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TITLE Spontaneous otoacoustic emissions in a chinchilla:
audiometric correlates as seen in audiogram microstructure

Introduction

Several reports in the last decade have detailed the incidence
and activity of spontaneous otoacoustic emissions (SOAEs) as
measured in the sealed ear canal. These emissions have been
generally described as narrow—band or tonal, occurring mainly in
the 1-2 kHz region, up to 20 dB SPL, continuous, and "finger-
printlike” in terms of their stability and uniqueness for each
ear (38, 13, 32, 2, 28, 29, 23, 3). SOAEs are seldom perceived
by the subjects and have not been shown to be correlated to
tinnitus (31, 1). Experimental evidence of spontaneous, as well
as of the related evoked and synchronized, otoacoustic emissions
indicates that they result from an auditory transducer in the
cochlea that functions as a feedback mechanism (18, 38). These
findings have helped spur along a major change in the thought
regarding the cochlea's action in processing sound (see 11 and 22

for background).

While studies have shown.that SOAEs are common in humans, the
same is not true for all animal species (36, 38, 25, 21). 1In
their work with chinchillas, Zurek and Clark (1981) found two

SOAEs in animals only after exposure to high-intensity noise.

From this, they hypothesized that SOAEs may be related to
cochlear damage. Thus, spontaneous otoacoustic emissions could
prove to be useful in providing a noninvasive means of learning

more about cochlear function.



Another phenomenon possibly related to cochlear irregularities is
a rippling seen in audiogram microstructure, i.e. thresholds
obtained at small frequency intervals. These bidirectional
changes in sensitivity as a function of small changes in
frequency were first noted by Elliot (1958), who described them
as peaks and valleys (sensitivity minima and maxima, respectively)
that occurred mainly under 2 kHz and that were of a unique and
consistent pattern for a given ear. This has since been
correlated by several workers (30, 19, 33, 35, 10, 26, 20). Kemp
(1979) and others have commented on the correlation between
patterns in audiogram microstructure and the presence of SOAEs in
humans. It may be that both phenomena arise from a disruption in

the same active cochlear mechanism.

Our aim in this study is to evaluate the audiogram microstructure
of a chinchilla with a documented spontaneous otoacoustic
emission. This chinchilla presents a unique opportunity to
examine relationships between acoustical and audiometric data in
an organism whose environment and exposure to noise are well
controlled, and, at some point in the future, to complete this
with histological findings. To our knowledge no other fine-

structure audiometric data have been obtained from a chinchilla.




METHODS

Subject

The subject for this experiment was chinchilla No. 184, who was
born and raised in a sound-shielded laboratory colony (5). The
animal was rendered functionally monaural by removal of the
malleus and incus from its left ear (9). Prior to noise

exposure, no otoacoustic emission was detected in the test (right)
ear. The chinchilla was subsequently exposed to two 9-day

durations of 0.5 kHz octave band noise at 95 dB SPL.

SOAE Recording

On January 25, 1985, approximately one month following the second
noise exposure, the animal was prepared for acoustic search (8).
Anesthesia (45 mg/kg sodium pentobarbitol injected intraperitone-
ally) was administered and a Knowles EA 1842 microphone was
attached to a #7 Grason-Stadler ear probe at the distal end of

one of three tubes was sealed in the chinchilla's right ear canal.
This probe assembly was connected to a Hewlett—-Packard 358 A sweep
frequency Wave é&nalyzer. Following insertion, a 4 Hz band filter

was swept across the frequency spectrum.

An SOAE was detected at 2150 Hz at a level of approximately 10 dB

SPL. In a quiet environment, a normal-hearing listener could hear




this sound by listening at the animal's ear canal. Explorations
over the next several months showed that the SOAE had increased
somewhat in frequency, staying around 2200 Hz. At the present

time the emission is still audible in a quiet environment.

Behavior Training and Testing

After ossicular removal, the animal was trained to report the
presence of pure tones in a food-reward operant conditioning
procedure (4, 6). Thresholds were obtained through a computerized
adaptive tracking method. The animal signalled readiness for a
test retrial by pressing and holding down a lever. Within a vari-
able time frame of 1-7 seconds, either a tone of 2 seconds
duration would be presented or a blank trial would occur. The
response latency window for reporting a signal by releasing the
lever was 2 seconds. Hits and correct rejections, i.e., holding
down the lever throughout the trial, were rewarded with food

pellets (Noyes 45 mg.)

Correct detection of an initial, moderately-high level stimulus
resulted in its attenuation in 10 dB steps until a miss was
recorded. Attenuation was then increased (i.e., decrease in
stimulus intensity) in 5 dB increments until a hit was again
recorded; Thereafter, the attenuation scheme was down and up in
2.5 dB steps until six alternati;ns from hit to miss have
occurred at 2.5 dB step size. Thresholds were determined by

taking the average levels of the six reversals. 1In a typical




session lasting an hour, approximately ten thresholds could be

obtained.

Throughout training and testing, the subject was not allowed to go
under 80% of its ad libitum weight. To ensure good stimulus
control, a certain percentage of blank trials were mixed in with
the tone trials. This percentage was adjusted to keep the false
alarm rate (number of false alarms divided by the number of silent
trials) between 5-157%; for this animal the resulting tone
probability was 67-75%. As an additional safeguard, a standard
deviation ceiling was of 7 dB was set. The test frequencies were

randomized by the computer program.

Apparatus

Audiometric test sessions were conducted with the animal inside a
double-walled, sound-shielded booth (IAF Model 1202). The booth
was lined with foam on all inner surfaces. A cage built of 1.27
em. hardwire cloth was centered approximately 0.75 m. abo&e the
ground. Immediately outside the cage a BRS/LVE PDC/PPD Series
Pellet Dispenser was placed with the pellet chute and lever
descending into the cage. 1In the right corner two speakers, one
producing a test signal and one a suppressor signal, were placed

approximately 1.5 m from and on a horizontal plane with the cage.

Pure test tone stimuli %%%’generated by a Hewlett—-Packard 3325-A

synthesizer and function generator. An interface monitor built at




Central Institute for the Deaf's electroacoustics laboratory was
used to visually monitor stimulus frequency, attenuation, and the

subject's response and subsequent reinforcement.

For threshold trials incorporating a suppressor tone, a Wavetek

‘Model 148 signal generator was used to produce the suppressor

tone. The signal was first amplified by a Crown 060 amplifier,
then directed to a Hewlett-Packard 350D attenuator. Signal
frequency was monitored by a Bruel and Kjaer 1827 frequency

counter and output intensity was measured by a Hewlett—-Packard

4OOF voltmeter.

All test frequencies were calibrated by measuring the dB SPL
output of each frequency at 10 dB attenuation at the location of
the subject's right ear during testing. For this, a Bruel and
Kjaer 2112 audio frequency spectrometer with a 1/2" coupler was
A similar procedure was used to calibrate the suppressor

used.

signal level with the sole variation being attenuation level.

Signal Parameters

The test stimuli used in evaluating audiogram microstructure were
pure tones ranging from 1710-2490 Hz at 10 Hz intervals. These

tones were 2 seconds in duration, with a rise-fall time of 50 ms.
The suppressor tone was a 2200 Hz pure tone attenuated to either

10 or 20 dB SPL. It was left continually on during a given

suppressor tone trial.




RESULTS

General Audiogram

Data on the subject's hearing sensitivity were obtained from
0.125-16 kHz at 1/4 octave intervals and are shown in graph 1. As
the chinchilla was not trained until after the noise exposure, no
baseline audiogram is available. However, comparison of this
graph with average hearing thresholds from normal-hearing
chinchillas shows a mild threshold shift from 0.5-3 kHz (graph 2).
It was noticed that the greatest threshold shift occurred in the
same frequency region as the SOAE; this discovery prompted us to
evaluate threshold microstructure in that region (shaded area in

graph 1).

Audiogram microstructure

Thresholds obtained between 1700-2500 Hz at 10 Hz intervals are
shown in graph 3. For the first 400 Hz the microstructure con-
sists of a series of small fluctuations. These range around 24 dB
plus or minus 4 dB. At 2090 Hz a well-defined downward slope to
18.6 dB at 2160 Hz is seen. This is followed by a sharp rise to 25
dB at 2190 Hz and, subsequently, by a drop to 14 dB at 2230 Hz.
This microstructure takes the form of a prominent "bump"” which
shows the only plateau throughout the range tested. Thereafter,

; general rise in thréshold occurs in the higher frequencies
tested. It is noteworthy that the frequency range of the strongest
fluctuation - the large “"bump". described — matches closely the

range in which the emission has been recorded.




Effects of suppressor tone on threshold at 2200 Hz

Since the microstructure peak occurring in the SOAE frequency
region bears resemblance to a pure tone masking function (e.g.,
Small, 1959), a separate procedure was devised to test the poss-
ibility that the SOAE could be acting as an internal masker.
Studies have demonstrated that external tones even at subthreshold
levels can partially suﬁpress otoacoustic emissions if they are

sufficiently close in frequency to the emission (7, 38, 24, 36,

33).

It was hypothesized that if the SOAE were producing an internal
masking effect on thresholds for test stimuli in its frequency
range, then its suppression by a subthreshold external tone should
result in lowered thresholds. Thresholds at 2200 Hz were pbtained
as before in the presence of continuous 2200 Hz tomes at 10 and 20
dB SPL, respectively, in separate sequences. Tone trials with and

without the external tone were alternated in an ABAB sequence.

In the 10 dB suppressor tone paradigm the mean threshold in the
external tone condition was 15.5 dB, whereas the mean threshold
without the tone was 15.4 dB. There is no significant difference
between the two conditions, indicating that the emission did not
act as internal masker. It mus.t be noted,rhowever,_that these
thresholds are over 8 dB lower than the thresholds obtained in the
fine-frequency audiogram. Possible explanations include the

perception of beats near threshold (Wilson, 1980), especially if



the SOAE had shifted in frequency, and a host of other factors

that could occur in the time elapsed between the test procedures.
On the other hand, the thresholds obtained in the 20 dB

suppressor paradigm, which average to 24.34 dB with the external
tone and 26.47 dB without, also indicating no significant

effect of the emission on threshold at 2200 Hz, are much closer to

that measured in the fine-frequency audiogram.
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DISCUSSION

Thirty years before their actual discovery, spontaneous otoacoustic
emissions were predicted by Gold (1948) in his model of an active
cochlear processing mechanism. As he noted, "the assumption of a
'*passive' cochlea, where elements are brought into mechanical
oscillation solely by means of the incident sound, is not tenable.”
Gold attributed the cochlea's selective frequency-tuning ability

at low intensities to a feedback channel that served as a
resonator, enhancing basilar membrane movement at threshold

intensities. He then conjured that "if the feedback ever exceeded
the losses"” of energy in the transduction process "then a resonant

element would become self-oscillatory.”

Kemp's (1978) subsequent identification of evoked acoustic
emissions in human ears prompted a wave of research on emissions
of various types - evoked, spontaneous and synchronized - in both
human and animal populations. There is a strong consensus in the
literature that otoacoustic emissions do in fact originate from
the cochlea and indicate the presence of active cochlear
processing. Evidence of this includes the emissions' latency
(when a stimulus is involved), susceptibility to ototoxic agents,
similarity of suppression curves to freqpency tuning curves, non-
linearities arising from interaction with external acoustic

stimuli, and other phenomena (19, 33, 38, 1, 7, 11, 22).
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active elements are presumed to function collec-
tively as a cochlear amplifier. Under certain con-
ditions, arising either spontaneously or evoked by
external stimuli, excessive gain is introduced in the
amplifier resulting in oscillations which propagate
out of the cochlea to the ear canal.

For several reasons, these active biomechanical
elements are thought to be the outer hair cells
(OHCs). Isolated mammalian OHCs exhibit a
motile response to electrical and chemical stimula-
tion (Brownell et al., 1985; Zenner, 1985; Ashmore
and Brownell, 1986). In addition, because of their
firm attachments to the tectorial (Kimura, 1966;
Takasaka et al., 1983) and basilar (Slepecky and
Chamberlain, 1983) membranes, OHCs are con-
sidered to be bidirectionally coupled to the
cochlear partition. Therefore, they are capable of
the mechanical-to-electrical transduction required
for hearing, as well as the electrical-to-mechanical

5955/89/$03.50 © 1989 Elsevier Science Publishers B.V. (Biomedical Division)
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The question still remains, however, as to whether SQAEs are a
manifestation of normal éochlear processing or a result of some
cochlear pathology. Surveys of the incidence of SOAEs in humans
have thus far shown that whereas 1/3 to 1/2 of normal human ears
possess at least one emission (38, 32, 2, 28, 3), only two cases
have been documented in which SOAEs occurred in regions with
hearing losses greater than 30 dB HL (15, 34). Fritze (1983)
notes that twelve subjects with "minor inner ear deafness" showed
an elevated incidence of SOAEs relative to subjects with normal
audiograms but that no emissions were found in twelve subjects
with "severe inner ear deafness” (losses of 30 dB or more). 1In a
study of SOAEs in children, Strickland et al (1985) hypothesized
that if SOAEs are associated &ith outer hair cell damage, the
incidence should increase with length of exposure to damaging
sounds. They found the incidence of emissions in both the infant

and child populations not to be significantly different from that

of adults.

From the results of these studies it appears that a correlation
between spontaneous otoacoustic emissions and cochlear pathology
is tenuous. But it must be pointed out that the studies above
defined their subjects as normal hearing based on clinical
aﬁdiometric results at octave intervals. It is possible that with
the interval size utilized in conventional audiometry subtle

cochlear lesions could easily be missed (7).
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The idea that spontaneous otoacoustic emissions may result from
cochlear trauma arose frém the discovery that SOAEs in chinchillas
were only found in noise-exposed animals who were also shown, upon
post-mortem histological analysis, to have punctate lesions in the
organ of Corti at regions correspounding to the frequencies of the
emissions (38, 7). On the basis of these data, Clark et al

(1984) hypothesized that two conditions, a localized area of
damage surrounded by normal regions in the organ of Corti, were
"necessary and sufficient for an SOAE to occur."” TIf this is a
disruption of the feedback mechanism hypothesized by Gold, then an

SOAE could be the predicted "self-oscillatory element."”

When more detailed audiometric data of human and animal subjects
have been obtained, the results have been interesting. Bright et
al (1985) reported that "it has been discouraging to find that
spontaneous emissions do not appear to occur in ears that have
hearing loss above 30 dB."” 1Immediately thereafter, however, they
note that SOAEs "do co—exist with reported irregularities in the
audiometric threshold pattern when the thresholds are measured
with continuous sweep-frequency techniques...." They do not
elaborate on the nature of these irregularities except to say that

their basis "remains to be seen.”

Both Ruggero et al (1983) and Clark et alA(1984) have demonstrated
that emissions appear to occur in regions showing sharp changes in

hearing sensitivity when thresholds are measured at 1/4 octave or
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smaller intervals. The Ruggero et al study's human emission
occurred at 7.5 kHz, a frequency showing a sudden increase in
sensitivity after a region of hearing loss. Even more noteworthy
are Clark et al's findings on chinchilla No. 3476-R. In this
animal the SOAE occurred at 6470 Hz, the only frequency from 125-
16000 Hz showing no permanent threshold shift following noise
exposure. These results indicate that the emissions are occurring
in regions of the cochlea that, when assessed through detailed

audiometric techniques, are unique.

Schloth (1983) and Zwicker and Schloth (1984) examined threshold

microstructure and SOAE distribution in humans. They concluded

that strong otoacoustic emissions of any sort "are directly
related to high sensitivity of hearing at low levels." Similar
relations have been found between evoked emissions and minima

(areas of maximum sensitivity) in audiogram microstructure (17,

35, 19, 33).

The fine-structure audiometric results with chinchilla No. 184
also show that the animal's SOAE is correlated to sharper changes
in hearing sensitivity than seen in other frequency regions.

While the emission has fluctuated within the range stated, it
appears to occur most often at 2200 Hz, on a downward slope
towards a threshold minimum in the microstructure. This is
consistent with findings in humans. The fact that the presence of

a suppressor tone at the frequency of the emission did not alter
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thresholds significantly leads us to believe that the sharp
. . R arc .
fluctuations in hearing sensitivity 8 not due to internal

masking, as some in the literature have hypothesized (34).

The results of this study must be interpreted with caution. More
single~study subjects of this sort need to be carried out before
we can draw general conclusions about any significance spontaneous
otoacoustic emissions may have in helping us better understand

the effects of noise on the cochlea. This is especially true in
attempting to make inferences about the significance of SOAEs and
cochlear function in humans from animal data. McFadden et al
(1983) noted that it is not clear if human and animal auditory
systems are the same. With regard to this important point,
however, we feel that, with auditory sensitivity and frequency
response being the most similar to the human auditory systems of
all animals, the chinchilla is the most appropriate animal model
for studying the ear. 1In addition, further studies of chinchillas
with emissions would be strengthened by the following
methodological variations: 1) obtaining a baseline audiogram prior
to noise exposure to ensure that the threshold shift is valid,

2) measuring the SOAE more frequently, 3) measuring any effects
that suppressor tone may have on the SQOAE--threshold changes may
also result if the test tone, suppressor tone and/orithe emission

combined to form beating.
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Despite its preliminary nature, we feel that the results of our
audiometric study on this chinchilla with a spontaneous
otoacoustic emission are significant and warrant further studies

of hearing sensitivity in subjects with emissions.
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