500, 800, 1000, 1600, 

2000, 2500, 4000, 5000, and 6300 Hz) due to a limitation in the software of the Frye Fonix 7000 

hearing aid analyzer.  Specifically, the pure-tone condition only allows for output to be measured 

in “graph” form.  Therefore, the measured output of the frequency response for the real-ear 

condition using DigiSpeech could be measured and recorded from the analyzer’s “data” display 

mode (to the nearest tenth of a dB SPL), but the pure-tone frequency output response could only 

be viewed in “graph” mode (Figure 1).  This limited the investigator to a visual examination of 

the measured output (to the nearest dB SPL tick on the ordinate) based on the vertical lines that 

denote the 11 frequencies previously listed.  
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Figure 1: “Data” mode (left) available for the DigiSpeech real-ear and coupler measure 
conditions, and “graph” mode (right), which is the only viewing option available in the pure-tone 
coupler measure condition. 
 

The pure-tone signal was a swept signal presented one specific frequency at a time. 

DigiSpeech is an ANSI speech-weighted composite signal that is randomly interrupted in order 

to test the electroacoustic response of digital hearing aids.  Unlike a pure-tone test, the 

frequencies of DigiSpeech are measured simultaneously and the analyzer individually adjusts the 

amplitude and phase presented at each frequency based on reference microphone placement 

(Frye, 2002) (Figure 2). 

 
Figure 2: A Fast Fourier Transform (FFT) spectrum generated by an ANSI composite signal. 
This spectrum is consistent with the DigiSpeech ANSI weighted signal used to test digital 
hearing aids (Adapted from Frye, In: Valente, 2002). 
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The use of a DigiSpeech signal bypasses an undesirable “blooming” artifact that can occur with 

the pure-tone test (Frye, 2002) (Figure 3).  Blooming (i.e. an excessive low frequency response) 

occurs for hearing aids that use compression because the circuit will focus amplification entirely 

on the input frequency of the sweep signal that is currently being presented to the hearing aid.  

Measuring the electroacoustic performance of hearing aids using DigiSpeech should provide a 

measured frequency response that is more indicative of the “real-world” speech signal.     

 
Figure 3: Two frequency gain responses from a digital hearing aid.  The upper frequency 
response was generated with a pure-tone signal, and the lower frequency response was generated 
with an ANSI composite signal to illustrate the “blooming” artifact evident in the pure-tone 
frequency response (Courtesy of Frye, In: Valente, 2002). 
     

Thirty-nine hearing aids were measured in the real-ear condition and 52 BTE hearing aids 

were measured in the HA-2 2-cc coupler condition.  All hearing aids measured in this study were 

recently returned from repair to the Adult Audiology Clinic in the Center for Advanced Medicine 

at Washington University School of Medicine.  For each hearing aid, the microphone frequency 

response had already been programmed to the NAL-NL1 prescriptive target for the patient’s 

hearing loss based on an input level of 65 dB SPL (Dillon, 1999).  Only Widex brand BTE 

hearing aids were used in this study, and all hearing aids were modern products to the extent that 

the microphone and t-coil programs could be individually selected through the manufacturer’s 

programming software.  
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All measurements were performed using a Fonix 7000 Hearing Aid Analyzer (Frye 

Electronics, Inc.) situated inside a double-walled sound suite absent of EM interference.  Prior to 

analysis, each hearing aid was temporarily programmed via the manufacturer’s NOAH-

integrated software module so that the patient’s programmed microphone and default t-coil 

frequency responses were set to Programs 1 (programmed microphone) and 2 (default t-coil) 

respectively.  The Compass V4.1-V4.4 (Widex) software modules were utilized to make these 

programming changes. 

Real-Ear Measures 

For real-ear measures, a left dummy ear (Frye Electronics, Inc.) mounted on a tripod was 

utilized to emulate the human external auditory meatus (EAM) (Figure 4).  A tiny hole was 

drilled into the anterior face of the silicon block (i.e. 0°azimuth) into the medial portion of the 

EAM to within 5 mm from where it terminates.  A real-ear probe tube designed to connect to the 

real-ear probe microphone was fed through this hole.  Then the tube was permanently affixed so 

that the tube’s tip rested where the bored hole reached the medial EAM.  
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Figure 4: A coronal view of the dummy ear (Frye Electronics, Inc.) mounted on a tripod with a 
probe tube fed through a bored hole and into the medial external auditory meatus (EAM). 
 
An ear hanger that houses the reference and probe microphones was placed on the pinna of the 

dummy ear, and the probe tube was connected to the probe microphone.  The test BTE was 

connected to an earmold fit specifically to the concha of the dummy ear.  Finally, the test BTE 

was positioned on the dummy ear so that the front and rear microphones were level with each 

other on a horizontal plane (Figure 5).  
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Figure 5: A sagittal view of the dummy ear with real-ear apparatus, custom earmold, and test 
behind-the-ear (BTE) hearing aid.  The hearing aid is situated with front and rear hearing aid 
microphones oriented atop the pinna on a horizontal (level) plane.  The reference microphone is 
placed medial to the hearing aid and adjacent to the front microphone.  
 
The dummy ear tripod was always positioned with the dummy ear at an equal height (and 

centered) with respect to the real-ear loudspeaker.  The distance from the opening of the EAM in 

the concha of the dummy ear to the loudspeaker was always 22 inches, consistent with the length 

of a Widex NOAHLink short programming cable (Figure 6). 
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Figure 6: An overhead view of the dummy ear assembly with respect to the real-ear loudspeaker. 
 

Prior to measuring the frequency response of the programmed microphone, the test BTE 

was turned off, the reference and probe microphones were activated and the sound field leveled 

to calibrate the loudspeaker with the reference microphone.  After leveling, the test BTE was 

turned on and set to Program 1 (programmed microphone mode).  The DigiSpeech signal source 

was presented at 70 dB SPL and the REAR was measured.  The programmed microphone REAR 

was visualized by the experimenter in “graph” mode to ensure its stability and then the measured 

REAR was recorded at each of the 15 discrete frequencies by switching the display to “data” 

mode.  To measure the t-coil frequency response, the reference microphone was deactivated and 

a TMFS, specifically the telewand from the FP40 hearing aid analyzer (Frye Electronics, Inc.), 

was used to generate a magnetic drive (56.2 mA/M) approximately equivalent to the acoustic 

drive (70 dB SPL) used to measure the microphone REAR (George Frye, personal 
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communication).  Unlike the telewand provided with Fonix 7000 for coupler measures, the FP40 

telewand is capable of functioning at an appropriate magnetic drive when recording real-ear 

measures are selected on the hearing aid analyzer.  The test BTE was switched to Program 2 

(default t-coil).  A foot switch was utilized to route the DigiSpeech signal through the telewand 

rather than through the loudspeaker.  With the signal turned on, the telewand was manipulated 

adjacent to the hearing aid case until the “sweet spot” (most robust frequency response) was 

observed (Figure 7).  

 
Figure 7: An FP40 telewand (Frye Electronics, Inc.) positioned to transmit the DigiSpeech signal 
to the t-coil of the test BTE for real-ear t-coil frequency response measure. 
 
The “sweet spot” was detected by slowly manipulating the telewand about the hearing aid case 

while observing the maximum output that could be obtained in the analyzer’s “graph” mode 

(bottom graph in Figure 8).  Once the “sweet spot” was detected, the display was again switched 

into “data” mode to document the output at each of the 15 discrete frequencies.  By recording the 
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default t-coil frequency response as Curve 1 and programmed microphone response as Curve 2, 

the hearing aid analyzer automatically calculated the difference in gain between the two 

transducers (top graph in Figure 8).  The investigator calculated the real-ear RSETS value by 

calculating the difference between the HFA (1000, 1600, and 2500 Hz) of the programmed 

microphone and default t-coil outputs. 

 
Figure 8: The “graph” mode view of measured real-ear frequency responses (in dB SPL) of the 
programmed microphone (Curve 2) and default t-coil (Curve 1) of a test BTE hearing aid to a 
DigiSpeech signal presented at 70 dB SPL (bottom graph).  The gain curve (top graph) 
represents the difference (in dB) between the two frequency responses.     
 
Coupler Measures 

For accurate 2-cc coupler measures of the programmed microphone frequency response, 

the coupler test microphone was leveled at the test point of the test box prior to each 

measurement.  The test BTE hearing aid was then connected to a HA-2 coupler by the earhook 

via 25 millimeters of standard #13 tubing with the microphone placed appropriately at the test 

point and facing the right side of the test chamber where the loudspeaker is housed (Figure 9). 
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Figure 9: A BTE hearing aid situated in an open test chamber. The hearing aid’s microphone is 
located at the test point of the chamber and facing the test loudspeaker located inside the 
chamber.  The hearing aid is connected to a HA-2 2-cc coupler that houses the test microphone. 
   
Frequency responses were generated with the hearing aid analyzer via the test chamber 

loudspeaker using the pure-tone sweep signal (Figure 10) and the DigiSpeech signal (Figure 11). 

 
Figure 10: Microphone and t-coil frequency responses generated via ANSI S3.22-2003 using a 
pure-tone sweep. 
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Figure 11: Programmed microphone and default t-coil frequency responses generated with a 
DigiSpeech source signal. 
 
By default, the source input level used for ANSI S3.22-2003 could not equal what was used for 

the real-ear condition. The programmed microphone frequency response had to be generated 

with the source input level at 60 dB SPL when using a pure-tone sweep.  The approximate 

equivalent magnetic drive in the test-field strength of the Fonix 7000 telewand is 31.6 mA/M, 

and this was used to obtain the default t-coil frequency response.  The hearing aid was placed in 

the test chamber with the door closed and sealed, attached to the test microphone with the HA-2 

coupler, and set to Program 1 (microphone mode).  For the default t-coil condition, the hearing 

aid was removed from the test chamber while remaining coupled to the HA-2 coupler, switched 

to Program 2 (t-coil mode), and held upright in the researcher’s hand.  In the other hand, the 

telewand was manipulated adjacent to the hearing aid case until the “sweet spot” was found 

(Figure 12).   
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Figure 12: The Fonix 7000 telewand presents an electromagnetic field to the test BTE t-coil. 
 
The “sweet spot” was detected by observing the maximum output on the Fonix 7000 monitor 

that could be measured according to the analyzer display.  When this occurred, the pure-tone 

sweep was activated to generate the t-coil frequency response.  The analyzer automatically 

calculated the pure-tone RSETS value (in dB) by subtracting the programmed microphone HFA 

(1000, 1600, 2500 Hz) from the default t-coil HFA.  This RSETS value was recorded in addition 

to visually estimating the output at discrete frequencies of both transducers in “graph” mode (as 

was previously described).   

Source levels used for the DigiSpeech 2-cc coupler measures could be presented equally 

to the real-ear values (a 70 dB SPL acoustic drive and 56.2 mA/M magnetic drive).  For the 

programmed microphone frequency response, the hearing aid was switched back to Program 1 

and then placed in the test chamber as it was for the pure-tone test.  After the frequency response 

was visualized in “graph” mode, the output could be measured at each discrete frequency in 

“data” mode (as was done for the real-ear measures).  In the default t-coil condition, the hearing 

aid was again switched to Program 2 and removed from the test chamber, with the experimenter 
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manipulating the telewand to find the “sweet spot” prior to capturing and recording the 

frequency response in “data” mode.  As was found for the real-ear condition, the analyzer cannot 

automatically calculate an RSETS value for DigiSpeech coupler measures, so the RSETS was 

calculated manually by finding the difference in the transducer HFAs.  It was also discovered, 

however, that the analyzer would convert the test signal from an ANSI-weighted to a flat-

weighted signal (Figure 13) whenever t-coil was selected.  This required further microphone and 

t-coil DigiSpeech coupler measures to be made with a flat-weighted signal, and sufficient for 

analysis was not collected in this condition. 

  
Figure 13: An ANSI weighted signal (left) and a flat weighted signal (right) generated by an 
equivalent input level and producing an equivalent overall output. 
 

RESULTS 
 
Coupler Measures 

For 2-cc coupler measures, hearing aid output (dB SPL) was measured using a pure-tone 

sweep (200-8000 Hz in 100 Hz increments) at an input level of 60 dB SPL with the hearing aid 

configured to the programmed microphone memory and at 31.6 mA/M when configured to the 
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default t-coil memory.  Independent variables included A) transducer (microphone and t-coil) 

and B) frequency (11 discrete test frequencies and the HFA).   

Transducer Main Effect 

The mean (± 1 SD) overall output (dB SPL) of the hearing aids measured in the 

programmed microphone memory and default t-coil memory averaged across the 11 test 

frequencies is reported in Figure 14.  The mean overall output for the programmed microphone 

was 77.1 dB SPL (SD = 12.7 dB SPL), whereas the mean overall output for the default t-coil was 

77.0 dB SPL (SD = 13.6 dB SPL).  A mixed-model repeated measures analysis of variance 

(ANOVA) revealed no significant difference between transducers (F=0; df=1,102; p<0.98). 

 

 
Figure 14: Mean 2-cc coupler output (dB SPL) of Widex BTE hearing aids averaged across 11 
discrete frequencies when configured to the programmed microphone and default t-coil 
memories.  Also reported is ±1 SD. 
 
Frequency Main Effect 
 

The mean (± 1 SD) overall output (dB SPL) of the hearing aids measured at 11 discrete 

test frequencies and averaged across the programmed microphone and default t-coil transducers 
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is reported in Figure 15.  A mixed-model repeated measures ANOVA revealed a significant 

overall difference between test frequencies (F=187; df=10,102; p<0.00001). The mean output at 

200 Hz, 400 Hz, and 6300 Hz test frequencies is less than 75 dB SPL, while the mean output at 

800 Hz, 1000 Hz, 1600 Hz, 2000 Hz, 2500 Hz, and 4000 Hz nearly meets or exceeds 80 dB SPL. 

 
Figure 15: Mean 2-cc coupler output (dB SPL) of Widex BTE hearing aids averaged across the 
two transducers at each of the 11 discrete test frequencies.  The HFA is included on the far left.  
Also reported is ±1 SD. 
 
Transducer by Frequency Interaction 

The mean (± 1 SD) output (dB SPL) of the programmed microphone and default t-coil 

memories of the BTE hearing aids were compared at 11 discrete test frequencies as reported in 

Figure 16.  The mean output of the programmed microphone is greater than the mean output of 

the default t-coil at test frequencies from 200 Hz to 800 Hz, whereas the mean output of the 

default t-coil is greater than the mean output of the programmed microphone at test frequencies 

from 1600-6300 Hz and the HFA.   
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A mixed-model repeated measures ANOVA revealed a significant transducer by 

frequency interaction (F=13.0; df=10,102; p<0.0001).  Reported in Figure 17 are post-hoc 

analyses using the Tukey Honestly Significant Differences (Tukey HSD) test.  Statistically 

significant differences (Delta) were present at 200 Hz (Delta=15.2 dB, SD=8.5 dB) and 400 Hz 

(Delta=6.0 dB, SD=7.7 dB) where the t-coil output was greater than the microphone, and at 4000 

Hz (Delta=-5.9 dB, SD=9.6 dB), 5000 Hz (Delta=-5.7 dB, SD=9.1 dB), and 6300 Hz (Delta=-7.4 

dB, SD=9.7) where the microphone output was greater than the t-coil.  A paired t-test comparing 

the average over the HFA frequencies revealed no significant difference between the two 

transducers (p<0.10).  The mean output from 500-2500 Hz were found to be statistically 

equivalent between the two transducers.  

 
 

 
Figure 16: Mean 2-cc coupler output (dB SPL) for the programmed microphone and default t-
coil output for HFA and 11 discrete frequencies for Widex BTE hearing aids using a pure-tone 
sweep of 60 dB SPL (31.6 mA/M for t-coil).  The HFA is included on the far left.  Also reported 
is ±1 SD. 
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Figure 17: Mean difference (delta) in 2-cc coupler output (dB SPL) differences between the 
programmed microphone and default t-coil output for HFA and 11 discrete frequencies for 
Widex BTE hearing aids using a pure-tone sweep of 60 dB SPL (31.6 mA/M for t-coil). *** = 
p≤0.001, ** = p≤0.01, * = p≤0.05.  The HFA is included on the far left.  Also reported is ±1 SD.   
 
Real-Ear Measures 

In the real-ear condition, hearing aid output (dB SPL) was measured by using a 

DigiSpeech ANSI speech shaped composite signal presented at 70 dB SPL when set to the 

programmed microphone memory and at 56.2 mA/M when set to the default t-coil memory.  

Independent variables included A) transducer (microphone and t-coil) and B) frequency (15 

discrete test frequencies).   

Transducer Main Effect 

The mean REAR (dB SPL) in overall output measured in the programmed microphone 

memory and default t-coil memory is reported in Figure 18.  The mean overall output for the 

programmed microphone was 77.8 dB SPL (SD = 12.9 dB SPL), whereas the mean overall 
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output for the default t-coil was 70.0 dB SPL (SD = 16.8 dB SPL). A mixed-model repeated 

measures analysis of variance (ANOVA) revealed a significant difference between transducers 

(F=18.8; df=1,76; p<0.0001). 

 
Figure 18: Mean REAR (dB SPL) for Widex BTE hearing aids averaged across 15 discrete 
frequencies when set to the programmed microphone memory and default t-coil memory.  Also 
reported is ±1 SD. 
 
Frequency Main Effect 
 

The mean (± 1 SD) overall output (dB SPL) of hearing aids measured at 15 discrete test 

frequencies averaged across the programmed microphone and default t-coil transducers is 

reported in Figure 19.  A mixed-model repeated measures ANOVA revealed a significant overall 

difference between test frequencies (F=258; df=14,76; p<0.00001).  The mean output from 200 

Hz to 400 Hz was between 50 dB SPL and 60 dB SPL, the mean output at 500 Hz, 600 Hz, 5000 

Hz, and 6300 Hz was between 60 dB SPL and 72 dB SPL, while the mean output from 800 Hz to 

4000 Hz approached or exceeded 80 dB SPL.  
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Figure 19: Mean REAR (dB SPL) for Widex BTE hearing aids averaged across transducers at 
each of the 15 discrete test frequencies.  The HFA is included on the far left.  Also reported is ±1 
SD. 
 
Transducer by Frequency Interaction 

The mean (± 1 SD) output (dB SPL) of the programmed microphone and default t-coil 

memories of the BTE hearing aids were compared at 15 discrete test frequencies and for the 

HFA as reported in Figure 20.  A mixed-model repeated measures ANOVA revealed a 

significant transducer by frequency interaction (F=31.1; df=14,76; p<0.0001).  Reported in 

Figure 21 are post-hoc analyses using the Tukey HSD test, which revealed that the default t-coil 

output was significantly lower than the programmed microphone output at 200 Hz (Delta=20.9, 

dB, SD=6.4 dB), 300 Hz (Delta=17.5 dB, SD=6.5 dB), 400 Hz (Delta=12.6 dB, SD=7.1 dB), 500 

Hz (Delta=9.7 dB, SD =5.7 dB), 600 Hz (Delta=7.4 dB, SD=5.0 dB), 1000 Hz (Delta=5.0 dB, 

SD=3.4 dB), 1200 Hz (Delta=5.7 dB, SD=3.7 dB), 1600 Hz (Delta=4.9 dB, SD=4.0 dB), 2000 

Hz (Delta=6.6 dB, SD=4.0 dB), 3200 Hz (Delta=7.7 dB, SD=4.5 dB), and 4000 Hz (Delta=6.0 

dB, SD=5.4 dB).  The mean output at 800, 5000, and 6300 Hz test frequencies was found to be 
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statistically equivalent between the two transducers.  A paired t-test comparing the average over 

the HFA frequencies revealed significant difference between the two transducers (p<0.0001).  

 
Figure 20: Mean REAR (dB SPL) of the programmed microphone and default t-coil output for 
15 discrete test frequencies for Widex BTE hearing aids using a DigiSpeech ANSI speech 
shaped composite signal of 70 dB SPL (56.2 mA/M for the t-coil condition).  The HFA is 
included on the far left.  Also reported is ±1 SD. 
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Figure 21: Mean difference (delta) in REAR (dB SPL) differences between the programmed 
microphone and default t-coil output for 11 discrete frequencies for Widex BTE hearing aids 
using a DigiSpeech ANSI speech shaped composite signal of 70 dB SPL (56.2 mA/M for the t-
coil condition). *** = p≤0.001, ** = p≤0.01, * = p≤0.05.  The HFA is included on the far left.  
Also reported is ± 1 SD. 
   

DISCUSSION AND CONCLUSION 

Coupler Measures  

Results from this study reveal no significant difference in the overall output (dB SPL) of 

the programmed microphone and default t-coil response of Widex BTE hearing aids measured in 

a 2-cc coupler using a pure-tone sweep.  Note, however, that post-hoc statistically significant 

frequency-specific differences were found at 200, 400, 4000, 5000, and 6300 Hz.  Figure 16 

illustrates how this is possible despite the lack of significant difference in overall output between 

the transducers, since the mean microphone output is greater in the low frequencies (200 and 400 

Hz), yet the mean t-coil output is greater in the high frequencies (4000, 5000, and 6300 Hz).  

Thus the low and high frequency differences between the two transducers negate each other 

when the overall output of each transducer is calculated.  
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The relationship between the mean programmed microphone and default t-coil frequency 

response shown in Figure 16 is remarkably similar to single hearing aid data (Figure 22) from a 

publication by Ross (2006), who suggested that a t-coil with a preamplifier could allow the t-coil 

frequency response to nearly match the microphone frequency response.   

 
Figure 22: The frequency response of the microphone and t-coil from an individual hearing aid 
(adapted from Ross, M. (2006) with the permission of The Hearing Journal and its publisher, 
Lippincott Williams & Wilkins) 
 
Consistent with Figure 16, Figure 22 demonstrates some reduction in the t-coil frequency 

response in the low frequencies (and an increase in the high frequencies) when compared to the 

programmed microphone frequency response.  Recall that a typical telephone bandwidth is 300 

Hz to 3300 Hz (Yanz and Preves, 2003).  Importantly, when the telephone bandwidth is taken 

into consideration then the only significant differences reported from coupler results influential 

to telephone communication are the low frequency differences (specifically 200 to 400 Hz), 
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where the mean default t-coil output is less than the mean programmed microphone output by 6 

dB.  While the t-coil response was also 3.9 dB lower at 500 Hz, this was not found to be a 

significant difference.  A reasonable question to ask is whether this magnitude of low frequency 

attenuation of the t-coil frequency response can be problematic for the listener. 

 Historically, it has been suggested that low frequencies should not be emphasized in the 

t-coil position because the t-coil can be sensitive to low frequency interference (i.e. EM noise), 

which is then amplified in conjunction with the signal of interest (Ross, 2006).  Without 

amplifying the low frequencies, however, patients often complain that the t-coil fails to provide 

sufficient loudness for telephone communication.  In addition, low frequency information below 

300 Hz has already been removed from the telephone transmission.  If the hearing aid user is 

fortunate to be fit with hearing aids allowing manipulation of the gain in the t-coil setting via a 

volume control, a hearing-impaired patient still remains inconvenienced by the need to increase 

the volume during telephone conversation.  Ideally, the transition from the microphone to the t-

coil position should be seamless.  Moreover, much of the concern related to amplifying the low 

frequencies in the t-coil position may be reduced in part by the development of commercially 

available far-field cancelling (FFC) t-coils (Marshall, 2005).  If FFC t-coils are incorporated into 

new hearing aids, then extraneous EM signals that are not in the near field (i.e. within inches of 

the t-coil) of the hearing aid will no longer contribute to interference of the low frequencies.   

Real-Ear Measures 

The other segment of this study compared the programmed microphone frequency 

response to the default t-coil frequency response in a real-ear condition using a modulated 

composite speech shaped signal (DigiSpeech).  Measuring t-coil performance using real-ear is 

not novel.  Grimes and Mueller (1991) proposed a real-ear measurement protocol for t-coil 
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verification nearly twenty years ago.  In their study, a speech-shaped signal was directed to one 

telephone handset, and this signal was delivered to a second telephone handset with the receiver 

held to the casing of the hearing aid that was fit to the ear.  The experimental design required to 

conduct t-coil real-ear measurements in this manner, however, is not a simple or convenient 

approach for audiologists to undertake.  Regardless, the fact remains that real-ear measurement 

of the t-coil frequency response has not evolved to become conventional practice for clinicians. 

In the present study, the frequency response of the default t-coil was measured in a real-

ear condition by using a TMFS (telewand) to present the EM signal to the hearing aid situated on 

the ear rather than using a series of telephones as described by Grimes and Mueller (1991).  This 

method of real-ear measurement could be performed quickly and easily by any clinician with a 

Fonix 7000 (Frye Electronics, Inc.) and the FP40 telewand, which would need to be provided as 

a supplement to the hearing aid analyzer.  Importantly, the results from the real-ear measures of 

this study report a greater mean difference between the microphone and t-coil frequency 

response than was reported for the coupler measures using a pure-tone signal. 

Most notably, unlike the coupler measures, there was a statistically significant greater 

overall output of the mean programmed microphone frequency response when compared to the 

mean default t-coil frequency response.  Furthermore, there were post-hoc statistically significant 

differences at almost all specific test frequencies with real-ear measurements, where the 

programmed microphone output was greater than mean default t-coil output.  Unlike the coupler 

results, these frequency-specific differences were within the frequency bandwidth of 300 Hz to 

3300 Hz that is transmitted by a conventional telephone.  In fact, the only test frequencies where 

a significant difference was not present were 800 Hz, 5000 Hz, and 6300 Hz, and the latter two 

frequencies lie outside the telephone frequency bandwidth.    
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As a result, the author is left to speculate as to why the results in the coupler and real-ear 

measures were not similar.  Due to an inability to use equivalent measurement conditions for the 

coupler and real-ear measures (i.e. telewand, input signal, and input signal strength), a direct 

statistical comparison could not be drawn between the coupler and real-ear measurement 

conditions without qualifying the clinical utility of the data.  The difference, however, between 

the microphone and t-coil frequency response between the coupler and real-ear segments is 

undeniable and cannot be overlooked.  There are several potential contributing factors to explain 

the reported difference between the coupler and real-ear test measures.  

One potential factor is the difference in telewands (e.g. the Fonix 7000 TMFS and FP40 

TMFS) used to the t-coil frequency response in each test condition.  As mentioned previously, 

the FP40 TMFS is not typically supplied with the Fonix 7000, but was necessary in order to 

generate an EM signal equivalent to the real-ear loudspeaker.  The FP40 telewand was 

recommended by George Frye (Frye Electronics, Inc.) to be used in conjunction with a 

footswitch in the real-ear condition.  According to Frye, the EM input signal from the FP40 

telewand during t-coil measurements will be equivalent to a 70 dB SPL input signal presented 

through the real-ear loudspeaker for microphone measurements.  The footswitch was used to 

divert the input signal to the FP40 telewand instead of taking the typical path through the real-ear 

loudspeaker.  This experimental design, therefore, does not allow the experimenter to view the 

monitor to be sure that the telewand input signal (in mA/M) is equivalent to the loudspeaker 

input (in dB SPL) as was possible in the coupler test condition.  

A second potential contributing factor is that the swept pure-tone signal was treated 

differently by hearing aid signal processing from the transition from EM signal and to an 

acoustic signal, whereas the composite speech shaped signal was not.  It is this author’s opinion 
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that this factor is more plausible than the differences in the type of telewand used between the 

coupler and real-ear measures in the study.  A detailed description of what specifically occurs 

during the signal processing within a hearing aid is not always readily made available to 

clinicians.  In fact, hearing aid manufacturers tend to withhold much of this information as they 

elect to classify it as proprietary.  The hearing aid manufacturer does, however, inform clinicians 

that there are these proprietary algorithms at work in the hearing aid.  These are features 

typically referred to as “noise reduction”, “feedback suppression”, “ adaptive directionality”, and 

“channel-specific compression” to name a few.   

To provide an example of how one feature might influence the integrity of an input 

signal, consider that the composite digital speech signal in this study was randomly interrupted 

and was presented until the real-ear analyzer successfully recorded an output signal.  The input 

signal was presented in this manner with the expectation that any fast-acting “noise reduction” 

algorithm in the hearing aid signal processing would not be activated and thereby reduce any 

gain supplied to the input signal by the hearing aid amplifier.  While it may be just as likely that 

signal processing will influence the input signal when using the hearing aid microphones as well 

as when using the t-coil, it remains unclear whether this influence is the same when the signal 

processing reads to the EM input signal.   

According to Widex, the default t-coil should undergo the same signal processing as the 

programmed microphone response (master program), but with a few exceptions.  For example, 

“feedback management” may not be active and the EM input may be treated as an 

“omnidirectional” signal (i.e. input is not altered depending on which transducer receives it, as 

can occur with dual microphones), while “noise reduction” and “channel-specific gain 

assignment” should be active for both the t-coil and the master program (Widex, personal 
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communication).  Hearing aids used in the present study represent only one hearing aid 

manufacturer (Widex), although several Widex models were analyzed.  Appendix A provides 

information on all hearing aid models and associated hearing aid features used in this study, and 

Appendix B describes the relevant signal processing features for each model utilized during this 

study.  In addition, the mean microphone and t-coil output by frequency for each hearing aid 

model is represented in both Appendix C (coupler condition) and Appendix D (real-ear 

condition).            

Support for the suggestion that differences in signal processing between microphone and 

t-coil modes may be reacting differently to the randomly interrupted digital speech input signal 

during the t-coil real-ear measures is due to preliminary data that was collected in a 2-cc coupler 

condition in which an interrupted speech shaped signal with flat-weighting was used in lieu of 

the pure-tone sweep signal.  Initial findings in this condition suggest a relationship between the 

programmed microphone and default t-coil output that is similar to the real-ear condition, not the 

pure-tone coupler condition, where the mean programmed microphone frequency response is 

higher than the mean default t-coil frequency response.  An example from this data is provided 

later in the discussion under “future research”. 

T-coil Applications and Solutions 

In MarketTrak VIII (Kochkin, 2010), consumers were asked to rate 19 different listening 

situations as to how “critical” they are as a consumer need.  At 64%, telephone communication 

was rated the third most important, behind only one-on-one (75%) and small group (65%) 

listening situations.  As it has for decades, MarketTrak continues to highlight the importance of 

telephone communication for hearing aid users, which is important to keep in my mind 

considering how much evolution is currently taking place in telephone technology.  The 
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emergence of novel digital communication technology has created additional obstacles for 

hearing aid user success when using the telephone.  The ability to communicate on a telephone 

when away from home or business has clearly led to increased cell phone use in the United 

States, so much so that it is one of many nations now close to 100% prevalence (Kundi, 2009).  

Because cell phones are considered an important daily convenience to many individuals, 

including those with hearing impairments, the Federal Communications Commission (FCC) 

declared in 2003 that wireless carriers cannot be exempt from the hearing aid compatibility 

(HAC) act of 1988, and therefore must provide cell phone technology that is hearing aid 

compatible (Victorian and Preves, 2004).   

A compatibility issue exists because wireless transmissions sent by cell phones are 

capable of generating interference in hearing aids that is often audible to the hearing aid user 

(Levitt et al., 2005).  According to Levitt and colleagues, high frequency transmissions in the 

gigahertz (gHz) range utilized by cell phone carriers can make any short piece of metal, such as 

those found in hearing aids, a potential antenna that is also capable of receiving the wireless 

transmission.  The high frequency transmission from the cell phone carrier is not in of itself 

audible to the hearing aid user as it is well outside the frequency range of audibility, but the high 

frequency signal is also amplitude modulated at a rate that is within the frequency range of 

audibility.  This modulation rate in the carrier signal results in the interference perceived by the 

hearing aid user, typically reported as a low frequency buzz.  For t-coil users, additional EM 

interference is generated by multiple sources inside the cell phone, including the internal 

circuitry, visual display, battery, and key backlighting (Preves, 2003). 

Studies of cell phone interference such as one by Levitt et al (2005) where hearing aid 

users rated the level of signal-to-interference ratio (SIR) from cell phones as measured in a real-
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ear condition, has helped to establish a rating system for cell phone HAC that is determined by 

the ANSI C63.19 Test and Measurement Standard.  According to the Alliance for 

Telecommunications Industry Solutions (ATIS) as published in Audiology Today (2005), by 

September 2005, the FCC required that at least four models from every cell phone manufacturer 

must have either a “good” (M3) or “excellent” (M4) rating for interference.  The “M” denotes 

that the SIR is only measured in the hearing aid microphone setting.  Fortunately, by September 

2006 cell phone manufacturers were also required to have at least two commercially available 

products with “good” (T3) or “excellent” (T4) ratings in the t-coil mode.  As cell phones become 

more frequently utilized than landline telephones, hearing aid users purchasing cell phones 

should seek products with M4/T4 ratings.  Importantly, note that the focus of the standard is 

solely on minimizing unwanted interference and therefore has no bearing on the amount of gain 

or shaping of the frequency response of the intended signal that the t-coil mode provides to the 

hearing aid user.     

The t-coil provides value for the hearing aid user that is beyond just communication on 

the telephone.  In fact, the t-coil allows coupling that a hearing aid user needs to take advantage 

of several types of hearing assistance technology (HAT) that can provide invaluable benefit 

beyond the hearing aids themselves.  Some examples of HAT include vibratory, flashing and/or 

amplified alarm clocks and telephones, as well as FM, infrared, and induction loop 

communication systems (Ross, 2004).  Unfortunately, Ross (2004) describes a recent study with 

several colleagues in which they found that only 31% of 942 hearing aid users surveyed 

recollected being informed about HAT.  Clinicians or hearing aid users should not overlook 

HAT.  HAT may play an important supplemental role to hearing aids in improving quality of 

life, including the possibility of improved speech recognition in noise.  
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The t-coil is the required transducer if the hearing aid user is using inductive HAT such 

as an induction loop for a room or neck-loop worn around the neck.  Public and private facilities 

such as those previously listed in the introduction may have rooms with induction loops 

installed, allowing hearing aid users to hear speech directed into a microphone and transmitted 

through the induction loop EM signal instead of straining to hear the voice from across the 

distance of the room.  Additionally, hearing aid manufacturers currently provide technology 

whereby portable music devices, computers, TVs, cell phones, and conventional telephones with 

BluetoothTM technology can wirelessly stream their signals to a unit worn around the neck with an 

induction loop.  This unit then relays the signal to the hearing through the induction loop EM 

field and t-coil(s).   

An obvious advantage to inductive HAT when compared to infrared or FM technology is 

that once a room or neck is looped, the hearing aid user requires no additional accessories as the 

t-coil is already incorporated into the hearing aids (Ross, 2006).  Ross (2006) proposed to change 

the name “telecoil” to “audiocoil”, a label that is more representative of this versatile antenna.  

Because t-coils have applications that extend beyond conventional telephone communication, it 

follows that there is an even greater responsibility on the part of clinicians to begin to consider 

how to appropriately program the t-coil mode.  Advances in t-coil technology will be crucial as 

many current limitations can diminish the ability of the t-coil to transfer a clear and sufficiently 

amplified signal to the hearing aid user.  As the demand for miniaturization continues to decrease 

the size of hearing aids, it remains the manufacturer’s responsibility to continue to accommodate 

the t-coil inside the hearing aid for an effective transduction of the incoming EM signal.  

Solutions to some of the problems mentioned in the introduction of the present study, such as t-

coil size (Kenney and Kotecki, 2007), orientation (Yanz and Preves, 2003), EM interference 
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(Yanz and Preves, 2003), and telephone EM leakage strength (Yanz and Pehringer, 2003) are 

currently underway. 

One particular t-coil research design under current investigation appears to actually 

improve t-coil transduction performance, while simultaneously reducing the overall size of the t-

coil (Kenney & Kotecki, 2007).  This is accomplished, in part, by replacing the permeable core 

inherent to currently available commercial t-coils with a magnetic core.  This allows for a 

smaller and therefore more efficient construction of the t-coil in a three-dimensional space, 

where an optimal number of turns in the copper wire is still achieved.   

Another advancement is the previously mentioned FFC t-coil (Marshall, 2005).  This 

technology is apparently capable of preventing the induction of EM leakage whose source is not 

within close proximity to the hearing aid user.  With the elimination of these extraneous and 

unwanted EM signals, there is greater potential for minimal low frequency interference while 

using the t-coil on the telephone.  

An additional recent development in hearing aid technology now allows bilateral hearing 

aid users to hear the signal received by the t-coil in one hearing aid to be delivered to both 

hearing aids (Phonak’s “DuoPhone”).  Regardless of which hearing aid the telephone handset is 

held to, that hearing aid can transmit the signal wirelessly to the other hearing aid to allow for 

bilateral listening on the telephone.  To date, it does not appear that there have been any research 

studies on the efficacy and/or effectiveness of this novel technology.  

Despite advancements in t-coil design and flexibility, t-coil utilization is not always 

straightforward for the clinician.  For example, not all manufacturers allow the same flexibility 

of gain manipulation in the hearing aid t-coil program.  Some manufacturers restrict the 

audiologist by only allowing the ability to increase and decrease the overall gain of the telecoil, 
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but the shape of the frequency response remains fixed (e.g., Widex).  Specifically, the extent to 

which the t-coil gain can be programmed by the audiologist can vary within the product line 

available from a single manufacturer.  For example, some Widex products (e.g., Mind and Inteo) 

allow the clinician to pair the t-coil frequency response to an acoustic program, whereby 

adjusting the frequency response of the acoustic setting will be emulated in the t-coil program.  

Some manufacturers, however, allow audiologists to increase and decrease gain across the 

frequency response of the hearing aid similarly to any of the microphone programs (e.g., 

Phonak). 

Future Research 

Additional data was gathered over the course of this research project from Phonak BTE 

with the intent of determining if any differences in the relationship of the default t-coil and 

programmed microphone frequency response exist between manufacturers.  Unfortunately, only 

a limited number of Phonak products were available for measurement.  The trend in the data 

from Phonak hearing aids suggests that the default t-coil frequency response not only matches 

the programmed microphone frequency response in the pure-tone coupler test condition as 

Widex products do, but in some cases exceeds the microphone output.  There also appears to be 

less disparity between the transducers in the real-ear condition, although there is not substantial 

data to perform statistical analyses to determine if any significant differences exist. 

 In addition to the consideration of Phonak hearing aids, data from all of the hearing aids 

used in this study were also collected in a 2-cc coupler condition, but using the digital speech 

signal presented at 70 dB SPL.  Unfortunately, unbeknownst to the investigator, much of the 

initial data collected from the programmed microphone setting was obtained using an ANSI 

weighted DigiSpeech signal, but the Fonix 7000 automatically switches to a flat weighted signal 

 45



     Putterman 

when testing the t-coil.  Upon consulting Frye Electronics, Inc. it was determined that the Fonix 

7000 limits the user to using a flat-weighted signal when measuring t-coil output in the coupler.  

Therefore, additional data will need to be collected in the 2-cc coupler DigiSpeech condition 

with both an ANSI-weighted and a flat-weighted speech signal when measuring the microphone 

frequency response (Figure 23). 

 

 
Figure 23: Frequency responses (in dB SPL) of a hearing aid measured in a 2-cc coupler using a 
DigiSpeech signal.  The programmed microphone frequency response is measured with an ANSI 
weighted DigiSpeech signal (Curve 1) and flat weighted DigiSpeech signal (Curve 2) at 70 dB 
SPL.  The default t-coil frequency response is measured with a flat weighted DigiSpeech signal 
(Curve 3) presented through the telewand at 56.2 mA/M. 
 
 Although there is less measured output in the low frequencies measured with a flat 

weighted DigiSpeech signal, there is a greater output than the ANSI weighted signal in the high 

frequencies.  Note that the root mean square (RMS) output for both programmed microphone 

frequency responses (Curves 1 and 2) are actually identical (108.7 dB SPL), regardless of which 

weighting is used.  Nevertheless, because the same flat weighted signal is used to measure both 
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transducers, a direct comparison in any difference in the measured frequency response can be 

seen.  Figure 21 is representative of much of the data collected thus far from other hearing aids, 

indicating that this condition may eventually be more reflective of the data obtained in the real-

ear condition.  Specifically, when using a flat weighted DigiSpeech signal in the coupler 

condition the t-coil frequency response appears to have a lower overall output compared to the 

programmed microphone frequency response.  For the hearing aid measured in Figure 21, the 

programmed microphone output is greater than the default t-coil response by approximately 20 

dB at 200 Hz, 15 dB at 250 Hz, 8 dB at 500 Hz, and 4 dB at 1000 Hz. 

Conclusion 

There is a disparity in the results between the real-ear and coupler test conditions utilized 

in this study, and further research is required to determine why this difference is present.  Data 

requiring further collection in a coupler condition using the flat-weighted digital speech signal 

may provide some evidence to demonstrate whether the type of signal is responsible for the 

differences between the microphone and t-coil frequency responses.  If this test condition proves 

to provide similar results to those obtained in the real-ear test condition, then there is additional 

evidence to suggest that a comparison of the microphone and t-coil frequency response using a 

pure-tone sweep signal could be flawed.  Because, however, results from this study are from 

hearing aids tested from one manufacturer alone, the study results cannot be extrapolated to all 

hearing aids currently in use.  

The purpose of this research study was to determine whether the manufacturer’s default t-

coil frequency response matches the programmed microphone frequency response in current 

BTE hearing aids, and analyses of microphone and t-coil frequency responses were performed in 

a 2-cc coupler measurement condition and a real-ear measurement condition.  While the results 
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reported here compare the default t-coil and programmed microphone output, these findings are a 

preliminary contribution to the question of how to program the t-coil frequency response for 

hearing aid users to successfully communicate on the telephone.  This may require a follow-up 

study of speech recognition and perceived benefit or satisfaction in the t-coil setting of hearing 

aid users during telephone listening when the frequency response provided by the two 

transducers are and are not equivalent. 

Prior reports comparing the word recognition ability of hearing aid users with a 

microphone versus a t-coil coupling strategy on the telephone found no significant differences, 

despite differences in the frequency responses of the transducers (Plyler et al, 1998; Holmes, 

1985).  These are dated studies, however, and there have since been changes to measurement 

technology, t-coil technology, speech recognition measurement, and hearing aid technology (i.e. 

digital signal and multichannel processing).  It may be useful in a future endeavor to compare 

word recognition abilities on the telephone between t-coil settings where the frequency response 

is less than, equivalent to, and greater than the programmed microphone frequency response.  

The experimenter and participants should also be double blinded to the test conditions, and a 

questionnaire could also be administered asking the participants to provide feedback as to which 

listening condition was preferred. 

Most clinicians are aware of patient reports that speech on the telephone when using a t-

coil program sounds softer than everyday speech with their microphone program, but they likely 

assume that this difference is due to a weak EM signal from the patient’s telephone handset, or 

improper alignment of the telephone receiver to the hearing aid casing.  Currently, t-coil 

sensitivity is measured using ANSI-2003.  This standard uses a pure-tone sweep at 31.6 mA/M 

and measured in a 2-cc coupler.  Pure-tone coupler results from this study revealed little 
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difference in measured between programmed microphone and default t-coil output.  This finding 

does not appear to agree with patient reports of reduced volume when using the t-coil program 

on the telephone.  When measurements were performed in the real-ear condition using the 

composite digital speech signal, however, there were significant differences in the reported 

output between the programmed microphone and default t-coil where the mean output for the t-

coil was significantly lower than the mean output for the programmed microphone at 200, 300, 

400, 500, 600, 1000, 1200, 1600, 2000, 2500, 3200, and 4000 Hz.  These results appear to be in 

better agreement with patient reports.  Therefore, one of the conclusions of the study is the 

suggestion that great face validity (i.e. better agreement between patient reports and objective 

measures) may be obtained if it were possible to have access to a speech composite signal when 

measuring t-coil performance to complement the already existing pure-tone sweep.   

It is assumed that most audiologists do not routinely measure t-coil performance to 

ANSI-2003 and simply program the hearing aid with the default t-coil setting.  Audiologists need 

an accurate and reliable method (procedure) using a telewand to measure the t-coil frequency 

response in the coupler with a speech-weighted signal similar to how audiologists measured the 

microphone frequency response with ANSI-1992.  This procedure must also ensure that the level 

of the speech-weighted input signal is equivalent to the pure-tone input signal via the telewand 

that is currently possible with ANSI-2003.  Once this is available, audiologists could make 

quick, reliable, and accurate measurements of the microphone and t-coil using the same coupler 

(2-cc) with signals (pure-tone and speech-weighted noise) at the same input level.  Then, if 

differences are present they will be related to the transducer (microphone and t-coil), and not the 

coupler (2-cc and real-ear), input transducer (loudspeaker and telewand), or input level (pure-

tone and speech-weighted signals). 
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Based on the results of this study for the coupler condition, the following conclusions can 

be drawn based on the original hypotheses: 

1. There was no significant difference in the measured output (dB SPL) of the frequency 

response between microphone and t-coil transducers averaged across 11 frequencies. 

2. There was a significant difference in the measured output (dB SPL) between the 11 

discrete frequencies averaged across the two transducers, which was expected due 

individual prescriptive gain targets by frequency. 

3. There was a significant difference in measured output (dB SPL) of the two-factor 

interaction of the transducers and several discrete test frequencies, where the 

programmed microphone output was significantly higher than the default t-coil output at 

200 and 400 Hz, and the opposite was true of the transducer relationship at 4000, 5000, 

and 6300 Hz. 

Based on the results of this study for the real-ear condition, the following conclusions can 

be drawn based on the original hypotheses: 

1. There was a significant difference in the measured output (dB SPL) of the frequency 

response between microphone and t-coil transducers averaged across 15 frequencies. 

2. There was a significant difference in the measured output (dB SPL) between the 15 

discrete frequencies averaged across the two transducers, which was expected due 

individual prescriptive gain targets by frequency. 

3. There was a significant difference in measured output (dB SPL) of the two-factor 

interaction of the transducers and most discrete test frequencies, where the programmed 

microphone output was significantly higher than the default t-coil output at 200, 300, 

400, 500, 600, 1000, 1200, 1600, 2000, 2500, 3200, and 4000 Hz. 
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APPENDIX A 
 

Hearing aid make and models measured in each study condition 
 

         Coupler Condition            Real Ear Condition  
Make Model N  Make Model N 
Widex Flash-19 1  Widex Flash-19 1 
Widex Senso Diva-19M 5  Widex Senso Diva-19M 5 
Widex Senso Diva-9M 18  Widex Senso Diva-9M 13
Widex Senso Diva-9Mè 3  Widex Senso Diva-9Mè 3 
Widex Inteo-19 7  Widex Inteo-19 5 
Widex Inteo-9 14  Widex Inteo-9 8 
Widex Inteo-9è 1  Widex Inteo-9è 1 
Widex Mind4-19 1  Widex Mind4-19 1 
Widex Mind4-9 2  Widex Mind4-9 2 
Total  52  Total  39
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APPENDIX B 
 

Processing features of hearing aids measured in this study 
 

Feature Mind 440 Inteo Diva Flash 
Processor: Dual DSP ISP ISP ISP 
Channels: 15 15 15 5 
EIDR: 107 dB SPL 107 dB SPL 107 dB SPL 107 dB SPL 
MPO Control: Yes Yes Yes Yes 

AOC On: Broadband and 
Narrowband Broadband Broadband Broadband 

AOC Off: Broadband  
No 

Compression 
Limiting 

No 
Compression 

Limiting 

No 
Compression 

Limiting 

Directional 
Microphones: 

15 Channel, HD 
Locator, Fully 

Adaptive 

15 Channel, 
HD Locator, 

Fully Adaptive

15 Channel, 
Diva Locator, 

Fully 
Adaptive 

Broadband, 
Flash 

Locator, 
Fully 

Adaptive 

Noise 
Reduction: 

Off, Classic, 
Minimal, 
Enhanced, 
Comfort 

Off, Classic, 
Minimal, 
Enhanced, 
Comfort 

Off, Classic, 
Minimal, 
Enhanced 

Off, Classic, 
Minimal, 
Enhanced 

Speech 
Enhancer: Yes Yes No No 

Feedback 
Management: 

Multi-Directional 
Active Feedback 

Canceling 

Multi-
Directional 

Active 
Feedback 
Canceling 

Active 
Feedback 
Canceling 

Active 
Feedback 
Canceling 

Clearband: Yes (M Model 
Only) No No No 

DSP= Digital Signal Processing 
ISP= Integrated Signal Processing 
EIDR= Extended Input Dynamic Range 
MPO= Maximum Power Output 
AOC= Automatic Outout Control 
HD= High Definition 
Speech Enhancer= Noise reduction that detects and separates speech from noise 
Clearband= extended bandwidth (beyond 10 kHz) 
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APPENDIX C 
 

Mean transducer frequency responses from the coupler condition by hearing aid model 
(Error bars are ±1 SD) 
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APPENDIX D 
 

Mean transducer frequency responses from the real-ear condition by hearing aid model 
(Error bars are ±1 SD) 
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